2010_交大工硕试卷+解答_交大数学-真题版

合集下载

2010年考研数学二真题及答案

2010年考研数学二真题及答案

二零一○年全国研究生入学考试试题(数学二)一选择题一选择题 1.的无穷间断点的个数为函数222111)(xx x x x f +--=A0 B1 C2 D3 2.设21,y y 是一阶线性非齐次微分方程)()(x q y x p y =+¢的两个特解,的两个特解,若常若常数m l ,使21y y m l +是该方程的解,21y y m l -是该方程对应的齐次方程的解,则解,则 A 21,21==m l B 21,21-=-=m lC 31,32==m lD 32,32==m l3.=¹==a a x a y x y 相切,则与曲线曲线)0(ln 2A4e B3e C2e De 4.设,m n 为正整数,则反常积分21ln (1)mnx d xx-ò的收敛性的收敛性A 仅与m 取值有关取值有关B 仅与n 取值有关取值有关C 与,m n 取值都有关取值都有关D 与,m n 取值都无关取值都无关5.设函数(,)z z x y =由方程(,)0y z F x x=确定,其中F 为可微函数,且20,F ¢¹则z z x yxy¶¶+¶¶= A x B z C x -D z - 6.(4)2211lim ()()nnx i j nn i n j ®¥==++åå= A121(1)(1)xd xd y x y ++òò B11(1)(1)xdxdy x y ++òòC 1101(1)(1)d x d y x y ++òòD1121(1)(1)dxdyx y ++òò7.设向量组线性表示,,,:,可由向量组sI b b b aa a ¼¼21r 21II ,,:,下列命题正确的是:的是:A 若向量组I 线性无关,则s r £B 若向量组I 线性相关,则r>s C 若向量组II 线性无关,则s r £D 若向量组II 线性相关,则r>s 8.设A 为4阶对称矩阵,且20,+=AA 若A 的秩为3,则A 相似于A 1110æöç÷ç÷ç÷ç÷èø B 1110æöç÷ç÷ç÷-ç÷èøC 1110æöç÷-ç÷ç÷-ç÷èøD 1110-æöç÷-ç÷ç÷-ç÷èø二填空题二填空题9.3阶常系数线性齐次微分方程022=-¢+¢¢-¢¢¢y y y y 的通解y=__________ 10.曲线1223+=x x y 的渐近线方程为_______________ 11.函数__________)0(0)21ln()(==-=n ny n x x y 阶导数处的在12.___________0的弧长为时,对数螺线当q p qe r =££13.已知一个长方形的长l 以2cm/s 的速率增加,宽w 以3cm/s 的速率增加,则当l=12cm,w=5cm 时,它的对角线增加的速率为___________ 14.设A ,B 为3阶矩阵,且__________,2,2,311=+=+==--B A B A B A 则三解答题三解答题 15.的单调区间与极值。

2010年全国硕士研究生入学统一考试数学一试题解析

2010年全国硕士研究生入学统一考试数学一试题解析

2010年全国硕士研究生入学统一考试数学一试题一、选择题(1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.) 1. (10年,4分) 极限2lim ()()xx x x a x b →∞⎡⎤=⎢⎥-+⎣⎦( ) (A ) 1. (B ) e . (C ) a be -. (D ) b ae-.【考查分析】“1∞”型极限的计算. 【详解】本题属于未定式求极限,极限为1∞型,故可以用“e 的抬起法”求解.()()2lim xx xx a x b →∞⎡⎤⎢⎥-+⎣⎦()()2lnlim x x x a x b x e ⋅-+→∞=()()2lim lnx x x x a x b e→∞⋅-+=,其中又因为()()2222()()lim ln lim ln 1()()()()lim()()()lim()()x x x x x x x a x b x x x a x b x a x b x x x a x b x a x b a b x abxx a x b a b→∞→∞→∞→∞--+⋅=+-+-+⎡⎤--+⎣⎦=-+-+=-+=-⎡⎤⎣⎦故原式极限为a be-,所以应该选择(C).2. (10年,4分) 设函数(,)z z x y =,由方程,0y z F x x ⎛⎫=⎪⎝⎭确定,其中F 为可微函数,且20F '≠,则z zxy x y∂∂+=∂∂( ) (A ) x . (B ) z . (C ) x -. (D ) z -. 【考查分析】隐函数偏导数的计算. 【详解】122212122221x z y z y zF F F F F yF zF z x x x x x F F xF F x⎛⎫⎛⎫''''-+-⋅+⋅ ⎪ ⎪'''+∂⎝⎭⎝⎭=-=-==∂''''⋅, 112211y z F F F z x y F F F x'⋅''∂=-=-=-∂'''⋅, 1212222yF zF yF F z z z x y z x y F F F ''''+⋅∂∂+=-==∂∂'''.选(B ). 3. (10年,4分) 设,m n 是正整数,则反常积分()20ln 1mnx dx x-⎰的收敛性 ( )(A ) 仅与m 的取值有关. (B )仅与n 的取值有关.(C ) 与,m n 取值都有关. (D ) 与,m n 取值都无关. 【考查分析】判断反常积分的敛散性. 【详解】0x =与1x =都是瑕点.应分成()()()22211212ln 1ln 1ln 1mm mnnnx x x xxx---=+⎰⎰,用比较判别法的极限形式,对于()2120ln 1m nx x-,由于121012[ln (1)]lim 1mnx n mx xx+→--=.显然,当1201n m<-<,则该反常积分收敛. 当120n m -≤,1210[ln (1)]lim m x nx x+→-存在,此时()2120ln 1m n x x -实际上不是反常积分,故收敛. 故不论,m n 是什么正整数,dx 总收敛.对于,取01δ<<,不论,m n 是什么正整数,1211211[ln (1)]lim lim ln (1)(1)01(1)mnmx x x xx x x δδ--→→-=--=-,所以收敛,故选(D).【评注】(1)当210m m-≥时,⎰是定积分.(2) 0,0αβ∀>>,有lim ln 00x x x βα+=→. 4. (10年,4分) ()()2211limnnn i j nn i n j →∞===++∑∑ ( ) (A )()()120111xdx dy x y ++⎰⎰. (B ) ()()100111x dx dy x y ++⎰⎰. (C )()()11111dx dy x y ++⎰⎰. (D ) ()()1120111dx dy x y ++⎰⎰. 【考查分析】利用积分和式求极限. 【详解】()()222211111()nnnn i j i j n nn i n jn i n j =====++++∑∑∑∑22111()()n n j i n n j n i ===++∑∑ 12220211111lim lim ,11()nn n n j j n dy j n jn y n→∞→∞====+++∑∑⎰ 1011111lim lim ,11()nn n n i i n dx i n i n x n→∞→∞====+++∑∑⎰()()2222111111lim lim()()n nn nn n i j j i n n j n i n i n j →∞→∞=====++++∑∑∑∑ 221(lim )nn j n n j→∞==+∑1(lim )nn i nn i →∞=+∑ 1120011()()11dx dy x y =++⎰⎰()()11200111dx dy x y =++⎰⎰. 【评注】本题易认为是二重积分或误认为逐次极限.实际上,对i 求和时与j 无关,对j 求和时与i 无关,所以这是一道两个和得乘积的极限题.5. (10年,4分) 设A 为m n ⨯矩阵,B 为n m ⨯矩阵,E 为m 阶单位矩阵,若AB E =,则 ( )(A ) 秩()r A m =,秩()r B m =. (B ) 秩()r A m =,秩()r B n =. (C ) 秩()r A n =,秩()r B m =. (D ) 秩()r A n =,秩()r B n =. 【详解】由于AB E =,故()()r AB r E m ==.又由于()(),()()r AB r A r AB r B ≤≤,故(),()m r A m r B ≤≤ ①由于A 为m n ⨯矩阵,B 为n m ⨯矩阵,故(),()r A m r B m ≤≤ ②由①、②可得(),()r A m r B m ==,故选A .6. (10年,4分) 设A 为4阶实对称矩阵,且2A A O +=,若A 的秩为3,则A 相似于 ( )(A ) 1110⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭. (B ) 1110⎛⎫ ⎪⎪ ⎪- ⎪⎝⎭. (C ) 1110⎛⎫ ⎪- ⎪ ⎪- ⎪⎝⎭. (D ) 1110-⎛⎫⎪- ⎪ ⎪- ⎪⎝⎭. 【考查分析】对称矩阵相似于对角矩阵.【详解】设λ为A 的特征值,由于2A A O +=,所以20λλ+=,即(1)0λλ+=,这样A 的特征值只能为-1或0.由于A 为实对称矩阵,故A 可相似对角化,即A Λ ,()()3r A r =Λ=,因此,1110-⎛⎫⎪- ⎪Λ= ⎪- ⎪⎝⎭,即1110A -⎛⎫⎪- ⎪Λ= ⎪- ⎪⎝⎭. 【评注】看清题目,说清每个已知条件的作用.即可得出结论.7. (10年,4分) 设随机变量X 的分布函数0,01(),0121,1x x F x x e x -<⎧⎪⎪=≤<⎨⎪-≥⎪⎩,则{}1P X == ( ) (A ) 0. (B )12. (C ) 112e --. (D ) 11e --. 【考查分析】本题主要考查分布函数的概念及随机事件概率的计算.已知分布函数,【详解】离散型随机变量的分布函数是跳跃的阶梯形分段函数,连续型随机变量的分布函数是连续函数.观察本题中()F x 的形式,得到随机变量X 既不是离散型随机变量,也不是连续型随机变量,所以求随机变量在一点处的概率,只能利用分布函数的定义.根据分布函数的定义,函数在某一点的概率可以写成两个区间内概率的差,即{}{}{}()()1111111110122P X P X P X F F e e --==≤-<=--=--=-,故本题选(C). 【评注】已知分布函数,求随机事件的概率是基本题,但需注意题中的随机变量既不是离散型也不是连续型.由于分布函数在1x =处不连续,故利用{1}(1)(10)P X F F ==--来计算.8. (10年,4分) 设1()f x 为标准正态分布的概率密度,2()f x 为[]1,3-上均匀分布的概率密度,若12(),0()(),0af x x f x bf x x ≤⎧=⎨>⎩,(0,0)a b >>为概率密度,则,a b 应满足 ( ) (A ) 234a b +=. (B ) 324a b +=. (C ) 1a b +=. (D ) 2a b +=. 【详解】根据题意知,()2212x f x e π-=(x -∞<<+∞),()21,1340,x f x ⎧ -≤≤⎪=⎨⎪ ⎩其它利用概率密度的性质:()1f x dx +∞-∞=⎰,故()()()()03121001312424a a f x dx af x dx bf x dx f x dxb dx b +∞+∞+∞-∞-∞-∞=+=+=+=⎰⎰⎰⎰⎰所以整理得到234a b +=,故本题应选(A).二、填空题(9 14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上.) 9. (10年,4分) 设()20,ln 1,t tx e y u du -⎧=⎪⎨=+⎪⎩⎰ 求220t d y dx == . 【详解】因为 ()()22ln 1ln 1tttdy t e dx e -+==-+-,()()()()22222ln 12ln 11tt t td te d y dt t e t e e dx dt dx t -+⎡⎤=⋅=-⋅-+⋅-⎢⎥+⎣⎦,所以220t d y dx == 10. (10年,4分)2π=⎰.【考查分析】用变量变换与分部计算定积分.【详解】t =,2x t =,2dx tdt =,利用分部积分法,原式220cos 22cos 2sin t t tdt t tdt t d t πππ=⋅==⎰⎰⎰20002sin 2sin 4cos t t t tdt td t πππ⎡⎤=-=⎢⎥⎣⎦⎰⎰0004cos cos 4cos 4sin 4t t tdt t ππππππ⎡⎤=-=-=-⎢⎥⎣⎦⎰.11. (10年,4分) 已知曲线L 的方程为[]{}11,1y x x =- ∈-,起点是()1.0-,终点是()1,0,则曲线积分2Lxydx x dy +=⎰.【详解】12222LL L xydx x dy xydx x dy xydx x dy +=+++⎰⎰⎰()()()01221011x x dx x dx x x dx x dx -=+++-+-⎰⎰()()0122122x x dx x x dx -=++-⎰⎰1322310223223x x x x -⎛⎫⎛⎫=++- ⎪ ⎪⎝⎭⎝⎭211203223⎛⎫⎛⎫=--++-= ⎪ ⎪⎝⎭⎝⎭12. (10年,4分) 设(){}22,,1x y z xy z Ω=+≤≤,则Ω的形心的竖坐标z = .【详解】()2221221211000211212021r rrz d rdr zdxdydz d rdr zdzdxdydz d rdr dzd r rdrππθθθθΩΩ⎛⎫⎪⋅ ⎪⎝⎭==-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰4211222r d r drπθπ⎛⎫- ⎪⎝⎭=⎰⎰126204122r r d πθ⎛⎫- ⎪⎝⎭=⎰20112266322d πθπππ⋅===⎰. 13. (10年,4分) 设()()()1231,2,1,0,1,1,0,2,2,1,1,TTTa ααα=-==,若由123,,ααα生成的向量空间的维数是2,则a = . 【详解】因为由123,,ααα生成的向量空间维数为2,所以123(,,)2r ααα=. 对123(,,)ααα进行初等行变换:123112112112211013013(,,)1010130060202000a a a ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-- ⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以6a =.14. (10年,4分) 设随机变量X 的概率分布为{}!C P X k k ==,0,1,2,k = ,则()2E X = . 【考查分析】随机变量的数学期望,方差.泊松分布的期望,方差. 【详解】利用离散型随机变量概率分布的性质,知{}001!k k CP X k Ce k ∞∞======∑∑,整理得到1C e -=,即 {}111!!k e P X k e k k --===.故X 服从参数为1的泊松分布,则()()1,1E X D X ==,根据方差的计算公式有()()()222112E X D X E X =+=+=⎡⎤⎣⎦. 【评注】22()EX DX EX =+,所以应求X 的期望与方差,而X 的分布{},0,1,2,!CP X k k k === 的C 是待定常数.不难看出这是一个泊松分布. 三、解答题(15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.) 15. (10年,10分)(本题满分10分)求微分方程322x y y y xe '''-+=的通解. 【考查分析】求常系数线性非齐次微分方程的通解. 【详解】对应齐次方程的特征方程为2320λλ-+=,解得特征根121,2λλ==,所以对应齐次方程的通解为212x x c y C e C e =+.设原方程的一个特解为*()x y x ax b e =+,则()()*22x y axax bx b e '=+++,()()*2422x y axax bx a b e ''=++++,代入原方程,解得1,2a b =-=-,故特解为*(2)xy x x e =--. 故方程的通解为*212(2)x x x c y y y C e C e x x e =+=+-+. 16. (10年,10分)(本题满分10分)求函数()()2221x t f x x t e dt -=-⎰的单调区间与极值.【考查分析】对变限求导数,划分单调区间,求极值. 【详解】 因为22222222111()()x x x t t t f x x t e dt x e dt te dt ---=-=-⎰⎰⎰,所以2224423311()2222x x t x x t f x x e dt x ex ex e dt ----'=+-=⎰⎰,令()0f x '=,则0,1x x ==±.又22421()24x t x f x e dt x e--''=+⎰,则21(0)20t f e dt -''=<⎰,所以2211111(0)(0)(1)22t t f t e dt e e ---=-=-=-⎰是极大值.而1(1)40f e -''±=>,所以(1)0f ±=为极小值.又因为当1x ≥时,()0f x '>;01x ≤<时,()0f x '<;10x -≤<时,()0f x '>;1x <-时,()0f x '<,所以()f x 的单调递减区间为(,1)(0,1)-∞- ,()f x 的单调递增区间为(1,0)(1,)-+∞ .【评注】(1)求()f x 的单调性区间就是求()f x '的正负号区间.增减或增减区间的分界点就是极值点.上述方法就是求出()f x ',然后分出()f x '的正负号区间,从而得到()f x 的增减区间,相应地得到()f x 的极值点.这里就不必去求驻点处得()f x ''.(2)若题目只要求()f x 的极值,我们也可以221()2x t f x x e dt -'=⎰后,解得驻点0x =,1x =±,然后再求驻点处的二阶导数.由于201(0)20t f e dt -''=<⎰,⇒11(0)(1)2f e -=-为极大值.由于1(1)40f e -''±=>,⇒(1)0f ±=为极小值.17. (10年,10分)(本题满分10分)(I)比较()1ln ln 1n t t dt +⎡⎤⎣⎦⎰与10ln nt t dt ⎰()1,2,n = 的大小,说明理由;(II)记()1ln ln 1nn u t t dt =+⎡⎤⎣⎦⎰()1,2,n = ,求极限lim n n u →∞. 【详解】(I)当01x <<时0ln(1)x x <+<,故[]ln(1)nnt t +<,所以[]ln ln(1)ln nn t t t t +<,则[]11ln ln(1)ln nn t t dt t t dt +<⎰⎰()1,2,n = .(II)()1111001ln ln ln 1nnn t t dt t t dt td t n +=-⋅=-+⎰⎰⎰ ()211n =+,故由 ()1210ln 1n n u t t dt n <<=+⎰,根据夹逼定理得()210lim lim01n n n u n →∞→∞≤≤=+,所以lim 0n n u →∞=.18. (10年,10分)(本题满分10分)求幂级数()121121n n n x n -∞=--∑的收敛域及和函数.【考查分析】求幂级数的收敛域及和函数. 【详解】(I) (1)1222(1)1122(1)(1)2(1)121lim lim (1)(1)2121n n n n n n n n n nx x n n xx n n +-++--→∞→∞--⋅+-+=--⋅--222(21)21lim lim 2121n n n x n x x n n →∞→∞--==⋅=++,所以,当21x <,即11x -<<时,原级数绝对收敛.当21x >时,原级数发散,因此幂级数的收敛半径1R =.当1x =±时,11211(1)(1)2121n n n n n x n n --∞∞==--⋅=--∑∑,由莱布尼兹判别法知,此级数收敛,故原级数的收敛域为[]1,1-. (II) 设1122111(1)(1)()2121n n nn n n S x x x x n n --∞∞-==⎛⎫--=⋅=⋅⋅ ⎪--⎝⎭∑∑,其中令12111(1)()21n n n S x x n -∞-=-=⋅-∑()1,1x ∈-,所以有 12221111()(1)()n n n n n S x xx ∞∞---=='=-⋅=-∑∑ ()1,1x ∈-,从而有 12211()1()1S x x x '==--+ ()1,1x ∈-,故 11201()(0)arctan 1xS x dx S x x =+=+⎰,()1,1x ∈-.1()S x 在1,1x =-上是连续的,所以()S x 在收敛域[]1,1-上是连续的.所以()arctan S x x x =⋅,[]1,1x ∈-.【评注】幂函数在收敛域上可以逐项积分,但逐项求导只能先在收敛区间进行.在逐项求导后,在另行讨论端点处是否成立。

西安交大数学分析试题.docx

西安交大数学分析试题.docx

硕士研究生入学考试数学分析i 癒刃鬲名立遏尢于顕土碉克隹2005年入学君弑《礙学分柝》弑趣1.叙述下列概念或命题(20分):i >函数f (x, y )在(勺,儿)处可微; ii>以b 为瑕点的瑕积分收敛的Cauchy 准则; iii>极限lim /(x )不存在的Cauchy 准则;•V—>8iv>函数项级数工冷(兀)在X 上收敛但非一致收敛的Cauchy 准则.n=\解:i >定义:设函数/(无,刃在(仏儿)的某邻域有定义•若Az = /(x 0 + Ax, y° + Sy ) 一 /(兀°, %)=人心 + W +。

9),其中A,B 是与 心,Ay 无关的常数,p = 7(ZL V )2 + (Ay )2 .则称函数/(x,y )在(兀(),儿)处可微分, AAx + BAy 称为/(x, y )在(x 0,y 0)处的微分,记为dz|(比)二人心+ BAy. rb小ii>定理(Cauchy 准则):Ub 为瑕点的瑕积分[f^dx 收敛O Vr>0 ,为>0,使得当Ja%,仃 e (b_ &b )时,有「f\x )dx < E.J©iii>定理(Cauchy 准则):极限lim /(x )不存在<=> 3r 0>0, VX>0,玉]<-X 与勺V —X ,使得 |/(^)-/(%2)|>£0 -OOiv>定理(Cauchy 准则):函数项级数工冷(兀)在X 上收敛但非一致收敛<=> 3r 0 > 0 , n=\ VN, Bn> N t Bxe X, 3p,使得仆(x ) > £().k=\以下四题(第2〜5题)每题10分2.证明 lim 「sin"iz/r = O.〃T8 Jo证明:因为V5(不妨设。

2010全国研究生入学考试数学试题一答案

2010全国研究生入学考试数学试题一答案

2010考研数学(一)真题及参考答案一、选择题(1)、极限(C)A、1B、C、D、(2)、设函数,由方程确定,其中F为可微函数,且,则(B)A、B、C、D(3)、设施正整数,则反常积分的收敛性( C)A、仅与的取值有关B、仅与有关C、与都有关D、都无关(4)、( D )A、B、C、D、(5)、设A为型矩阵,B为型矩阵,E为m阶单位矩阵,若AB=E,则(A)A、秩r(A)=m, 秩r(B)=mB、秩r(A)=m, 秩r(B)=nC、秩r(A)=n, 秩r(B)=mD、秩r(A)=n, 秩r(B)=n(6) 设A为4阶实对称矩阵,且,若A的秩为3,则A相似于(D)A. B.C. D.(7) 设随机变量的分布函数,则 {x=1}= (C)A.0 B. C. D.(8) 设为标准正态分布的概率密度,为上的均匀分布的概率密度,若为概率密度,则应满足:(A )A、B、C、D、二、填空题(9)、设求(10)、(11)、已知曲线的方程为起点是终点是则曲线积分0(12)、设则的形心坐标(13)设若由形成的向量空间维数是2,则 6(14)设随机变量概率分布为,则 2三、解答题(15)、求微分方程的通解解答:(16)、求函数的单调区间与极值解答:单调递减区间单调递增区间极大值,极小值(17)、(Ⅰ)比较与的大小,说明理由(Ⅱ)设,求极限解答:(18)、求幂级数的收敛域及和函数解答:收敛域,和函数(19)设为椭球面上的动点,若在点处的切平面为面垂直,求点的轨迹,并计算曲面积分,其中是椭球面位于曲线上方的部分解答:(1)(2)(20)、设已知线性方程组存在2个不同的解,(Ⅰ)求,;(Ⅱ)求方程组的通解。

解答:(Ⅰ)(Ⅱ)的通解为(其中k为任意常数)(21)已知二次型在正交变换下的标准形为,且的第3列为(Ⅰ)求矩阵;(Ⅱ)证明为正定矩阵,其中为3阶单位矩阵。

答案:(Ⅰ)(Ⅱ)证明:为实对称矩阵又的特征值为1,1,0的特征值为2,2,1,都大于0为正定矩阵。

2010年考研数学一真题及参考答案

2010年考研数学一真题及参考答案

2010考研数学(一)真题及参考答案一、选择题 (1)、极限2lim ()()xx xx a x b →∞⎛⎫=⎪-+⎝⎭( C ) A 、1 B 、e C 、a be - D 、b ae-【详解】()()2222ln 1()()()()()()()()lim lim lim ()()lim lim xx x xx x a x b x a x b x x x a b x ab a b x abxx x a x b x a x b x x a bxe ex a x b ee e ⎛⎫⎛⎫-⎪ ⎪ ⎪ ⎪-+-+⎝⎭⎝⎭→∞→∞→∞-+⎛⎫-+ ⎪ ⎪-+-+⎝⎭→∞→∞-⎛⎫== ⎪-+⎝⎭===(2)、设函数(,)z z x y =,由方程(,)0y z F x x =确定,其中F 为可微函数,且20F '≠,则z z xy u y∂∂+=∂∂( B )A 、xB 、zC 、x -D z -【详解】 等式两边求全微分得:121212()()()0x x y y z z Fu F v dx Fu F v dy Fu F v dz ''''''+++++=,所以有,1212xx z z Fu F v z x Fu F v ''+∂=-''∂+,1212y yz zFu F v z y Fu F v ''+∂=-''∂+, 其中,2x y u x =-,1y u x =,0z u =,2x z v x =-,0yv =,1z v x =,代入即可。

(3)、设,m n 是正整数,则反常积分210ln (1)mnx dx x-⎰的收敛性( D )(A)仅与m 的取值有关 (B)仅与n 有关(C)与,m n 都有关 (D)都无关 【详解】:显然0,1x x ==是两个瑕点,有222111212ln (1)ln (1)ln (1)mmmnnnx x x dx dx dx xxx---=+⎰⎰⎰对于2120ln (1)m nx dx x-⎰的瑕点0x =,当0x +→时212ln (1)ln (1)mmn nx x x x--=-等价于221(1)m m nx--,而21120m nxdx -⎰收敛(因,m n 是正整数211m n ⇒->-),故2120ln (1)mn x dx x -⎰收敛;对于2112ln (1)m n x dx x -⎰的瑕点1x =,当1(1,1)(0)2x δδ∈-<<时12122ln (1)2ln (1)2(1)m n m n m n x x x x -<-<-,而2112(1)m x d x -⎰显然收敛,故2112ln (1)mnx dx x-⎰收敛。

上海交通大学研究生入学考试数学真题

上海交通大学研究生入学考试数学真题

上海交通大学研究生入学考试数学真题一、选择题1. 下列哪个选项是正确的?A. 2+2=4B. 2+2=5C. 2+2=6D. 2+2=72. 解下列方程组:x + 2y = 52x + 3y = 8A. (1, 2)B. (2, 1)C. (3, 1)D. (1, 3)3. 某商店原价出售一样商品,现在打8折,则折后价格是原价的:A. 10%B. 20%C. 80%D. 90%二、填空题1. 已知函数f(x) = 2x + 5,求f(3)的值。

答:_______________2. 某地每平方公里有5000人口,若该地的面积为3000平方公里,则该地的人口总数为_______________。

三、计算题1. 求下列方程的解:x^2 + 4x + 3 = 02. 求下列集合的交集:A = {1, 2, 3, 4, 5}B = {4, 5, 6, 7}四、证明题证明:对于任意实数x和y,有(x + y)^2 = x^2 + 2xy + y^2。

解答:设x和y为任意实数。

左边:(x + y)^2 = (x + y)(x + y) = x(x + y) + y(x + y) = x^2 + xy + xy + y^2 = x^2 + 2xy + y^2右边:x^2 + 2xy + y^2由左边等于右边,证明得证。

五、应用题某公司从事餐饮业务,每天早上8点至下午5点,共计9小时。

该公司运营部门的工作人员分为3个班次工作,分别是早班、中班和晚班,每个班次的工作时间均为3小时。

请问一天中共有几个班次?解答:一天总共9小时,每个班次工作3小时,所以班次数 = 9小时 / 3小时/班次 = 3个班次六、综合题某商品的原价为200元,商家打折后价格为折后价格,现在又在折后价格的基础上额外打折5%。

求最终价格。

解答:原价200元,打折后价格为折后价格,即0.9 × 200元 = 180元。

在180元的基础上额外打5%折扣,即0.95 × 180元≈ 171元。

考研数学一真题解析-2010

考研数学一真题解析-2010

2010年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)极限= (A)1 (B) (C)(D)【考点分析】:考察 型不定性极限。

【求解过程】:方法一:利用求幂指型极限的一般方法:归结为求222lim ln()()lim ln 11()()lim 1()()()lim ()()x x x x x w x x a x b x x x a x b x x x a x b a b x ab x x a x b a b→∞→∞→∞→∞=-+⎡⎤⎛⎫=+-⎢⎥ ⎪-+⎝⎭⎣⎦⎡⎤=-⎢⎥-+⎣⎦-+=⋅-+=- 因此, ,选C【基础回顾】:对于一般的幂指型极限有:()()ln ()lim ()ln ()lim ()lim g x g x f x g x f x f x e e ==2lim ()()xx x x a x b →∞⎡⎤⎢⎥-+⎣⎦e ea b-eb a-⏹ 方法二:利用第二个重要极限求解22()lim ()()lim lim 11()()()()()lim 1()()x xx x x xa b x abx x a x b x a bx x I x a x b x a x b a b x ab e x a x b e →∞→∞→∞-+⋅-+→∞-⎡⎤⎡⎤⎛⎫==+-⎢⎥ ⎪⎢⎥-+-+⎣⎦⎝⎭⎣⎦⎡⎤-+=+=⎢⎥-+⎣⎦=【基础回顾】:一般地,对于 型极限,均可利用第二个重要极限求解: 设lim ()1f x =,lim ()g x =∞,则()()()lim(()1)()lim ()lim 1()1g x g x f x g x f x f x e ⋅-⋅=+-⎡⎤⎣⎦=(2)设函数由方程确定,其中为可微函数,且则= (A)(B)(C)(D)【考点分析】:隐函数求导 【求解过程】:⏹ 方法一:全微分法方程(,)0y zF x x=两边求全微分得:12()()0y z F d F d x x ''+=,即12220xdy ydx xdz zdxF F x x--''+= 整理得 12122yF zF F dz dx dy xF F '''+=-''(,)z z x y =(,)0y zF x x=F 20,F '≠z z xy x y∂∂+∂∂x z x -z -所以,122yF zF z x xF ''+∂=∂',12F z y F '∂=-∂'。

2009_上海交大工硕-试卷-解答_数学

2009_上海交大工硕-试卷-解答_数学

要考工硕啊,努力吧!!!上海交通大学工程硕士研究生入学考试 数学(高等数学,线性代数)模拟试卷 2009.4考试时间为180分钟;试卷总分为100分准考证号码_____________________ 报考领域____________ 姓名_________一.单项选择题(共18分,每小题3分)1. 求极限 22301l i m s i n xx x e x x-→--= ( ) A . 1; B .0.5; C .1-; D .0.5- 2. 若函数()f x 与()h x 在实数轴上均可导,且()()f x g x <,则必有 ( ) A .()()f x h x ->-; B .'()'()f x h x <; C .0lim ()lim ()x x x x f x h x →→<; D .()d ()d xxf t t h t t <⎰⎰。

3. 设(1,1),(6,3),(2,7)A B C 是xOy 平面上的三点,则三角形ABC 的面积为( ) A .6; B .14; C .28; D .32。

4. 设,αβ是非齐次线性方程组()I A x b λ-=的两个不同的解,其中A 为n 阶矩阵,则下列选项中一定是A 对应的特征值λ的特征向量的为 ( )A . αβ+;B .αβ-;C .α;D .β。

5. n 维向量12,,,(3)s s n ααα≤≤ 线性无关的充要条件是 ( ) A .存在不全为零的数12,,,s c c c ,使11220s s c c c ααα+++≠ ; B .12,,,(3)s s n ααα≤≤ 中任意两个向量都线性无关;C .12,,,(3)s s n ααα≤≤ 中任意一个向量都不能用其余向量线性表示;D .12,,,(3)s s n ααα≤≤ 中存在一个向量,它不能用其余向量线性表示。

6. 设函数()f x 在0x 满足000'()''()0,'''()0f x f x f x ==>,则( ) A .0'()f x 是'()f x 的极大值; B .0()f x 是()f x 的极大值;C .0()f x 是()f x 的极小值;D .00(,())x f x 是曲线()y f x =的拐点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海交通大学工程硕士研究生入学考试,数学(高等数学,线性代数)2010.6
考试时间为180分钟;试卷总分为100分 一.选择题(每小题3分, 共18分) 1.
当+
→0x 时,与
20
sin x t dt ⎰
等价的无穷小量是 ( )
(A ) 2(sin )x x -; (B ) 2
2sin x x ; (C ) 2
sin x ; (D )
1.
2. 若0()2f x '=,则0
00lim
(3)()
h h
f x h f x →=-- ( )
(A ) 6; (B ) 6-; (C ) 1
6
- (D ) 16
3.若第二类型曲线积分
(,)(,)C
P x y dy Q x y dx +⎰
与路径无关,则 ( )
(A)
P Q y x ∂∂=∂∂; (B) P Q x y ∂∂=∂∂; (C) P Q y x ∂∂=-∂∂; (D)P Q
x y
∂∂=-
∂∂. 4. 幂级数11
(1)(1)n n
n x n -∞
=--∑的收敛区间是 ( )
(A ) [0,2]; (B ) (0,2); (C ) [0,2); (D ) (0,2]
5. 设A 为n m ⨯阶,A 的秩3)(-=n A r ,向量组321,,ααα是线性代数方程组0=AX 的基础解系,则下列向量组中不是上述方程组基础解系的是 ( ). (A) 133221,,αααααα+++;
(B)122331,,αααααα---;
(C)112123,,αααααα+++;
(D)3213121,,ααααααα-+--。

6. 已知11
121321
2223
21
222311
1213131
32
333121
3222
3323010,,1
00001a a a a a a A a a a B a a a P a a a a a a a a a ⎛⎫⎛⎫⎛⎫

⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭
, ⎪⎪⎪


⎝⎛=1010100012P ,则 ( )
(A )B P AP =21 (B )B P AP =12 (C )B A P P =12 (D )B A P P =21 二.填空题 (每小题3分, 共18分) 1. 设cos()x
y x =, 则y '=_________ 。

2. 设2,3a b == , 且4a b +=
,则 =-b a 。

3. 当0>a 时,级数
1n
n n
a

=∑收敛,则a 的取值范围是。

4. 微分方程 (1)x
xy x y e '++=的通解是 。

5. 行列式
1234
234134124123
___________=。

6. 设四阶矩阵33()ij A a ⨯=的特征值为2,3,4,ij A 为行列式A 中元素ij a 的代数余子式,则
112233____________________A A A ++=。

三.计算题(每小题8分, 共32分) 1. 求极限20(sin cos )(cos 1)
lim
ln(12)
x x x x x x x →-++。

2. 计算二重积分
⎰⎰
--D
dxdy y x 221,其中22:D x y x +≤。

3. 设函数(,)y z f xy x =,求x z
∂∂,y x z ∂∂∂2。

其中:),(v u f 具有二阶连续偏导数。

4. 已知非齐次线性方程组⎪⎩⎪
⎨⎧=-++=-++=+++3
355341
4321
43214321bx x x ax x x x x x x x x 的系数矩阵A 的秩2)(=A r ,求
b a ,值及方程组的通解。

四.证明题(共10分)
方程3
10x x +-=在区间(0,1)内只有一个实根。

五. 应用题 (每小题11分, 共22分)
1. 设曲线x
y e =,求(1)曲线经过原点的切线;
(2)曲线与上述切线及y 轴所围的平面图形绕x 轴旋转所得旋转体体积。

2. 某种传染病流行期的发展情况是:该传染病可以治愈,但治愈者没有免疫力,可能因感
染病毒而再次患病。

假设流行期间,健康者与患病者在某天所占人数比例与前一天所占比例由下式确定:
⎪⎪⎭⎫
⎝⎛⎪⎪⎭⎫ ⎝
⎛=⎪⎪⎭⎫ ⎝⎛++n n n n y x y x 7.02.03.08.011 (*)
其中:n n y x ,分别表示第n 天健康者与患病者所占人数的比例。

(1) 试根据式(*)确定,在病毒流行期健康者每天因感染病毒而患病的人数比例和患病
者每天治愈的人数比例分别是多少?
(2) 如果开始时患病者所占人数比例为10%,问随着时间的推移,健康者和患病者所占
人数比例是否趋于稳定?(需说明理由!)
答案:
一. 选择题:(1)A (2)C (3) B (4) D (5)B (6) C 二. 填空题:(1) sin()(ln 1)x
x
x x x -+
(2)
(3) (1,)1a +∞>或
(4) 21()2
x x
e y e c x -=+ (5) 160(6)26
三. 计算题: 1. 30sin cos 1
lim
3
x x x x x →-==原式
2. cos 32
202
214(sin 1)339d rdr d ππθ
πππθθθ--==--=-⎰⎰⎰原式 1222111122212222111222233.()111
[][]1z y f y f x x z y f y f x f f f x f x y x x x x
y
f xy f f f x x
∂=⋅+⋅-∂∂=+⋅+⋅--⋅+⋅∂∂=+-- 4. a
b a a b a 24115
42400511
01
1113513115341111------→--, 3,2==b a
012
0000511042010
110
51
101111---→--,⎪⎪⎪⎪
⎪⎭

⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=10540112001221k k x ,
四. 证明题
设3
()1f x x x =+-,由于(0)10,(1)10f f =-<=>,所以方程在(0,1)内有实根, 又2
()310f x x '=+>,所以方程在(0,1)内只有一个实根。

五. 应用题
1. (1) 设切点为00(,)x y ,则切线方程为000()x
y y e x x -=-,所以001,x y e == 切线方程为y ex =
(2) 面积21
2
2
01
[()()]()62
x e S e ex dx ππ=-=-⎰
2 (1)健康者每天因感染病毒而患病的人数比例为20%;患病者每天治愈的人数比例为30%。

(2)⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫
⎝⎛1.09.000y x ,记⎪⎪⎭⎫ ⎝⎛=7.02.03.08.0A ,则⎪
⎪⎭
⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛00y x A y x n n n A 的特征值为1,5.021==λλ,相应的特征向量分别为⎪⎪⎭

⎝⎛=⎪⎪⎭⎫ ⎝⎛-=23,1121αα 记()21,αα=P ,⎪⎪⎭⎫ ⎝⎛-=-1132511P ,⎪⎪⎭
⎫ ⎝⎛=Λ=-1005.01
AP P ⎪⎪⎭
⎫ ⎝⎛⨯-⨯+=
⎪⎪⎭
⎫ ⎝⎛Λ=⎪⎪⎭⎫ ⎝⎛-n n n n n y x P P y x 5.05.125.05.1351001,从而4.0lim ,6.0lim ==∞→∞→n n n n y x ,即健康者和患
病者所占人数比例趋于稳定。

相关文档
最新文档