已知两个全等的直角三角形纸片ABC、DEF,如图(1)放置,点B、D重合,点F在BC上,AB与EF交
山西初三初中数学月考试卷带答案解析

山西初三初中数学月考试卷班级:___________ 姓名:___________ 分数:___________一、选择题1.如果a为任意实数,下列根式一定有意义的是()A.B.C.D.2.下列各式中属于最简二次根式的是()A.B.C.D.3.下列方程属于一元二次方程的是()A.B.C.D.4.下列图形中,是中心对称图形但不是轴对称图形的是()5.用配方法解方程,则配方正确的是()A.B.C.D.6.下列计算正确的是A.B.C.D.7.某中学标准化建设规划在校园内的一块长36米,宽20米的矩形场地ABCD上修建三条同样宽的人行道,使其中两条与AB平行,另一条与AD平行,其余部分种草(如图所示),若使每一块草坪的面积都为96平方米.设人行道的宽为x米,下列方程:①(36-2x)(20-x)=96×6;②2×20x+(36-2x)x=36×20-96×6;③(18-x)(10-)=×96×6,其中正确的个数为()A.0个B.1个C.2个D.3个8.如图是某座天桥的设计图,设计数据如图所示,桥拱是圆弧形,则桥拱的半径为()A.13m B.15m C.20 m D.26m9.若关于的一元二次方程有两个不相等的实数根,则的取值范围是()A.B.且C.D.且10.若方程的两根为、,则的值为( )A.3B.-3C.D.11.已知三角形两边的长分别是4和6,第三边的长是一元二次方程的一个实数根,则该三角形的周长是()A.20B.20或16C.16D.18或2112.如图,矩形的长为6,宽为3,O为其对称中心,过点O任画一条直线,将矩形分成两部分,则图中阴影部分的面积为()A.9B.18C.12D.15二、填空题1.若方程是关于x的一元二次方程,则m= .2.若关于的一元二次方程的一个根是,则另一个根是______.3.若成立,则x的取值范围是.4.若两个最简二次根式与可以合并,则x= .5.已知方程x2-7x+12=0的两根恰好是Rt△ABC的两条边的长,则Rt△ABC•的第三边长为.6.如图,R的直角边OA在y轴上,点B在第一象限内,OA=2,AB=1,若将△OAB绕点O按顺时针方向t△OAB旋转90°,则点B的对应点的坐标是。
精品 九年级数学 中考集训题 25

31.如图,抛物线经过 A(4,, (1)求出抛物线的解析式; 0) B (1,, 0) C (0, 2) 三点. (2)P 是抛物线上一动点,过 P 作 PM x 轴,垂足为 M,是否存在 P 点,使得以 A,P,M 为顶点的三 角形与 △OAC 相似?若存在,请求出符合条件的点 P 的坐标;若不存在,请说明理由; (3)在直线 AC 上方的抛物线上有一动点 D,当 △DCA 的面积最大时,求出点 D 的坐标.
6
28.已知两个全等的直角三角形纸片 ABC、DEF,如图(1)放置,点 B、D 重合,点 F 在 BC 上,AB 与 EF 交于点 G。∠C=∠EFB=90º,∠E=∠ABC=30º,AB=DE=4。 (1)求证:△EGB 是等腰三角形; (2)若纸片 DEF 不动,问△ABC 绕点 F 逆时针旋转最小_____度时,四边形 ACDE 成为以 ED 为底的梯形 (如图(2) ) ,求此梯形的高。
1 2Leabharlann B.1 3C.2 3
D.
1 9
3. 已 知 5 个 正 数 a1,a2,a3,a4,a5 的 平 均 数 是 a , 且 a1 a2 a3 a4 a5 , 则 数 据
a1,a2,a3, 0,a4,a5 的平均数和中位数是(
A. a,a3
) D.
5 a a3 a a4 B. a,3 C. a, 2 6 2 2 2 4.函数 y=ax+1 与 y=ax +bx+1(a≠0)的图象可能是( )
25.已知:如图,矩形 ABCD 中,CD=2,AD=3,以 C 点为圆心,作一个动圆,与线段 AD 交于点 P(P 和 A、 D 不重合) ,过 P 作⊙C 的切线交线段 AB 于 F 点,求证: AFP ∽ DPC ; (1)⑵设 DP=x,AF=y;写出 y 关于 x 的函数解析式,并指出 x 的取值范围; ⑶是否存在这样的点 P,使 AFP 沿 PF 翻折后,点 A 落在 BC 上,请说明理由。
2010年广东省中考数学真题试题(含答案)

机密☆启用前2010年广东中考数学试题及答案(含答案)说明:1.全卷共4页,考试用时100分钟,满分为120分.2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、 试室号、座位号.用2B 铅笔把对应该号码的标号涂黑.3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑, 如需改动,用像皮檫干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在答题卡各题目指定区域 内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和 涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束时,将试卷和答题卡一并交回.一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-3的相反数是( ) A .3B .31 C .-3D .13-2.下列运算正确的是( ) A .ab b a 532=+B .()b a b a -=-422C .()()22b a b a b a -=-+D . ()222b a b a +=+3.如图,已知∠1=70°,如果CD ∥BE ,那么∠B 的度数为( ) A.70° B.100° C.110° D.120°4.某学习小组7位同学,为玉树地震灾区捐款,捐款金额分别为5元、6元、6元、7元、8元、 9元,则这组数据的中位数与众数分别为( ) A .6,6 B .7,6 C . 7,8 D .6,85. 左下图为主视方向的几何体,它的俯视图是( )二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.根据新网上海6月1日电:世博会开园一个月来,客流平稳,累计到当晚19时,参观者已超过 8000000人次,试用科学记数法表示8000000= .7.分式方程112=+x x的解x = . 8.如图,已知R t △ABC 中,斜边BC 上的高AD =4,cosB =54,则 AC = .9.某市2007年、2009年商品房每平方米平均价格分别为4000元、5760元,假设2007年后的两 年内,商品房每平方米平均价格的年增长率都为x ,试列出关于x 的方程: . 10.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到新正方形A 2B 2C 2D 2(如图(2));以此下去…, 则正方形A 4B 4C 4D 4的面积为 .三、解答题(一)(本大题5小题,每小题6分,共30分)11.计算:()001260cos 2214π-+-⎪⎭⎫ ⎝⎛+-.12. 先化简,再求值()x x x x x 224422+÷+++ ,其中 x = 2 .13. 如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,R t △ABC 的顶点均在格点上,在建立平面直角坐标系以后,点A 的坐标为(-6,1),点B 的坐标为(-3,1),点C 的坐标为 (-3,3).(1)将R t △ABC 沿X 轴正方向平移5个单位得到R t △A 1B 1C 1,试在图上画出R t △A 1B 1C 1的图形,并写出点A 1的坐标。
深圳中考数学复习:四边形必会题

【考点精析】考点1.一般多边形角度﹑对角线和面积的相关计算.:例1.(安徽芜湖)一个正多边形的每个外角都是36°,这个正多边形的边数是__________. 例2.(山东莱芜)一个边长为2的正多边形的内角和是其外角和的2倍,则这个正多边形的半径是A .2B . 3C .1D .12【举一反三】 1.(江苏淮安)若一个多边形的内角和小于其外角和,则这个多边形的边数是 A .3 B .4 C .5 D .6 2.(湖南常德)四边形的外角和为( )A .90°B .180°C .360°D .720°3.( 四川自贡)一个多边形截取一个角后,形成的另一个多边形的内角和是1620°,则原来多边形的边数是( )。
A .10B .11C .12D .以上都有可能4.(广东茂名)下列命题是假命题...的是 A .三角形的内角和是180o . B .多边形的外角和都等于360o . C .五边形的内角和是900o .D .三角形的一个外角等于和它不相邻的两个内角的和. 5. (2011广东东莞,5,3分)正八边形的每个内角为( )A .120°B .135°C .140°D .144°考点2. 平行四边形的判定和性质例4.(宁夏回族自治区)点A 、B 、C 是平面内不在同一条直线上的三点,点D 是平面内任意一点,若A 、B 、C 、D 四点恰能构成一个平行四边形,则在平面内符合这样条件的点D 有 ( ) A .1个 B .2个 C .3个 D .4个 例5. (山东泰安)如图2,E 是□ABCD 的边AD 的中点,CE 与BA 的延长 线交于点F ,若∠FCD=∠D ,则下列结论不成立的是( ) A 、AD=CF B 、BF=CF C 、AF=CD D 、DE=EF【举一反三】1.( 四川成都)已知四边形ABCD ,有以下四个条件:①//AB CD ;②AB CD =;③//BC AD ;④BC AD =.从这四个条件中任选两个,能使四边形ABCD 成为平行四边形的选法种数共有( ) (A )6种 (B )5种 (C )4种 (D )3种2. (2011•河池)如图,在平行四边形ABCD 中,E 为AB 的中点,F 为AD 上一点,EF 交AC 于G ,AF=2cm ,DF=4cm ,AG=3cm ,则AC 的长为( ) A 、9cm B 、14cm C 、15cm D 、18cm3. (2011浙江金华,15,4分)如图,在□ABCD 中,AB =3,AD =4,∠ABC =60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 .4. (2011山东威海,3,3分)在□ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=()A.1:2 B.1:3 C.2:3 D.2:55. (2011江苏南京,21,7分)如图,将□A BCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.⑴求证:△ABF≌△ECF⑵若∠AFC=2∠D,连接AC、BE.求证:四边形ABEC是矩形.6.(广东中山)如图8,分别以RtΔABC的直角边AC及斜边AB向外作等边ΔACD、等边ΔABE.已知∠BAC=030,EF⊥AB,垂足为F,连结DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.考点3.:矩形的判定和性质例8.(山东聊城)如图9,点P是矩形ABCD的边AD的一个动点,矩形的两条边AB、BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是()A.125B.65C.245D.不确定HFEDCBAAB CDEF图8图9例9.(江西)如图10,已知矩形纸片ABCD,点E 是AB的中点,点G是BC上的一点,∠BEG>60°,现沿直线EG将纸片折叠,使点B落在纸片上的点H处,连接AH,则与∠BEG相等的角的个数为( )A.4 B.3 C.2 D.1例10. (2011山东泰安,19 ,3分)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为3 B. 332 C.3 D.6例11.(江苏泰州)如图12,四边形ABCD是矩形,∠EDC=∠CAB,∠DEC=90°.(1)求证:AC∥DE;(2)过点B作BF⊥AC于点F,连结EF,试判断四边形BCEF的形状,并说明理由.【举一反三】1. (2011四川绵阳17,4)如图,将长8cm,宽4cm的矩形纸片ABCD折叠,使点A与C重合,则折痕EF的长为_____cm.2.(吉林)如图,在矩形ABCD中,AB=12cm,BC=6cm,点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点A、D分别落在矩形ABCD外部的点A’,D’处,则整个阴影部分图形的周长..为()A.18cm B.36cm C.40cm D.72cm BAG CDHE图10图123. (2011四川宜宾,7,3分)如图,矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为()A.3 B.4 C.5 D.64. (2011江苏南通,15,3分)如同,矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=EC.若将纸片沿AE折叠,点B恰好与AC上的点'B重合,则AC=▲cm.5. (2011湖北鄂州,5,3分)如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为_______.第四题6.(辽宁丹东市)如图,已知矩形ABCD中,E是AD上的一点,F是AB上的一点,EF⊥EC,且EF=EC,DE=4cm,矩形ABCD的周长为32cm,求AE的长.7.(2011山东潍坊,17,3分)已知长方形ABCD,AB=3cm,AD=4cm,过对角线BD的中点O做BD的垂直平分线EF,分别交AD、BC于点E、F,则AE的长为_______________.考点4. 菱形的判定和性质:例12.(甘肃兰州)如图所示,菱形ABCD的周长为20cm,DE⊥AB,垂足为E,3sin5A=,则下列结论正确的个数有①cmDE3=②cmBE1=③菱形的面积为215cm④cmBD102=B CA EDF(第3题图)FEDCBAA. 1个 B. 2个C. 3个 D. 4个例13.(江苏盐城)如图所示,在菱形ABCD中,两条对角线AC=6,BD=8,则此菱形的边长为A.5 B.6 C.8 D.10例14.(陕西西安)若一个菱形的边长为2,则这个菱形两条对角线长的平方和为A.16 B.8 C.4 D.1例15.(安徽省中中考)如图,AD∥FE,点B、C在AD上,∠1=∠2,BF=BC⑴求证:四边形BCEF是菱形⑵若AB=BC=CD,求证:△ACF≌△BDE【举一反三】1.(四川成都)已知:在菱形ABCD中,O是对角线BD上的一动点.=;(1)如图甲,P为线段BC上一点,连接PO并延长交AD于点Q,当O是BD的中点时,求证:OP OQ (2)如图乙,连结AO并延长,与DC交于点R,与BC的延长线交于点S.若,∠,求AS的长.460,10===AD DCB BSDC BAOE2. (2011湖北襄阳,10,3分)顺次连接四边形ABCD 各边的中点所得四边形是菱形,则四边形ABCD一定是( ) A .菱形 B .对角线互相垂直的四边形C .矩形D .对角线相等的四边形3.(2010年河南中考模拟题4)已知菱形ABCD 的对角线AC=6cm ,BD=8cm ,则菱形的边长是 cm .4.(江苏苏州)如图,在菱形ABCD 中,DE ⊥AB ,3cos 5A ,BE=4, 则tan ∠DBE 的值是 A .12B .2C .52D .555. (2011四川内江,16,5分)如图,点E 、F 、G 、H 分别是任意四边形ABCD 中AD 、BD 、BC 、CA 的中点,当四边形ABCD 的边至少满足 条件时,四边形EFGH 是菱形.6. (2011重庆綦江,14,4分)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,且AC =8,BD =6,过点O作OH ⊥AB ,垂足为H ,则点O 到边AB 的距离OH = .7.(四川眉山)如图,O 为矩形ABCD 对角线的交点,DE ∥AC ,CE ∥BD .(1)试判断四边形OCED 的形状,并说明理由; (2)若AB =6,BC =8,求四边形OCED 的面积.A BCDEFG H8.(2011海南,23,10分)如图,在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.(1)求证:△BDQ≌△ADP;(2)已知AD=3,AP=2,求cos∠BPQ的值(结果保留根号).9.如图,在梯形ABCD中,AD∥BC,AB=DC,过点D作DE⊥BC,垂足为E,并延长DE至F,使EF=DE.连接BF、CD、AC.(1)求证:四边形ABFC是平行四边形;(2)如果DE2=BE•CE,求证四边形ABFC是矩形.考点5. 正方形的判定和性质:例16.(重庆)已知:如图,在正方形ABCD外取一点E,连接AE,BE,DE.过点A作AE的垂线交ED于点P.若1AE AP==,5PB=.下列结论:①△APD≌△AEB;②点B到直线AE的距离为2;③EB ED⊥;④16APD APBS S∆∆+=+;⑤46ABCDS=+正方形.其中正确结论的序号是()A.①③④B.①②⑤C.③④⑤D.①③⑤例17.(福建晋江)如图,将一张正方形纸片剪成四个小正方形,得到4个小正方形,称为第一次操作;然后,将其中的一个正方形再剪成四个小正方形,共得到7个小正方形,称为第二次操作;再将其中的一个正方形再剪成四个小正方形,共得到10个小正方形,称为第三次操作;...,根据以上操作,若要得到2011个小正方形,则需要操作的次数是( ) .10APEDCB第17题图A. 669B. 670C.671D. 672例18.( 四川自贡)边长为1的正方形ABCD 绕点A 逆时针旋转30°得到 正方形AB ′C ′D ′,两图叠成一个“蝶形风筝”(如图所示阴影部分),则这个 风筝的面积是( )。
四边形解答题汇总

四边形解答题汇总平行四边形-------解答题1、(2011•厦门)如图,在四边形ABCD中,∠BAC=∠ACD=90°,∠B=∠D.(1)求证:四边形ABCD是平行四边形;(2)若AB=3cm,BC=5cm,AE= AB,点P从B点出发,以1cm/s的速度沿BC→CD→DA 运动至A点停止,则从运动开始经过多少时间,△BEP为等腰三角形?2、(2011•南京)如图,将▱ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.(1)求证:△ABF≌△ECF;(2)若∠AFC=2∠D,连接AC、BE,求证:四边形ABEC是矩形.3、(2011•北京)在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.4、(2010•盘锦)如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作CF∥DE交AB于点F.(1)若点D是BC边的中点(如图①),求证:EF=CD;(2)在(1)的条件下直接写出△AEF和△ABC的面积比;(3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,请给出证明:若不成立,请说明理由.5、(2010•恩施州)如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形.6、(2009•乌鲁木齐)如图,将平行四边形ABCD的对角线BD向两个方向延长至点E和点F,使BE=DF,求证四边形AECF是平行四边形.7、(2009•沈阳)已知:如图,在▱ABCD中,点E在AD上,连接BE,DF∥BE交BC于点F,AF与BE交于点M,CE与DF交于点N.求证:四边形MFNE是平行四边形.8、(2007•沈阳)如图,已知在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H 分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.求证:四边形GEHF 是平行四边形.9、(2006•巴中)已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P 自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形10、如图,已知四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H有在同一条直线上.求证:EF和GH互相平分.矩形-------解答题1、(2010•崇左)如图,O是矩形ABCD的对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,且AE=BF=CG=DH.(1)求证:四边形EFGH是矩形;(2)若E、F、G、H分别是OA、OB、OC、OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD的面积.2、(2008•莆田)已知矩形ABCD和点P,当点P在BC上任一位置(如图(1)所示)时,易证得结论:PA2+PC2=PB2+PD2,请你探究:当点P分别在图(2)、图(3)中的位置时,PA2、PB2、PC2和PD2又有怎样的数量关系请你写出对上述两种情况的探究结论,并利用图(2)证明你的结论.答:对图(2)的探究结论为PA2+PC2=PB2+PD2;对图(3)的探究结论为PA2+PC2=PB2+PD2;证明:如图(2)3、如图,已知Rt△ABC中,∠BAC=90°,AB=AC,P是BC延长线上一点,PE⊥AB交BA延长线于E,PF⊥AC交AC延长线于F,D为BC中点,连接DE,DF.求证:DE=DF.4、如图所示.P是矩形ABCD内的一点,四边形BCPQ是平行四边形,A′,B′,C′,D′分别是AP,PB,BQ,QA的中点.求证:A′C′=B′D′.5、如图,点M是矩形ABCD的边AD的中点,点P是BC边上一动点,PE⊥MC,PF⊥BM,垂足为E、F.(1)当矩形ABCD的长与宽满足什么条件时,四边形PEMF为矩形?猜想并证明你的结论.(2)在(1)中,当点P运动到什么位置时,矩形PEMF变为正方形,为什么?6、如图,四边形ABCD为平行四边形纸片.把纸片ABCD折叠,使点B恰好落在CD边上,折痕为AF.且AB=10cm、AD=8cm、DE=6cm.(1)求证:平行四边形ABCD是矩形;(2)求BF的长;(3)求折痕AF长.正方形----解答题1、(2009•威海)如图1,在正方形ABCD中,E,F,G,H分别为边AB,BC,CD,DA 上的点,HA=EB=FC=GD,连接EG,FH,交点为O.(1)如图2,连接EF,FG,GH,HE,试判断四边形EFGH的形状,并证明你的结论;(2)将正方形ABCD沿线段EG,HF剪开,再把得到的四个四边形按图3拼接成一个四边形.若正方形ABCD的边长为3cm,HA=EB=FC=GD=1cm,阴影部分的面积为多少cm2.2、(2005•乌兰察布)图1是由五个边长都是1的正方形纸片拼接而成的,过点A1的直线分别与B1C1、BE交于点M、N,且图1被直线MN分成面积相等的上、下两部分.(1)求MB、NB的长;(2)将图1沿虚线折成一个无盖的正方体纸盒(图2)后,求点M、N间的距离.3、如图,在边长为4cm的正方形ABCD中,点E,F,G,H分别按A⇒B,B⇒C,C⇒D,D⇒A的方向同时出发,以1cm/s的速度匀速运动.在运动过程中,设四边形EFGH的面积为S(cm2),运动时间为t(s).(1)试证明四边形EFGH是正方形;(2)写出S关于t的函数关系式,并求运动几秒钟时,面积最小,最小值是多少?(3)是否存在某一时刻t,使四边形EFGH的面积与正方形ABCD的面积比是5:8?若存在,求出t的值;若不存在,请说明理由.4、在图1到图3中,点O是正方形ABCD对角线AC的中点,△MPN为直角三角形,∠MPN=90°.正方形ABCD保持不动,△MPN沿射线AC向右平移,平移过程中P点始终在射线AC上,且保持PM垂直于直线AB于点E,PN垂直于直线BC于点F.(1)如图1,当点P与点O重合时,OE与OF的数量关系为OE=OF;(2)如图2,当P在线段OC上时,猜想OE与OF有怎样的数量关系与位置关系?并对你的猜想结果给予证明;(3)如图3,当点P在AC的延长线上时,OE与OF的数量关系为OE=OF;位置关系为OE⊥OF.菱形----解答题1、如图,点O是线段AB的中点,分别以AO和OB为边在线段AB的同侧作等边三角形OAM和等边三角形OBN,连接AN、BM相交于点P.(1)证明ON⊥BM;(2)求∠APB的大小;(3)如图2,若△OAM固定,将△OBN绕着点O旋转α角度(△OBN形状和大小不变,0<α<180°),试探究∠APB大小是否发生变化,并对结论给予证明.2、如图,在菱形ABCD中,点E、F分别是边CD、AB上的中点,连接BE、DF;(1)求证:四边形BEDF一定是平行四边形;(2)当∠A的度数可以不断的变化(0°<∠A<90°)时,猜想:①当∠A的度数是多少时,四边形BEDF是矩形?②在这个过程中,四边形BEDF能否成为菱形?(不说明理由)3、已知有两张全等的矩形纸片.(1)将两张纸片叠合成如图1,请判断四边形ABCD的形状,并说明理由;(2)设矩形的长是6,宽是3.当这两张纸片叠合成如图2时,菱形的面积最大,求此时菱形ABCD的面积.4、如图1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,连接AE、AC和BE相交于点O.(1)判断四边形ABCE是怎样的四边形,说明理由;(2)如图2,P是线段BC上一动点(图2),(不与点B、C重合),连接PO并延长交线段AB于点Q,QR⊥BD,垂足为点R.四边形PQED的面积是否随点P的运动而发生变化?若变化,请说明理由;若不变,求出四边形PQED的面积梯形--------解答题1、(2011•重庆)如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.(1)求EG的长;(2)求证:CF=AB+AF.2、(2011•河南)如图,在梯形ABCD中,AD∥BC,延长CB到点E,使BE=AD,连接DE交AB于点M.(1)求证:△AMD≌△BME;(2)若N是CD的中点,且MN=5,BE=2,求BC的长.3、(2010•汕头)已知两个全等的直角三角形纸片ABC、DEF,如图(1)放置,点B、D 重合,点F在BC上,AB与EF交于点G、∠C=∠EFB=90°,∠E=∠ABC=30°,AB=DE=4.(1)求证:△EGB是等腰三角形;(2)若纸片DEF不动,问△ABC绕点F逆时针旋转最小30度时,四边形ACDE成为以ED为底的梯形(如图(2)).求此梯形的高.4、(2010•鞍山)如图,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).动点M,N同时从B点出发,分别沿B⇒A,B⇒C运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M也随之停止运动.设运动时间为t秒.(1)若a=4厘米,t=1秒,则PM=厘米;(2)若a=5厘米,求时间t,使△PNB∽△PAD,并求出它们的相似比;(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围;(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN,梯形PQDA,梯形PQCN的面积都相等?若存在,求a的值;若不存在,请说明理由.5、(2009•乐山)如图在梯形ABCD中,DC∥AB,∠A=90°,AD=6厘米,DC=4厘米,BC 的坡度i=3:4,动点P从A出发以2厘米/秒的速度沿AB方向向点B运动,动点Q从点B 出发以3厘米/秒的速度沿B⇒C⇒D方向向点D运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为t秒.(1)求边BC的长;(2)当t为何值时,PC与BQ相互平分;(3)连接PQ,设△PBQ的面积为y,探求y与t的函数关系式,求t为何值时,y有最大值?最大值是多少?6、(2002•苏州)如图,梯形OABC中,O为直角坐标系的原点,A、B、C的坐标分别为(14,0)、(14,3)、(4,3).点P、Q同时从原点出发,分别作匀速运动,其中点P沿OA 向终点A运动,速度为每秒1个单位;点Q沿OC、CB向终点B运动,当这两点中有一点到达自己的终点时,另一点也停止运动.设P从出发起运动了t秒.(1)如果点Q的速度为每秒2个单位,①试分别写出这时点Q在OC上或在CB上时的坐标(用含t的代数式表示,不要求写出t 的取值范围);②求t为何值时,PQ∥OC?(2)如果点P与点Q所经过的路程之和恰好为梯形OABC的周长的一半,①试用含t的代数式表示这时点Q所经过的路程和它的速度;②试问:这时直线PQ是否可能同时把梯形OABC的面积也分成相等的两部分?如有可能,求出相应的t的值和P、Q的坐标;如不可能,请说明理由.7、两个全等的直角三角形ABC和DEF重叠在一起,其中AB=2,AC=1.固定△ABC不动,将△DEF进行如下操作:(1)如图1,△DEF沿线段AB向右平移(即D点在线段AB内移动),连接DC、CF、FB,四边形CDBF的形状在不断的变化,但它的面积不变化,请求出其面积;(2)如图2,当D点移到AB的中点时,请你猜想四边形CDBF的形状,并说明理由.8、如图,梯形ABCD中,AB∥CD,AD⊥CD,AC=AB,∠DAC=30度.点E、F是梯形ABCD外的两点,且∠EAB=∠FCB,∠ABC=∠FBE,∠CEB=30°.(1)求证:BE=BF;(2)若CE=5,BF=4,求线段AE的长.9、如图,在梯形ABCD中,AD∥BC,对角线AC、BD交于点O,M、N分别是BD、AC 的中点.求证:MN= (BC-AD).直角梯形---解答题1、(2011•梧州)如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6cm,AB=8cm,BC=14cm.动点P、Q都从点C出发,点P沿C→B方向做匀速运动,点Q沿C→D→A方向做匀速运动,当P、Q其中一点到达终点时,另一点也随之停止运动.(1)求CD的长;(2)若点P以1cm/s速度运动,点Q以2 cm/s的速度运动,连接BQ、PQ,设△BQP面积为S(cm2),点P、Q运动的时间为t(s),求S与t的函数关系式,并写出t的取值范围;(3)若点P的速度仍是1cm/s,点Q的速度为acm/s,要使在运动过程中出现PQ∥DC,请你直接写出a的取值范围.2、(2011•苏州)如图,已知四边形ABCD是梯形,AD∥BC,∠A=90°,BC=BD,CE⊥BD,垂足为E.(1)求证:△ABD≌ECB;(2)若∠DBC=50°,求∠DCE的度数.3、(2010•重庆)已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°.点E是DC 的中点,过点E作DC的垂线交AB于点P,交CB的延长线于点M.点F在线段ME上,且满足CF=AD,MF=MA.(1)若∠MFC=120°,求证:AM=2MB;(2)求证:∠MPB=90°- 1/2∠FCM.4、(2010•河南)如图,在梯形ABCD中,AD∥BC,E是BC的中点,AD=5,BC=12,CD=4根2 ,∠C=45°,点P是BC边上一动点,设PB的长为x.(1)当x的值为3或8时,以点P、A、D、E为顶点的四边形为直角梯形;(2)当x的值为1或11时,以点P、A、D、E为顶点的四边形为平行四边形;(3)点P在BC边上运动的过程中,以P、A、D、E为顶点的四边形能否构成菱形?试说明理由.5、如图所示,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=12,BC=21,AD=16.动点P从点B出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t(秒).(1)设△DPQ的面积为S,求S与t之间的函数关系式;(2)当t为何值时,四边形PCDQ是平行四边形?(3)分别求出当t为何值时,①PD=PQ,②DQ=PQ.6、如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s 的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts.(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,四边形PQCD为等腰梯形?(3)当t为何值时,四边形PQCD为直角梯形?7、如图所示,在直角梯形ABCD中,AD∥BC,AD=24cm,AB=8cm,BC=26cm,动点P 从A点开始沿AD边向D以1cm/s的速度运动,动点Q从C点开始沿CB边向B以3cm/s 的速度运动.P,Q分别从A,C同时出发,当其中一点到端点时,另一点也随之停止运动,设运动时间为t(s),t分别为何值时,四边形PQCD是平行四边形?等腰梯形?8、如图,四边形ABCD是直角梯形,∠B=90°,AB=8cm,AD=24cm,BC=26cm,点P 从A点出发,以1cm/s的速度向D运动,点Q从C点同时出发,以3cm/s的速度向B运动,其中一个动点到达端点时,另一个动点也随之停止运动.(1)从运动开始,经过多少时间,四边形PQCD成为平行四边形?(2)设梯形ABQP的面积为y,运动时间为x,写出y与x之间的函数关系式,并写出自变量的取值范围;(3)求当x等于多少时,梯形ABQP的面积是梯形ABCD的一半?。
2010-2011广东东莞中考数学试卷及答案

机密★启用前2010年广东省初中毕业生学业考试数 学一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. (2010广东东莞,1,3分)-3的相反数是( )A .3B .31 C .-3D .31-【分析】相反数的定义:只有符号不同的两个数叫做互为相反数.从而可得-3的相反数是3 【答案】A【涉及知识点】相反数的定义【点评】本题属于基础题,主要考查对相反数的概念的掌握情况. 【推荐指数】★2. (2010广东东莞,2,3分)下列运算正确的是( )A .ab b a 532=+B .b a b a -=-4)2(2C .22))((b a b a b a-=-+D .222)(ba b a+=+【分析】不是同类项不能合并,乘法分配律运用时要将括号外的因式与括号内的各个因式分别相乘,不能漏乘. 【答案】C【涉及知识点】同类项,整式的运算,乘法公式.【点评】本题属于基础题,主要考查整式运算中的有关知识,其中同类项要有三个同:所含字母相同,相同字母的指数相同;去括号法则的理论依据是乘法分配律,还有乘法公式的运用要注意区分平方差公式与完全平方公式的区别.对整式基本运算的知识点考查比较全面,信度较高.【推荐指数】★★★3. (2010广东东莞,3,3分)如图,已知∠1=70°如果CD ∥BE ,那么∠B 的度数为( )A .70°B .100°C .110°D .120°【分析】根据“两直线平行,同位角相等”可得的邻补角与∠B 相等, 所以∠B =180°-70°=110° 【答案】C【涉及知识点】平行线性质,邻补角【点评】本题考查了平行线的性质定理,考查知识点单一,属于简单题,信度较高. 【推荐指数】★★4. (2010广东东莞,4,3分)某学习小组7位同学,为玉树地震灾区捐款,捐款金额分别为5元,10元,6元,6元,7元,8元,9元,则这组数据的中位数与众数分别为( ) A .6,6B .7,6C .7,8D .6,8【分析】将这组数据从小到大排列后的顺序为:5,6,6,7,8,9,10.数据个数为7个,所以其中位数是其中第四个,即7;其中数据6出现的次数最多,因此众数为6.ABCD E【答案】B【涉及知识点】中位数,众数【点评】本题考查数据的中位数、众数,属基本概念题,比较简单.只要掌握概念,就可以得分. 【推荐指数】★★★5. (2010广东东莞,5,3分)左下图为主视方向的几何体,它的俯视图是( )【分析】根据几何体的摆放,其俯视图应为第四个. 【答案】D【涉及知识点】几何体的三视图【点评】本题考查的知识点只有一个,要求考生有一定的空间想象力,属于基础题. 【推荐指数】★★★二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6. (2010广东东莞,6,4分)据新华网上海6月1日电:世博会开园一个月来,客流平稳,累计至当晚19时,参观者已超过8000000人次.试用科学记数法表示8000000= .【分析】8000000=8×1000000,1000000=106,所以8000000=8×106 【答案】8×106【涉及知识点】科学记数法 【点评】【推荐指数】★★★★7. (2010广东东莞,7,4分)分式方程112=+x x 的解x = .【分析】最简公分母为1+x ,所以两边同时乘上(1+x ),得:12+=x x ,解得1=x ,检验:1=x 时,01≠+x .所以1=x 是方程的解.【答案】1=x【涉及知识点】分式方程【点评】解分式方程的关键是利用等式的性质去分母,将分式方程转化为一元一次方程,体现了转化的数学思想;解分式方程的另一个注意点是一定要检验,以防产生增根.【推荐指数】★★★★★8. (2010广东东莞,8,4分)如图,已知Rt △ABC 中,斜边BC 上的高AD =4,cosB =54,则AC = .【分析】由∠B =∠CAD ,可得cos CAD =54=AC AD ,因为AD =4,所以AC =5【答案】5AB CD第5题图A .B.C.D.【涉及知识点】解直角三角形【点评】作为每年中考的必考知识点之一,解直角三角形的试题一般难度都不大,以考查基本概念为主,但如果混淆概念的话,将难以得分.【推荐指数】★★★★★9. (2010广东东莞,9,4分)某市2007年、2009年商品房每平方米平均价格分别为4000元、5760元,假设2007年后的两年内,商品房每平方米平均价格的年增长率都为x ,试列出关于x 的方程: . 【分析】根据题意,得2008年的商品房每平方米的平均价格为)1(400040004000x x +=+,2009年的商品房每平方米的平均价格为2)1(4000)1(4000)1(4000x x x x +=+++【答案】5760)1(40002=+x【涉及知识点】一元二次方程解决实际问题【点评】本题主要考查列一元二次方程解决实际问题,属常规题,难度不大. 【推荐指数】★★★★10.(2010广东东莞,10,4分)如图⑴,已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍后得到正方形A 2B 2C 2D 2(如图⑵);以此下去…,则正方形A 4B 4C 4D 4的面积为 .【分析】AA 1=1,AB 1=2,所以A 1B 1=5;A 1A 2=5,A 1B 2=52,所以A 2B 2=5=55⨯;根据规律可以发现正方形A n B n C n D n 的边长为n )5(,所以其面积为n n n 5)5(])5[(22==【答案】625【涉及知识点】勾股定理,正方形的面积【点评】本题巧妙地将求正方形的面积与勾股定理结合,并采用了规律探索的形式,对考生的思维能力要求较高,难度中等略偏上.【推荐指数】★★★★★三、解答题(一)(本大题5小题,每小题6分,共30分) 11.(2010广东东莞,11,6分)计算:1)2(60cos 2)21(4π-++︒--.【答案】原式=2+2-2×21+1=4-1+1=4 【涉及知识点】实数的运算,特殊角的三角函数值,零指数幂【点评】实数的运算一直是中考中的重要内容,经常与负整数指数幂、零指数幂及绝对值、特殊角的三角形函数值一起组合ABC D A 1B 1C 1D 1第10题图(1)CDA 1B 1C 1D 1 A BA 2B 2C 2D 2第10题图(2)出题,题目不难,主要考查考生对基本概念的掌握和运算的基本功.【推荐指数】★★12.(2010广东东莞,12,6分)先化简,再求值:)2(24422x x x x x +÷+++,其中2=x .【答案】原式=xx x x x 1)2(12)2(2=+⋅++;当2=x时,原式=2221=【涉及知识点】因式分解,分式的乘除,二次根式的化简【点评】分式的运算总是与因式分解密不可分,本题比较简单,但在求值时应注意先化简这一前提,不能直接将2=x 代入式子求值;最后的结果也要化为最简二次根式.【推荐指数】★★★13.(2010广东东莞,13,6分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,Rt△ABC 的顶点均在格点上,在建立平面直角坐标系后,点A 的坐标为(-6,1),点B 的坐标为(-3,1),点C 的坐标为(-3,3). ⑴将Rt △ABC 沿x 轴正方向平移5个单位得到Rt △A 1B 1C 1,试在图上画出Rt △A 1B 1C 1的图形,并写出点A 1的坐标. ⑵将原来的Rt △ABC 绕点B 顺时针旋转90°得到Rt △A 2B 2C 2,试在图上画出Rt △A 2B 2C 2的图形【答案】A 1(-1,1)【涉及知识点】平移,旋转,平面直角坐标系【点评】本题在平面直角坐标系中实现图形的平移、旋转,题目比较简单,属送分题. 【推荐指数】★★★14.(2010广东东莞,14,6分)如图,P A 与⊙O 相切于A 点,弦AB ⊥OP ,垂足为C ,OP 与⊙O 相交于D 点,已知OA =2,OP =4.⑴求∠POA 的度数; ⑵计算弦AB 的长.第13题图【分析】⑴由PA 是切线可得∠P AO =90°;由OA =2,OP =4得∠APO =30°, 所以∠POA =60°.⑵根据AB ⊥OP 得△AOC 为直角三角形,又由∠POA =60°,AO =2得OC =1,所以AC =3;根据垂径定理,有CB=AC =3,所以AB =32【答案】⑴∵P A 与⊙O 相切于A 点∴∠P AO =90° ∵OA =2,OP =4 ∴∠APO =30° ∴∠POA =60° ⑵∵AB ⊥OP∴△AOC 为直角三角形,AC =BC ∵∠POA =60° ∴∠AOC =30° ∵AO =2 ∴OC =1 ∴在Rt △AOC 中,322=-=OC AO AC ∴AB =AC +BC =32【涉及知识点】垂径定理,切线的性质,30°角所对的直角边等于斜边的一半,勾股定理【点评】本题属于垂径定理、切线性质的基本运用,综合了直角三角形的相关知识,难度不高,容易上手,只要掌握了基本概念,运算仔细,就可以拿分.【推荐指数】★★★★★15.(2010广东东莞,15,6分)如图,一次函数y =kx -1的图象与反比例函数xm y =的图象交于A 、B 两点,其中A 点坐标为(2,1). ⑴试确定k 、m 的值; ⑵求B 点的坐标.ABCDO 第14题图【分析】⑴把A 点坐标分别代入两个函数表达式,就可以解得m k ,;⑵将两个解析式联立构成一个方程组,解方程组可得两个坐标,又因为B 点在第三象限,所以可以确定B 点的坐标.【答案】⑴把点(2,1)分别代入函数解析式得:⎪⎩⎪⎨⎧==-12112m k ,解得⎩⎨⎧==21m k⑵根据题意,得⎪⎩⎪⎨⎧=-=x y x y 212解得⎩⎨⎧-=-=2111y x , ⎩⎨⎧==1222y x (舍去)所以B 点坐标为(-1,-2)【涉及知识点】待定系数法求函数解析式,函数与方程(组)【点评】待定系数法求函数解析式和求函数图象的交点坐标都是历年中考中出现频率相当高的知识点,本题着重考查基本概念、方法的运用,比较简单,稍加注意就可得满分.【推荐指数】★★★★四、解答题(二)(本大题4小题,每小题7分,共28分)16.(2010广东东莞,16,7分)分别把带有指针的圆形转盘A 、B 分成4等分、3等分的扇形区域,并在每一小区域内标上数字(如图所示).欢欢、乐乐两人玩转盘游戏,游戏规则是:同时转动两个转盘,当转盘停止时,若指针所指两区域的数字之积为奇数,则欢欢胜;若指针所指两区域的数字之积为偶数,则乐乐胜;若有指针落在分割线上,则无效,需重新转动转盘.⑴试用列表或画树状图的方法,求欢欢获胜的概率; ⑵请问这个游戏规则对欢欢、乐乐双方公平吗?试说明理由.【答案】⑴列表:转盘B转盘A第16题图所以P (奇)=21126= ⑵由表格得P (偶)=21126=,所以P (奇)=P (偶),所以游戏规则对双方是公平的. 【涉及知识点】概率【点评】用列表法或树状图求概率是中考中的常见题型,只要掌握求概率的基本方法,一般不会失分,此题较简单. 【推荐指数】★★★★17.(2010广东东莞,待定系数法,读图能力17,7分)已知二次函数c bx x y ++-=2的图象如图所示,它与x 轴的一个交点坐标为(-1,0),与y 轴的交点坐标为(0,3)⑴求出b ,c 的值,并写出此时二次函数的解析式;⑵根据图象,写出函数值y 为正数时,自变量x 的取值范围.【答案】⑴根据题意,得:⎩⎨⎧==+--301c c b ,解得⎩⎨⎧==32c b ,所以抛物线的解析式为322++-=x x y⑵令0322=++-=x x y ,解得3,121=-=x x ;根据图象可得当函数值y 为正数时,自变量x 的取值范围是-1<x <3.【涉及知识点】待定系数法,二次函数,一元二次方程,数形结合思想【点评】本题除了考查待定系数法、方程(组)的解法外还涉及到数形结合这一重要数学[思想,第二小题有一定的难度,相当多的考生可能会列出一个一元二次不等式却无法解决,但利用图象解更直观,更方便.【推荐指数】★★★★★18.(2010广东东莞,18,7分)如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD 、等边△ABE .已知∠BAC =30°,EF ⊥AB ,垂足为F ,边结DF . ⑴试说明AC =EF ;⑵求证:四边形ADFE 是平行四边形.【分析】⑴由等边△ABE 得∠ABE =60°,AB =BE ,由EF ⊥AB 得∠BFE =90°,从而可证△ABC ≌△EFB ,得AC =EF ⑵由等边△ACD 得AD =AC ,∠CAD =60°,所以∠BAD =90°,则AD ∥EF ,由AC =EF 得AD =EF , 所以四边形ADFE 为平行四边形【答案】⑴∵等边△ABEABCDEF∴∠ABE =60°,AB =BE∵EF ⊥AB ∴∠BFE =∠AFE =90° ∵∠BAC =30°,∠ACB =90° ∴∠ABC =60°∴∠ABC =∠ABE ,∠ACB =∠BFE =90° ∴△ABC ≌△EFB , ∴AC =EF ⑵∵等边△ACD∴AD =AC ,∠CAD =60° ∴∠BAD =90°,∴AD ∥EF ∵AC =EF ∴AD =EF∴四边形ADFE 是平行四边形.【涉及知识点】等边三角形,直角三角形,平行四边形的判定【点评】特殊三角形与平行四边形一直是中考的必考内容,此题将两者巧妙地组合,且难度不高,是道好题. 【推荐指数】★★★★★19.(2010广东东莞,19,7分)某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车共10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李. ⑴请你帮助学校设计所有可行的租车方案;⑵如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省? 【分析】⑴可借助表格分析:题中隐含了不等关系:装载能力不小于装载需求,即: 甲车所能装载人数+乙车所能装载人数≥340; 甲车所能装载行李数+乙车所能装载行李数≥170根据两个不等关系列出不等式组,解出这个不等式组的解集,取其中的正整数解即可得方案; ⑵可用含x 的式子表示租车的总费用W =2000x +1800(10-x )=200x +18000,这是一个一次函数,根据一次函数的增减性可得使租车费用最省的方案.【答案】⑴设租用甲种型号的车x 辆,则租用乙种型号的车(10-x )辆,根据题意,得:⎩⎨⎧≥-+≥-+.170)10(2016,340)10(3040x x x x 解得:4≤x ≤215.因为x 是正整数,所以7,6,5,4=x .所以共有四种方案,分别为:方案一:租用甲种车型4辆,乙种车型6辆;方案一:租用甲种车型5辆,乙种车型5辆;方案一:租用甲种车型6辆,乙种车型4辆;方案一:租用甲种车型7辆,乙种车型3辆.⑵设租车的总费用为W ,则W =2000x +1800(10-x )=200x +18000,200=k >0,W 随x 的增大而增大,所以当4=x 即选择方案一可使租车费用最省.【涉及知识点】不等式组,一次函数【点评】不等式组的实际应用一直是中考的必考点之一,解决问题的关键在于正确找出题中的不等关系,从而得到不等式组,再确定其正整数解,而对其中的选择最优方案问题,通常借助一次函数的增减性来解决.【推荐指数】★★★★五、解答题(三)(本大题3小题,每小题9分,共27分)20.(2010广东东莞,20,9分)已知两个全等的直角三角形纸片ABC 、DEF ,如图⑴放置,点B 、D 重合,点F 在BC 上,AB与EF 交于点G .∠C =∠EFB =90°,∠E =∠ABC =30°,AB =DE =4. ⑴求证:△EGB 是等腰三角形;⑵若纸片DEF 不动,问△ABC 绕点F 逆时针旋转最小 度时,四边形ACDE 成为以ED 为底的梯形(如图⑵).求此梯形的高图(2)AB DFGECEGF(D )CBA图(1)【分析】⑴要证等腰三角形,只需证∠EBA =∠E =30°即可;⑵由旋转知FC =232-,当四边形ACDE 成为以ED为底的梯形时,ED ∥AC ,则ED ⊥CB ,此时,旋转角∠DFB =30°,又由DF =2,得点F 到ED 的距离为3,从而可得梯形的高.【答案】⑴∵∠EFB =90°,∠ABC =30°∴∠EBG =30° ∵∠E =30° ∴∠E =∠EBG ∴EG =BG∴△EGB 是等腰三角形⑵在Rt △ABC 中,∠C =90°,∠ABC =30°,AB =4 ∴BC =32;在Rt △DEF 中,∠EFD =90°,∠E =30°,DE =4 ∴DF =2 ∴CF =232-.∵四边形ACDE 成为以ED 为底的梯形 ∴ED ∥AC ∵∠ACB =90° ∴ED ⊥CB∵∠EFB =90°,∠E =30° ∴∠EBF =60° ∵DE =4∴DF =2 ∴F 到ED 的距离为3∴梯形的高为2333232-=+-【涉及知识点】解直角三角形,旋转,等腰三角形的判定,梯形【点评】旋转的本质是旋转不改变图形的形状、大小,抓住了这一点,就可以很容易地求出CF 的长,这也是本题中求出梯形的高的关键.本题难度并不大,但兼容了许多知识点,对考生的知识综合应用能力要求较高.【推荐指数】★★★★21.(2010广东东莞,21,9分)阅读下列材料:1×2=31(1×2×3-0×1×2), 2×3=31(2×3×4-1×2×3),3×4=31(3×4×5-2×3×4),由以上三个等式相加,可得 1×2+2×3+3×4=31×3×4×5=20. 读完以上材料,请你计算下各题:⑴1×2+2×3+3×4+…+10×11(写出过程); ⑵1×2+2×3+3×4+…+n ×(n +1)= ; ⑶1×2×3+2×3×4+3×4×5+…+7×8×9= . 【分析】)]1()1()2()1([(31)1(+⨯⨯--+⨯+⨯=+⨯n n n n n n nn )]2)(1()1()3()2()1([(1)2()1(4++⨯⨯--+⨯+⨯+⨯=+⨯+⨯n n n n n n n n n n n【答案】⑴1×2+2×3+3×4+…+10×11=31×(1×2×3-0×1×2+2×3×4-1×2×3…+10×11×12-9×10×11) =31×10×11×12 =440⑵1×2+2×3+3×4+…+n ×(n +1) =31×[1×2×3-0×1×2+2×3×4-1×2×3+… +)1()1()2()1(+⨯⨯--+⨯+⨯n n n n n n ]=)2()1((31+⨯+⨯n n n⑶1×2×3+2×3×4+3×4×5+…+7×8×9=41×[1×2×3×4-0×1×2×3×4+2×3×4×5-1×2×3×4+…+7×8×9×10-6×7×8×9]=41×7×8×9×10=1260【涉及知识点】实数的运算【点评】规律运算类试题的关键在于找出其中的内在规律,前两问难度适中,第三问有一定的难度,只有认真分析,真正找出其中规律后才能确定其最前面的分数是41而不是31.【推荐指数】★★★22.(2010广东东莞,矩形中的动点;两直角三角形相似的讨论问题22,9分)如图(1),(2)所示,矩形ABCD 的边长AB =6,BC =4,点F 在DC 上,DF =2.动点M 、N 分别从点D 、B 同时出发,沿射线DA 、线段BA 向点A 的方向运动(点M 可运动到DA 的延长线上),当动点N 运动到点A 时,M 、N 两点同时停止运动.连接FM 、MN 、FN ,当F 、N 、M 不在同一直线时,可得△FMN ,过△FMN 三边的中点作△PQW .设动点M 、N 的速度都是1个单位/秒,M 、N 运动的时间为x 秒.试解答下列问题:⑴说明△FMN ∽ △QWP ; ⑵设0≤x ≤4(即M 从D 到A 运动的时间段).试问x 为何值时,△PQW 为直角三角形?当x 在何范围时,△PQW 不为直角三角形? ⑶问当x 为何值时,线段MN 最短?求此时MN 的值.MA BACN M图(1)【分析】⑴由中位线定理可得PQ ∥FN ,PW ∥MN ,WQ ∥MF ,根据平行线性质可知∠PQW =∠MFN ,∠PWQ =∠FMN ,则可证两三角形相似;⑵不论点如何运动,当点M 在线段DA 上时,MD =BN =x ,则AM =x -4,AN =x -6,可先用含x 的式子分别表示线段MN 、MF 、NF 的平方,再分别讨论当M 、N 、F 为直角顶点时,对应的就是W 、P 、Q 为直角顶点,根据勾股定理可列出方程,求出相应的x 的值;⑶【答案】⑴∵P 、Q 、W 分别为△FMN 三边的中点∴PQ ∥FN ,PW ∥MN ∴∠MNF =∠PQM =∠QPW 同理:∠NFM =∠PQW ∴△FMN ∽ △QWP ⑵NMDCBA由⑴得△FMN ∽ △QWP ,所以△FMN 为直角三角形时,△QWP 也为直角三角形.如图,过点N 作NECD 于E ,根据题意,得DM =BN =x ,∴AM =4-x ,AN =DE =6-x∵DF =2,∴EF =4-x∴MF 2=22+x 2=x 2+4,MN 2=(4-x )2+(6-x )2=2x 2-20x +52,NF 2=(4-x )2+42=x 2-8x +32,① 如果∠MNF =90°,则有2x 2-20x +52+x 2-8x +32=x 2+4,解得x 1=4,x 2=10(舍去);②如果∠NMF =90°,则有2x 2-20x +52+x 2+4=x 2-8x +32,化简,得:x 2-6x +12=0,△=-12<0,方程无实数根;③如果∠MFN =90°,则有2x 2-20x +52=x 2+4+x 2-8x +32,解得x =34.∴当x 为4或34时,△PQW 为直角三角形,当0≤x <34或34<x <4时,△PQW 不为直角三角形(利用直角两旁的直角三角形相似比用勾股定理简单)⑶∵点M 在射线DA 上,点N 在线段AB 上,且AB ⊥AD ,MN 2=()x -42+()x -62当x =5时,这时取最小值2。
2021年中考九年级数学压轴题专题复习:三角形 综合练习(无答案)

2021年中考九年级数学压轴题专题复习:三角形综合练习1、如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.2、已知:如图,在△ABC中,∠C=90°,点D、E分别在边AB、AC上,DE∥BC,DE=3, BC=9.(1)求ADAB的值;(2)若BD=10,求sin∠A的值.3、如图,在Rt ABC==,点D在边AC上,且AC BC∠=︒,3∆中,90ACBAD CD=,2⊥,垂足为点E,联结CE,求:DE AB(1)线段BE的长;(2)ECB∠的余切值;4、如图,已知EC∥AB,∠EDA=∠ABF.(1)求证:四边形ABCD是平行四边形;(2)求证:OA2=OE•OF.5、如图,在锐角三角形ABC 中,点D ,E 分别在边AC ,AB 上,AG ⊥BC 于点G ,AF ⊥DE 于点F ,∠EAF=∠GAC . (1)求证:△ADE ∽△ABC ;(2)若AD=3,AB=5,求的值.6、如图,BD 是△ABC 的角平分线,它的垂直平分线分别交AB ,BD ,BC 于点E ,F ,G ,连接ED ,DG .(1)请判断四边形EBGD 的形状,并说明理由; (2)若∠ABC=30°,∠C=45°,ED=2,点H 是BD 上的一个动点,求HG+HC的最小值.AFAG7、如图,CAB∠90ACB.连接DCE=∠∆均是等腰直角三角形,并且︒∆与CDE=BE,AD的延长线与BC、BE的交点分别是点G与点F.(1)求证:BEAF⊥;(2)将CDECD//时,探究线段DA,DE,DG的数量关系,并证∆绕点C旋转直至BE明;(3)在(2)的条件下,若DA=4.5,DG=2,求BF的值.8、巳知Rt△ABC中,∠B =90°,AC = 20,AB= 10, P是边AC上一点(不包括端点 A、C),过点 P作PE⊥BC于点E,过点E作EF∥AC,交 AB 于点F,设PC =x,PE =y.(1)求y与x 的函数关系;(2)是否存在点 P使△PEF是Rt△,若存在,求此时的x的值,若不存在,请说明理由.9、如图,△ABC 中,点O 是边AC 上一个动点,过O 作直线MN ∥BC .设MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F . (1)求证:OE =OF ;(2)若CE =12,CF =5,求OC 的长;(3)当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.10、如图,在中,,,矩形CDEF 的顶点C 、D 、F 分别在边AO 、OB 、AB 上。
中考几何证明与计算(5)

专题----<<几何>>证明与计算(5)30.已知:如图,ABC△中,45ABC∠=°,CD AB⊥于D,BE平分ABC∠,且B E A C⊥于E,与CD相交于点F H,是BC边的中点,连结DH与BE相交于点G.(1)求证:BF AC=;(2)求证:12CE BF=;(3)CE与BG的大小关系如何?试证明你的结论.31.如图,ACB△和ECD△都是等腰直角三角形,A C D,,三点在同一直线上,连结BD,AE,并延长AE交BD于F.(1)求证:ACE BCD△≌△.(2)直线AE与BD互相垂直吗?请证明你的结论.32,已知;如图,在△ABC中,AB =AC,∠ABC=90°.F为AB延长线上一点,点E在BC上,BE = CF,连接AE、EF和CF.(1)求证:AE=CF;(2)若∠CAE=30°,求∠EFC的度数.33,已知:如图所示,在 Rt△ABC中,AB=AC,∠A=90°,点D为BA上任一点,DF⊥AB于F,DE⊥AC于E,M为BC的中点.试判断△MEF是什么形状的三角形,并证明你的结论.34,如图所示, 已知∠ABC=90º,AC=BC,CE交AB于F,BE⊥CF于E,AD⊥CF于D。
DAEFCHGBFECA(图1)(图2)(1)求证:△CEB≌△ADC(2)若AD=9,DE=6,求BE及EF的长35如图,已知ABC△是等边三角形,点D、F分别在线段BC、AB上,∠60EFB=°,DC EF=.(1) 求证:四边形EFCD是平行四边形;(2) 若BF EF=,求证AE AD=.36如图(1),在△ABC和△EDC中,AC=CE=CB=CD,∠ACB=∠ECD=90,AB与CE交于F,ED与AB、BC分别交于M、H.(1)求证:CF=CH;(2)如图(2),△ABC不动,将△EDC绕点C旋转到∠BCE=45时,试判断四边形ACDM是什么四边形?并证明你的结论.37,已知两个全等的直角三角形纸片ABC、DEF,如图(1)放置,点B、D重合,点F在BC上,AB与EF交于点G.∠C=∠EFB=90°,∠E=∠ABC=30°,AB=DE=4.(1)求证:EGB∆是等腰三角形;(2)若纸片DEF不动,问ABC∆绕点F逆时针旋转最小____度时,四边形ACDE成为以ED为底的梯形(如图(2)).求此梯形的高.38.已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点,(1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形.(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论.39,在Rt ABC△中,902BAC AB AC∠===,,点D在BC所在的直线上运动,作45ADE∠= (A D E,,按逆时针方向).(1)如图1,若点D在线段BC上运动,DE交AC于E.①求证:ABD DCE△∽△;②当ADE△是等腰三角形时,求AE的长.(2)①如图2,若点D在BC的延长线上运动,DE的反向延长线与AC的延长线相交于点E',是否存在点D,使ADE'△是等腰三角形?若存在,写出所有点D的位置;若不存在,请简要说明理由;②如图3,若点D在BC的反向延长线上运动,是否存在点D,使ADE△是等腰三角形?若存在,写出所有点D的位置;若不存在,请简要说明理由.45AB D CE图1。