中考数学专题复习:树状图(含解析)电子教案
沪科版数学九年级下册《利用树状图、图表法求概率》教学设计3

沪科版数学九年级下册《利用树状图、图表法求概率》教学设计3一. 教材分析《利用树状图、图表法求概率》是沪科版数学九年级下册的教学内容。
这部分内容是在学生已经掌握了概率的基本概念和等可能事件的概率计算方法的基础上进行学习的。
教材通过引入树状图和图表法两种方法来求解概率问题,旨在帮助学生更直观、更清晰地理解和掌握概率计算的方法。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和图形感知能力,对概率的概念和计算方法有一定的了解。
但是,学生在求解复杂概率问题时,往往还存在一定的困难,对于如何运用树状图和图表法来求解概率问题的方法还不够熟练。
因此,在教学过程中,需要注重引导学生理解和掌握树状图和图表法的使用方法,并通过大量的练习来提高学生的解题能力。
三. 教学目标1.知识与技能目标:使学生掌握树状图和图表法求解概率问题的方法,能够熟练运用这两种方法来解决实际问题。
2.过程与方法目标:通过自主学习、合作交流的方式,培养学生解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:树状图和图表法的使用方法。
2.难点:如何运用树状图和图表法解决实际问题。
五. 教学方法1.情境教学法:通过生活实例来引导学生理解树状图和图表法在概率计算中的应用。
2.合作学习法:学生进行小组讨论,培养学生的团队合作意识。
3.练习法:通过大量的练习来提高学生的解题能力。
六. 教学准备1.教学课件:制作相关的教学课件,以便于学生更直观地理解树状图和图表法的使用方法。
2.练习题:准备一些相关的练习题,以便于学生在课堂上进行操练。
七. 教学过程1.导入(5分钟)通过一个现实生活中的实例,如抽奖活动,引导学生思考如何计算中奖的概率。
从而引出本节课的主题——利用树状图和图表法求概率。
2.呈现(10分钟)利用课件呈现树状图和图表法的定义和作用,并通过具体的例子来解释这两种方法的使用方法。
中考数学用树状图或表格求概率一新授课教案设计与反思

第一环节:回顾思考,做好铺垫问题探究:如果有两组牌,它们的牌面数字分别是1,2,3,那么从每组牌中各摸出一张牌,两张牌的牌面数字和等于4的概率是多少呢?设计问题:通过三个学生的解答,结合上节课,你学会了用什么方法求某个事件发生的概率? 设计目的:通过问题思考,学生回答,回想上节课主要内容,为这节课计算概率做好铺垫。
第二环节:师生互动,探究新知本节是从“石头、剪刀、布”这个耳熟能详的游戏作为切入点,使学生产生学习新知的兴趣,使学生进一步掌握用列表法或树状图计算某事件发生的概率,进而得到判断游戏规则公平与否的依据。
本节课提供了多种具体情境,一方面使学生感受概率存在的普遍性,另一方面适应不同的情境,得到概率。
问题探究:(展示例题,引出新课):小明、小颖和小凡做“石头、剪刀、布”的游戏游戏规则如下:由小明和小颖玩“石头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗? 法一:总共有9种可能的结果,每种结果出现的可能性相同,而两人手势相同的结果有三种:(石头,石头)(剪刀,剪刀)(布,布),所以小凡获胜的概率为小明胜小颖的结果有三种:(石头,剪刀)(剪刀,布)(布,石头),所以小明获胜的概率为3193=3193=小颖胜小明的结果也有三种:(剪刀,石头)(布,剪刀)(石头,布),所以小颖获胜的概率为 所以,这个游戏对三人是公平的. 法二:设计目的:通过儿时的游戏,激发学生学习新知的兴趣。
使学生意识到是比较事件发生的概率,是评判规则公平与否的依据,而求概率的方法即为课前回顾的——树状图和列表法。
实际效果:激发了学生的求知欲和好奇心,激起了学生探究活动的兴趣,能引导学生从问题出发,利用概率解决实际问题。
第三环节:提高拓展,激励创新内容:在例题结束后,适时抛出一个类似的情境:小明和小军两人一起做游戏.游戏规则如下:每人从1,2,…,12中任意选择一个数,然后两人各掷一次均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.如果你是游戏者,你会选择哪个数?分析思路:此题等同于两人各掷一个骰子,将两人掷得的点数相加,点数之和为几的概率最大? 解:经分析可得,掷得的点数之和是哪个数的概率最大,选择这个数后获胜的概率就大.利用列表法列出所有可能出现的结果:3193从表格中,能看出和为7出现的次数最多,所以选择7,概率最大!拓展问题:由上面这张表格,你还能提出哪些问题?设计目的:本环节的设置,开放性更强,让学生在问题中需求解决方案。
人教版-数学-九年级上册 教学设计-25.1.1 树状图法求概率

人教版九年级数学上册用“树状图法”求概率教学设计讲课内容用“树状图法”求概率所属年级九年级学科数学适用对象九年级学生授课时数1课时授课教师毕宏州教学背景在学习了随机事件、概率、列表法求概率之后,对在“一次试验中,涉及了三个或更多个因素时”,为了不重复、不遗漏地列出所有可能的结果,从而学习用“树状图法”求概率,让学生进一步感受数学在生活中的应用价值。
教学目标知识与技能学生在已有知识的基础上,学会用“树状图法”求一个事件中涉及三个或三个以上因素时”随机事件的概率。
过程与方法在已有知识经验的基础上,总结出用“树状图法”求概率。
情感、态度及价值观培养学生参与活动,形成合作和探究的良好习惯,提高学生学习数学的兴趣。
教学重点辨别一次事件中是否涉及三个因素,甚至多个因素,能够用树状图法求概率。
教学难点用树状图法求出一次试验等可能的所有结果。
教学方法与手段1.合作探究法2.交互式电子白板与投影教学流程一、引入我们在上节课所学习的列表法求概率的基础上,本节课学习在一次试验中涉及三个因素时求概率的方法——树状图法。
二、展示学习目标三、合作探究【探究】经过某十字路口的汽车,可能直行,也可能向左转或向右转。
如果这三种可能性大小相同,求三辆汽车经过这个十字路口时,下列事件的概率:(1)三辆车全部继续直行;(2)两辆车向右转,一辆车向左转;(3)至少有两辆车向左转。
引导学生分析:第一:明确实验步骤第二:画出树形图第三:计算概率学生交流讨论完成本题,小组投影展示教学流程小结:画树状图求概率的基本步骤:(1)明确一次试验的几个步骤及顺序;(2)画树形图列举一次试验的所有可能结果;(3)明确随机事件,数出nm,;(4)计算随机事件的概率()AmPn.想一想:(1) 列表法和树状图法的优点是什么?(2)什么时候使用“列表法”方便?什么时候使用“树状图法”方便?【学以致用】甲口袋中装有2相同的小球,它们分别写有字母A和B;已口袋中装有3个相同的小球,它们分别写有字母C,D和E;丙口袋中装有2个相同的小球,它们分别标有字母H和I。
中考数学用树状图或表格求概率新授课教案设计与反思

游戏1:小颖为学校联欢会设计了一个“配紫色”游戏:下面是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形.游戏者同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,那么他就赢了,因为红色和蓝色在一起配成了紫色.16(1)利用树状图或列表的方法表示游戏者所有可能出现的结果.(2)游戏者获胜的概率是多少?活动目的:通过这个转转盘“配紫色”游戏,让学生再次经历利用树状图或列表的方法求出概率的过程,并体会求概率时必须使每种事件发生的可能性相同培养学生应用所学知识解决问题的能力.提高学生分析问题解决问题的能力.活动效果:学生借助树状图或者列表法表示出所有可能出现的结果,很顺利地求出游戏者获胜的概率。
同时在自学过程中也注意到转盘是被分成面积相等的几份扇形,初步感受了每件事情发生的可能性为下一环节的学习打好基础。
第二环节:合作交流,探求新知游戏2:如果把转盘变成如下图所示的转盘进行“配紫色”游戏.(1)利用树状图或列表的方法表示游戏者所有可能出现的结果.(2)游戏者获胜的概率是多少?小颖做法如下图,并据此求出游戏者获胜的概率为21小亮则先把左边转盘的红色区域等分成2份,分别记作“红色1”“红色2”,然后制作了下表,据此求出游戏者获胜的概率也是21.你认为谁做得对?说说你的理由.(小组合作交流)分析:小颖的做法是不正确的,因为A 盘中红色区域和蓝色区域的面积不同,所以指针落在这两个区域的可能性是不同的。
而小亮的做法是正确的。
他将A 盘的红色区域分成两份,这样各种结果出现的可能性就相同了,也就可以用等可能概型的概率计算公式计算概率了。
活动目的:让学生先自己画树状图或者表格表示出所有可能出现的结果,然后通过合作交流观察A 盘和游戏1转盘的区别并做出正确判断.并总结出求一件事情发生的概率必须是所有可能出现的结果都相同。
红色 蓝色 红色1 (红1,红) (红1,蓝) 红色2 (红2,红) (红2,蓝) 蓝色(蓝,红)(蓝,蓝)开始红蓝红蓝红蓝(红,红) (红,蓝)(蓝,红)(蓝,蓝)活动效果:通过合作交流学生会发现游戏2中A盘中蓝色部分和红色部分的面积不同,因而指针落在这两个区域的可能性不同。
沪科版数学九年级下册《利用树状图、图表法求概率》教学设计2

沪科版数学九年级下册《利用树状图、图表法求概率》教学设计2一. 教材分析《利用树状图、图表法求概率》是沪科版数学九年级下册中的一节内容。
本节内容是在学生已经掌握了概率的基本概念和等可能事件的概率计算方法的基础上进行学习的。
通过本节课的学习,使学生能够掌握利用树状图和图表法求概率的方法,进一步培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,对概率的概念和计算方法有一定的了解。
但是,对于利用树状图和图表法求概率的方法,学生可能还不够熟悉。
因此,在教学过程中,需要引导学生从实际问题中抽象出概率模型,并通过实际操作,使学生掌握利用树状图和图表法求概率的方法。
三. 教学目标1.知识与技能:使学生掌握利用树状图和图表法求概率的方法。
2.过程与方法:通过实际问题的解决,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:使学生掌握利用树状图和图表法求概率的方法。
2.难点:如何引导学生从实际问题中抽象出概率模型,并利用树状图和图表法求解概率。
五. 教学方法1.情境教学法:通过实际问题的引入,激发学生的学习兴趣,引导学生主动参与学习。
2.问题驱动法:通过提出问题,引导学生思考和探究,培养学生解决问题的能力。
3.合作学习法:通过小组合作,培养学生的团队合作意识和沟通能力。
六. 教学准备1.教学素材:准备一些实际问题,用于引入和巩固所学知识。
2.教学工具:准备黑板、粉笔、多媒体教学设备等。
七. 教学过程1.导入(5分钟)利用一个实际问题,引导学生回顾概率的基本概念和等可能事件的概率计算方法。
例如,抛掷一枚硬币三次,求恰好出现两次正面的概率。
2.呈现(10分钟)呈现一个新的实际问题,例如,抛掷一枚硬币五次,求恰好出现三次正面的概率。
引导学生从实际问题中抽象出概率模型,并思考如何利用树状图和图表法求解概率。
九年级数学上册教案:用树状图或表格求概率

3.1 用树状图或表格求概率 第1课时 画树状图法和列表法用树状图和列表法计算涉及两步实验的随机事件发生的概率.(重点)阅读教材P60~61,完成下列问题:问题:甲口袋中装有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3、4和5;从两个口袋中各随机取出1个小球.用列表法写出所有可能的结果.如果还有丙口袋中装有2个相同的小球,它们分别写有字母H 和I.从甲、乙、丙三个口袋中各随机取出1个小球.此时可以继续用列表法吗?你有没有更好的方法?与同学交流一下.当一次试验涉及两个因素时,且可能出现的结果较多时,为不重复不遗漏地列出所有可能的结果,通常用列表法.当一次试验涉及三个因素时,列表法就不方便了,那么为不重不漏地列出所有可能的结果,我们该怎么办呢?活动1 小组讨论例 在抛掷硬币试验中,(1)抛掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样? (2)抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)在第一枚硬币正面朝上的情况下,第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?如果第一枚硬币反面朝上呢?解:(1)可能出现正、反两种结果,它们发生的可能性相同. (2)可能出现正、反两种结果,它们发生的可能性相同.(3)可能出现正、反两种结果,发生的可能性相同,第一枚硬币反面朝上亦然.注意不重不漏地列出每一种可能发生的结果.活动2 跟踪训练1.从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是( ) A .0 B.13C.23D .12.“五·一”期间,小明与小亮两家准备从东营港、黄河入海口、龙悦湖中选择一景点游玩,小明与小亮通过抽签方式确定景点,则两家抽到同一景点的概率是( ) A.13 B.16C.19D.143.在x 2□2xy □y 2的□中,分别填上“+”或“-”,所得的代数式中,能构成完全平方式的概率是( )A .1 B.34C.12D.144.经过某十字路口的汽车,它可能继续直行,也可能左转或右转,如果这三种可能性大小相同,同向而行的三辆汽车都经过这个十字路口时,求下列事件的概率:(1)三辆车全部继续直行;(2)两辆车右转,一辆车左转.活动3 课堂小结本堂课你学到了哪些知识与方法?在运用时有哪些细节需要注意呢?【预习导学】1 23 (3,1) (3,2)4 (4,1) (4,2)5 (5,1) (5,2)【合作探究】活动2跟踪训练1.B 2.A 3.C 4.(1)127.(2)19.第2课时利用概率判断游戏的公平性1.进一步经历用树状图、列表法计算两步随机试验的概率.2.运用树状图法或列表法判断游戏的公平性.(重点)阅读教材P62~64,完成下列问题:自学反馈小明和小军两人一起做游戏.游戏规则如下:每人从1,2,…,12中任意选择一个数,然后两人各掷一次均匀的骰子,谁事先选择的数等于两人掷得的点数之和谁就获胜;如果两人选择的数都不等于掷得的点数之和,就再做一次上述游戏,直至决出胜负.如果你是游戏者,你会选择哪个数?活动1 小组讨论例小明、小颖和小凡做“石头、剪刀、布”的游戏,游戏规则如下:由小明和小颖玩“石头、剪刀、布”游戏,如果两人的手势相同,那么小凡获胜;如果两人手势不同,那么按照“石头胜剪刀,剪刀胜布,布胜石头”的规则决定小明和小颖中的获胜者.假设小明和小颖每次出这三种手势的可能性相同,你认为这个游戏对三人公平吗?解:因为小明和小颖每次出这三种手势的可能性相同,所以可以利用树状图列出所有可能出现的结果:总共有9种可能的结果,每种结果出现的可能性相同,其中,两人手势相同的结果有3种:(石头,石头)(剪刀,剪刀)(布,布).所以小凡获胜的概率为39=13;小明胜小颖的结果有3种:(石头,剪刀)(剪刀,布)(布,石头),所以小明获胜的概率为39=13; 小颖胜小明的结果也有3种:(剪刀,石头)(布,剪刀)(石头,布),所以小颖获胜的概率为39=13. 因此,这个游戏对三人是公平的. 活动2 跟踪训练1.在“石头、剪子、布”的游戏中(剪子赢布,布赢石头,石头赢剪子),当你出“剪子”时,对手胜你的概率是( ) A.12 B.13C.23D.142.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于( ) A.23 B.12C.13D .13.如图所示,甲、乙两人玩游戏,他们准备了1个可以自由转动的转盘和一个不透明的袋子.转盘被分成面积相等的三个扇形,并在每一个扇形内分别标上数字-1,-2,-3;袋子中装有除数字以外其他均相同的三个乒乓球,球上标有数字1,2,3.游戏规则:转动转盘,当转盘停止后,指针所指区域的数字与随机从袋中摸出乒乓球的数字之和为0时,甲获胜;其他情况乙获胜.(如果指针恰好指在分界线上,那么重转一次,直到指针指向某一区域为止)(1)用树状图或列表法求甲获胜的概率;(2)这个游戏规则对甲乙双方公平吗?请判断并说明理由.活动3 课堂小结1.一次试验中可能出现的结果是有限多个,各种结果发生的可能性是相等的.通常可用列表法和树状图法求得各种可能结果.2.一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,通常采用树状图法.【合作探究】活动2跟踪训练1.B 2.B3.(1)列表法:乒乓球数字转盘数字和-1 -2 -31 0 -1 -22 1 0 -13 2 1 0树状图:则甲获胜的概率为P(甲)=39=13;(2)不公平;乙获胜的可能性大.第3课时利用概率玩“配紫色”游戏借助于树状图、列表法计算随机事件的概率.提高在求概率时处理各种情况出现可能性不同时的能力.(重点)阅读教材P65~67,完成下列问题:自学反馈两个转盘进行“配紫色”游戏,配得紫色的概率是多少?解析:“配紫色”转盘游戏分两步试验,第一次有4种可能结果,第二次有3种可能结果,故可利用列表法或画树状图来计算配成紫色的概率.(红,红)(红,蓝)(红,白)(绿,红)(绿,蓝)(绿,白)(黄,红)(黄,蓝)(黄,白)(蓝,红)(蓝,蓝)(蓝,白)请将结果填在下面的表格中:第二个转盘第一个转盘红 蓝 白 红 绿 黄 蓝活动1 小组讨论例 一个盒子中有两个红球,两个白球和一个蓝球,这些球除颜色外其他都相同,从中随机摸出一球,记下颜色后放回,再从中随机摸出一球.求两次摸到的球的颜色能配成紫色的概率.解:把两个红球记为红1、红2;两个白球记为白1、白2.则列表格如下: 红1 红2 白1 白2 蓝 红1 (红1,红1) (红1,红2) (红1,白1) (红1,白2) (红1,蓝) 红2 (红2,红1) (红2,红2) (红2,白1) (红2,白2) (红2,蓝) 白1 (白1,红1) (白1,红2) (白1,白1) (白1,白2) (白1,蓝) 白2 (白2,红1) (白2,红2) (白2,白1) (白2,白2) (白2,蓝) 蓝(蓝,红1)(蓝,红2)(蓝,白1)(蓝,白2)(蓝,蓝)总共有25种结果,每种结果出现的可能性相同,而两次摸到的球的颜色能配成紫色的结果有4种:(红1,蓝),(红2,蓝),(蓝,红1),(蓝,红2),所以P(能配成紫色)=425.活动2 跟踪训练1.如图转动两个盘当指针分别指向红色和蓝色时称为配紫色成功.如图转动两个盘各一次配紫色成功的概率是( )A.14B.13C.15D.162.小明所在的学校准备在国庆节当天举办-个大型的联欢会,为此小明设计了如图所示的A ,B 两个转盘和同学们做“配紫色”(红、蓝可配成紫色)的游戏,试问使用这两个转盘可以配成紫色的概率是________.3.转动下面的两个转盘各一次,将所转到的数字相加,它们的和是奇数的概率是________.4.如图所示的两个转盘分别被均匀地分成3个和4个扇形,每个扇形上都标有一个实数.同时自由转动两个转盘,转盘停止后(若指针指在分格线上,则重转),两个指针都落在无理数上的概率是________.5.设计两个转盘进行“配紫色”游戏,使配得绿色的概率是16.(黄、蓝两色混合配成绿色)活动3 课堂小结1.用树状图和列表的方法求概率时应注意各种结果出现的可能性必须相同. 2.“配紫色”游戏体现了概率模型的思想,它启示我们:概率是对随机现象的一种数学描述,它可以帮助我们更好地认识随机现象,并对生活中的一些不确定情况作出自己的决策.【预习导学】 自学反馈(红,红) (红,蓝) (红,白) (绿,红) (绿,蓝) (绿,白) (黄,红) (黄,蓝) (黄,白) (蓝,红) (蓝,蓝) (蓝,白)【合作探究】 活动2 跟踪训练1.A 2.14 3.1325 4.165.如图.教学设计3.1 用树状图或表格求概率第三课时北师大版 | 九年级数学上 | 2018年10月 3.1.3《用树状图或表格求概率》教学设计一、教学目标:目标:经历利用树状图和列表法求概率的过程,在活动中进一步发展学生的合作交流意识及反思的习惯。
初中概率树状图教案

初中概率树状图教案教学目标:1. 理解概率的基本概念,掌握树状图的画法。
2. 能够运用树状图求解简单事件的概率。
3. 培养学生的逻辑思维能力和解决问题的能力。
教学重点:1. 概率的基本概念。
2. 树状图的画法。
教学难点:1. 树状图的画法。
教学准备:1. PPT课件。
2. 教学案例。
教学过程:一、导入(5分钟)1. 引入概率的概念,让学生回顾概率的定义。
2. 提问:我们如何求解一个事件发生的概率呢?二、新课讲解(15分钟)1. 讲解概率的基本概念,让学生理解概率的意义。
2. 讲解树状图的画法,让学生掌握如何画出树状图。
3. 举例讲解如何运用树状图求解简单事件的概率。
三、案例分析(15分钟)1. 给出一个案例,让学生运用树状图求解事件的概率。
2. 学生分组讨论,每组画出树状图并求解概率。
3. 各组汇报结果,讨论分析不同树状图的画法对概率计算的影响。
四、练习与拓展(15分钟)1. 让学生独立完成一些练习题,运用树状图求解概率。
2. 引导学生思考如何解决更复杂的问题,如何优化树状图的画法。
五、总结与反思(5分钟)1. 让学生回顾本节课所学的内容,总结概率的基本概念和树状图的画法。
2. 提问:我们在解决实际问题时,如何选择合适的树状图画法?教学延伸:1. 让学生进一步学习组合数学,了解排列组合的知识,为求解更复杂事件的概率打下基础。
2. 引导学生关注生活中的概率问题,培养学生的实际应用能力。
教学反思:本节课通过讲解概率的基本概念和树状图的画法,让学生掌握如何运用树状图求解简单事件的概率。
在案例分析和练习环节,学生能够独立完成题目,运用树状图解决问题。
但在解决更复杂问题时,学生可能需要进一步学习组合数学的知识,优化树状图的画法。
因此,在后续的教学中,需要加强对学生逻辑思维能力的培养,引导学生关注生活中的概率问题,提高学生的实际应用能力。
中考数学专题复习:树状图(含解析)

例谈画树状图一、显性放回例1 现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字“1”、“2”、“3”.第一次从这三张卡片中随机抽取一张,记下数字后放回;第二次再从这三张卡片中随机抽取一张并记下数字.请用画树状图的方法表示出上述试验所有可能的结果,并求第二次抽取的数字大于第一次抽取的数字的概率.分析从题中文字“记下数字后放回”知本题属于“显性放回”.本题中的事件是摸两次卡片,看卡片的数字,由此可以确定事件包括两个环节.摸第一张卡片,放回去,再摸第二张卡片,所以树状图应该画两层.第一张卡片的数字可能是1,2,3等3个中的一个,所以第一层应画3个分叉;再看第二层,由于放回,第二个乒乓球的数字可能是3个中的一个,所以第二层应接在第一层的3个分叉上,每个小分支上,再有3个分叉.画出树状图,这样共得到3x3=9种情况,从中找出第二次抽取的数字大于第一次抽取的数字的情况,再求出概率.解根据题意画树状图如图1.所有可能的结果为:(1,1),(1,2),(1,3),(2,1),(2,2), (2,3),(3,1),(3,2),(3,3).∵有9种等可能的结果,第二次抽取的数字大于第一次抽取的数字的只有3种,∴ P(第二次抽取的数字大于第一次抽取的数字)=13.二、显性不放回例2 一个不透明的布袋里装有4个大小、质地都相同的乒乓球,球面上分别标有数字1,-2,3,-4.小明先从布袋中随机摸出一个球(不放回去),再从剩下的3个球中随机摸出第二个乒乓球.(1)共有_______种可能的结果;(2)请用画树状图的方法求两次摸出的乒乓球的数字之积为偶数的概率.分析从文字条件“不放回去”知,本题属于“显性不放回”.本题中的事件是摸两个乒乓球,看乒乓球的数字,由此可以确定事件包括两个环节,所以树状图应该画两层.第一个乒乓球的数字可能是1,-2,3,-4等4个中的一个,所以第一层应画4个分叉;由于不放回,第二个乒乓球的数字可能是剩下的3个中的一个,所以第二层应接在第一层的4个分叉上,每个小分支上,再有3个分叉,画出树状图.解根据题意画树状图如图2.(1)由图2可知,共有12种可能结果,分别为:(1,-2),(1,3).(1,-4),(-2,1),(-2,3),(-2.-4),(3,1),(3,-2),(3,-4),(-4,1),(-4,-2),(-4,3).故答案为12.(2)∵在(1)中的12种可能结果中,两个数字之积为偶数的只有10种,∴P(积为偶数)=56.三、隐形放回例3 小明骑自行车从家去学校,途经装有红、绿灯的三个路口,假没他在每个路口遇到红灯和绿灯的概率均为12,则小明经过这三个路口时,恰有一次遇到红灯的慨率是多少?请用画树状图的方法加以说明.分析通过反复分析知本题属于“隐形放回”问题,比较容易出错.其实问题相当于一个口袋里有红球和绿球各1个,放回地随机取三次.本题中的事件是小明骑自行车从家去学校,途经装有红、绿灯的三个路口,由此可以确定事件包括三个环节,所以树状图应该画三层.由于每一个路口可能是红灯,绿灯等2个中的一个,所以每一层的分叉的小分支上都有两个小分叉.解根据题意画树状图如图3.∵经过三个路口共有8种情况,其中恰有一次遇到红灯的有3种,∴P(恰有一次遇到红灯)=38.四、隐形不放回1、随机取明确分类例4 小明有3支水笔,分别为红色、蓝色、黑色;有2块橡皮,分别为白色、灰色.小明从中任意取出1支水笔和1块橡皮配套使用,试用树状图或表格列出所有可能的结果,并求取出红色水笔和白色橡皮配套的概率.分析从文字中稍加分析知,本题属于“隐性不放回”,而且选取时有指明对象,是水笔和橡皮.本题中的事件是小明有3支水笔为红色、蓝色、黑色;有2块橡皮为白色、灰色,取出1支水笔和1块橡皮配套使用.由此可以确定事件包括两个环节,所以树状图应该画两层.至于水笔和橡皮哪个先取,可以随便,不影响结果,关键是各层的分叉要画对.解法根据题意画树状图如图4.所有可能结果为:(红,白),(红,灰),(蓝,白),(蓝灰),(黑,白),(黑,灰).∵有6种等可能的结果,而红色水笔和白色橡皮配套的只有1种,∴P(红色水笔和白色橡皮配套)=16.2、随机取,不明确分类例5 有两个不同形状的计算器(分别记为A,B)和与之匹配的保护盖(分别记为a,6)(如图5所示)散乱地放在桌子上,若从计算器和保护盖中随机取两个,用树形图法或列表法,求恰好匹配的概率.分析从文字中理解本题属于“隐性不放回”,而且随机选取没有指明对象是计算器还是保护盖,比较容易出错,本题中的事件是从计算器和保护盖中随机取两个,看恰好匹配.由此可以确定事件包括两个环节,取第一个,不放回去,然后再取第二个,所以树状图应该画两层.取第一个可能是A,B,a,b等4个中的一个,所以第一层应画4个分叉;再看第二层,由于不放回,取第二个可能是剩下的3个中的一个,所以第二层应接在第一层的4个分叉上,每个小分支上,再有3个分叉,画出树状图.解根据题意画树状图如图5.∵从计算器和保护盖中随机取两个,共有12种情况,其中恰好匹配的有4种,∴P(恰好配套)=13.画树状图的关键是确定层数和确定每层分叉的个数,树状图的层数取决于事件的环节数,每层分叉的个数取决于本环节包含的可能情况的种类数,特别要注意区分是放回还是不放回问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例谈画树状图
一、显性放回
例1 现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字“1”、“2”、“3”.第一次从这三张卡片中随机抽取一张,记下数字后放回;第二次再从这三张卡片中随机
抽取一张并记下数字.请用画树状图的方法表示出上述试验所有可能的结果,并求第二
次抽取的数字大于第一次抽取的数字的概率.
分析 从题中文字“记下数字后放回”知本题属于“显性放回”.本题中的事件是摸
两次卡片,看卡片的数字,由此可以确定事件包括两个环节.摸第一张卡片,放回去,再摸第二张卡片,所以树状图应该画两层.第一张卡片的数字可能是1,2,3等3个中的一个,所以第一层应画3个分叉;再看第二层,由于放回,第二个乒乓球的数字可能是3个中的一个,所以第二层应接在第一层的3个分叉上,每个小分支上,再有3个分叉.画出树状图,这样共得到3x 3=9种情况,从中找出第二次抽取的数字大于第一次抽取的数字的情况,再求出概率.
解 根据题意画树状图如图1.
所有可能的结果为:
(1,1),(1,2),(1,3),(2,1),(2,2), (2,3),(3,1),(3,2),(3,3).
∵有9种等可能的结果,第二次抽取的数字大于第一次抽取的数字的只有3种,
∴ P(第二次抽取的数字大于第一次抽取的数字)=13
.
二、显性不放回
例2 一个不透明的布袋里装有4个大小、质地都相同的乒乓球,球面上分别标有数字1,-2,3,-4.小明先从布袋中随机摸出一个球(不放回去),再从剩下的3个球中随机摸出第二个乒乓球.
(1)共有_______种可能的结果;
(2)请用画树状图的方法求两次摸出的乒乓球的数字之积为偶数的概率.
分析 从文字条件“不放回去”知,本题属于“显性不放回”.本题中的事件是摸两个乒乓球,看乒乓球的数字,由此可以确定事件包括两个环节,所以树状图应该画两层.第一个乒乓球的数字可能是1,-2,3,-4等4个中的一个,所以第一层应画4个分叉;由于不放回,第二个乒乓球的数字可能是剩下的3个中的一个,所以第二层应接在第一层的4个分叉上,每个小分支上,再有3个分叉,画出树状图.
解 根据题意画树状图如图2.
(1)由图2可知,共有12种可能结果,分别为:
(1,-2),(1,3).(1,-4),(-2,1),(-2,3),(-2.-4),(3,1),(3,-2), (3,-4),(-4,1),(-4,-2),(-4,3).
故答案为12.
(2)∵在(1)中的12种可能结果中,两个数字之积为偶数的只有10种,
∴P(积为偶数)=56
. 三、隐形放回
例3 小明骑自行车从家去学校,途经装有红、绿灯的三个路口,假没他在每个路口遇到红灯和绿灯的概率均为12
,则小明经过这三个路口时,恰有一次遇到红灯的慨率是多少?请用画树状图的方法加以说明.
分析 通过反复分析知本题属于“隐形放回”问题,比较容易出错.其实问题相当于一个口袋里有红球和绿球各1个,放回地随机取三次.本题中的事件是小明骑自行车从家去学校,途经装有红、绿灯的三个路口,由此可以确定事件包括三个环节,所以树状图应该画三层.由于每一个路口可能是红灯,绿灯等2个中的一个,所以每一层的分叉的小分支上都有两个小分叉.
解 根据题意画树状图如图3.
∵经过三个路口共有8种情况,其中恰有一次遇到红灯的有3种,
∴P(恰有一次遇到红灯)=38
.
四、隐形不放回
1、随机取明确分类
例4 小明有3支水笔,分别为红色、蓝色、黑色;有2块橡皮,分别为白色、灰色.小明从中任意取出1支水笔和1块橡皮配套使用,试用树状图或表格列出所有可能的结果,并求取出红色水笔和白色橡皮配套的概率.
分析 从文字中稍加分析知,本题属于“隐性不放回”,而且选取时有指明对象,是水笔和橡皮.本题中的事件是小明有3支水笔为红色、蓝色、黑色;有2块橡皮为白色、灰色,取出1支水笔和1块橡皮配套使用.由此可以确定事件包括两个环节,所以树状图应该画两层.至于水笔和橡皮哪个先取,可以随便,不影响结果,关键是各层的分叉要画对.
解法根据题意画树状图如图4.
所有可能结果为:(红,白),(红,灰),(蓝,白),(蓝灰),(黑,白),(黑,灰).∵有6种等可能的结果,而红色水笔和白色橡皮配套的只有1种,
∴P(红色水笔和白色橡皮配套)=1
6
.
2、随机取,不明确分类
例5 有两个不同形状的计算器(分别记为A,B)和与之匹配的保护盖(分别记为a,6)(如图5所示)散乱地放在桌子上,若从计算器和保护盖中随机取两个,用树形图法或列表法,求恰好匹配的概
率.
分析从文字中理解本题属于“隐性不放回”,而且随机选取没有指明对象是计算器还是保护盖,比较容易出错,本题中的事件是从计算器和保护盖中随机取两个,看恰好匹配.由此可以确定事件包括两个环节,取第一个,不放回去,然后再取第二个,所以树状图应该画两层.取第一个可能是A,B,a,b等4个中的一个,所以第一层应画4个分叉;再看第二层,由于不放回,取第二个可能是剩下的3个中的一个,所以第二层应接在第一层的4个分叉上,每个小分支上,再有3个分叉,画出树状图.
解根据题意画树状图如图5.∵从计算器和保护盖中随机取两个,共有12种情况,其中恰好匹配的有4种,
∴P(恰好配套)=1
3
.
画树状图的关键是确定层数和确定每层分叉的个数,
树状图的层数取决于事件的环节数,每层分叉的个数取决于本环节包含的可能情况的种类数,特别要注意区分是放
回还是不放回问题.。