《数字电子技术教学课件》第07章 数模和模数转换

合集下载

(数字电子技术)第7章数模与模数转换

(数字电子技术)第7章数模与模数转换
第7章 数/模与模/数转换
第7章 数/模与模/数转换
7.1 概述 7.2 数/模转换 7.3 模/数转换 7.4 本章小结 7.5 例题精选 7.6 自我检测题
第7章 数/模与模/数转换
7.1 概 述
随着以数字计算机为代表的各种数字系统的广泛普及和 应用,模拟信号和数字信号的转换已成为电子技术中不可或 缺的重要组成部分。数/模转换指的是把数字信号转换成相 应的模拟信号,简称D/A转换,同时将实现该转换的电路称 为D/A转换器,简称DAC;模/数转换指的是把模拟信号转 换为数字信号,简称A/D转换,并将实现该转换的电路称为 A/D转换器,简称ADC。
当Rf=R时
uo=
uR 2n
n-1
di zi
i= 0
由上式可以看出,此电路完成了从数字量到模拟量的转 换,并且输出模拟电压正比于数字量的输入。
第7章 数/模与模/数转换
2. 集成DAC电路AD7524 AD7524(CB7520)是采用倒T型电阻网络的8位并行D/A 转换器,功耗为20 mW,供电电压UDD为5~15 V。 AD7524典型实用电路如图7.2.5所示。
第7章 数/模与模/数转换
7.3.4 常见的ADC电路
1. 逐次逼近型ADC 逐次逼近型ADC是按串行方式工作的,即转换器输出 的各位数码是逐位形成的。图7.3.6为原理框图,该电路由电 压比较器、逻辑控制器、D/A转换器、逐次逼近寄存器等组 成。
第7章 数/模与模/数转换
图 7.3.6 பைடு நூலகம்次逼近型ADC原理图
第7章 数/模与模/数转换
(2) 四舍五入法:取最小量化单位Δ=2Um/(2n-1-1), 量化时将0~Δ/2之间的模拟电压归并到0·Δ,把Δ/2~3·Δ/2之 间的模拟电压归并到1·Δ,依此类推,最大量化误差为Δ/2。 例如,需要把0~+1 V之间的模拟电压信号转换为3位二进制 代码,这时可取Δ=(2/15)V,那么0~(1/15)V之间的电压就 归并到0·Δ,用二进制数000表示;数值在(1/15)~(3/15)V之 间的电压归并到1·Δ,用二进制数001表示,并依此类推,如 图7.3.5(b)

精品课件-数字电子技术-第7章

精品课件-数字电子技术-第7章

(D3 23 +D2
22
+D121+D0 20 )
(7.1.2)
第7章 数/模(D/A)与模/数(A/D)转换器
对于n位输入的权电阻网络D/A转换器, 当负反馈电阻取 为R/2时, 输出电压为
vO
=
VREF 2n
(Dn1 2n1 +Dn2 2n2 + …
+D121+D0 20 )
=
VREF 2n
第7章 数/模(D/A)与模/数(A/D)转换器
第7章 数/模(D/A)与模/数(A/D)转换器
7.1 D/A转换器 7.2 A/D转换器 7.3 集成D/A转换器Multisim 10仿真实验 实验与实训 本章小结 习题
第7章 数/模(D/A)与模/数(A/D)转换器
7.1 D/A 7.1.1 权电阻网络D/A
第7章 数/模(D/A)与模/数(A/D)转换器
由图7.1.2所示电路还可以看出, 由于工作在线性反相 输入状态的运算放大电器的反相输入端相当于接地(虚地), 所以无论模拟开关Si合于何种位置, 与Si相连的倒T型2R电阻 支路从效果上看总是接“地”的, 即流经每条倒T型2R电阻 支路的电流与模拟开关Si的状态无关; 从R—2R倒T型电阻网 络的A、 D、 C、 D每个节点向左看, 每个二端网络的等效 电阻均为R, 故从基准电压UREF输出的电流恒为I=UREF/R, 而流经倒T型2R电阻支路的电流从高位到低位按2的负整数幂 递减, 从右到左分别为I3=I/2, I2=I/4, I1=I/8 , I0=I/16。
第7章 数/模(D/A)与模/数(A/D)转换器
由图7.1.2所示电路, 有
iΣ =I3 +I2 +I1+I0

第7章 模数转换及数模转换

第7章  模数转换及数模转换
COMPUTER SCIENCE AND TECHNOLOGY zhaohw@ 1
一个完整的微机闭环实时控制系统示意图
COMPUTER SCIENCE AND TECHNOLOGY
zhaohw@
2
7.2 传感器
• A/D转换器是将模拟的电信号转换成数字信号。所以将物理量 转换成数字量之前,必须先将物理量转换成电模拟量。传感 器是把非电量的模拟量(如温度、压力、流量等)转换成电 压或电流信号。 • 因此,传感器一般是指能够进行非电量和电量之间转换的敏 感元件。传感器的精度直接影响整个系统的精度,如果传感 器误差较大,则测量电路、放大电路以及A/D转换电路和微机 的处理都会受到影响。 • 物理量的多样性使得传感器的种类繁多,下面对几种常用的 传感器作以简单的介绍。
COMPUTER SCIENCE AND TECHNOLOGY
zhaohw@
15
1.DAC 0832主要特性 . 主要特性
• • • • • • • • • • 8位分辨率, 电流型输出, 外接参考电压-10V~+10V, 可采用双缓冲、单缓冲或直接输入三种工作方式, 单电源+5V~+15V, 电流建立时间1µs, R-2R T型解码网络, 线性误差0.2%FS(FS为满量程), 非线性误差0.4%FS, 数字输入与TTL兼容。
COMPUTER SCIENCE AND TECHNOLOGY
zhaohw@
3
1.温度传感器 .
• 热电偶是一种大量使用的温度传感器,它是利用热电势效应 来工作的,室温下的典型输出电压为毫伏数量级。温度测量 范围与热电偶的材料有关,常用的有镍铝-镍硅热电偶和铂铑铂热电偶。热电偶的热电势-温度曲线一般是非线性的,需要 采取措施进行非线性校正。 • 另一种温度传感器为热敏电阻,它是一种半导体新型感温元 件,具有负的电阻温度系数,当温度升高时,其电阻值减小, 在使用热敏电阻作为温度传感器时,将温度的变化反映在电 阻值的变化中,从而改变电压或电流值。

数字电子技术及应用教程第7章 数模与模数转换电路

数字电子技术及应用教程第7章 数模与模数转换电路
第7章 数模与模数转 换电路
内容提要:
本章系统地讲述了数字量转换模拟量和模拟量 转换数字量的基本原理以及几种常用典型电路。在 数字模拟转换器中,主要讲解权电阻网络数模转换 与倒 T 形数模转换电路。在模数转换器中,对模数 转换的步骤、取样定理进行详细的说明,然后又介 绍了并行比较型、逐次渐近型和双积分型三种各具 特色的模数转换电路。
7.2.5 集成DAC及其应用举例
常 用 的 集 成 DAC 有 AD7520 、 DAC0832 、 DAC0808 、 DAC1230 、 MC1408 等 , 这 里 仅 对 AD公司生产的AD7520作简要介绍。 如图 7.2.7 所示的电路为 AD7520 组成的锯齿波 发生器,其原理为10位二进制加法计数器从全0加 到全 1 ,电路的模拟输出电压 uo 由 0V 逐渐增加到 最大值。如果计数脉冲不断,则可在电路的输出 端得到周期性的锯齿波。
图7.3.7 积分型ADC的电路原理图
2.工作原理
转换开始前,先将计数器清零,接通S2使电容 C完全放电。转换开始时,断开S2。整个转换过程 分为两个阶段进行。其工作波形如图7.3.8所示。
图7.3.8 双积分型A/D转换器各点工作波形
7.3.5 ADC的转换精度和转换速度 1.ADC的转换精度
如图7.3.5为3位并行比较型A/D转换原理电路, 它由电压比较器、寄存器和优先编码器三部分组成。
图7.3.5 3位并行比较型A/D转换原理电路
7.3.3 逐次渐近型ADC 逐次渐近型A/D转换器属于直接型A/D转换器, 它能把输入的模拟电压直接转换为输出的数字代码。 逐次渐近型A/D转换器框图如图7.3.5所示,它 由控制逻辑电路、寄存器、电压比较器及D/A转换 器组成。
图7.3.10 ADC0809引脚图

《数模和模数转换器》课件

《数模和模数转换器》课件
2 产品手册和技术资料
提供相关厂家的产品手册和技术资料的参考文献。
类型及应用场景
探索模数转换器的各种类型以及它们在不同应用领 域中的应用情况。
数模和模数转换器的比较
1
异同对比
比较数模和模数转换器在原理、功能和
选择原则
2
应用方面的相同点和不同点。
研究选择数模和模数转换器时需要考虑 的因素和决策原则。
数模和模数转换器在实际应用中的案 例分析
音频应用
探讨数模和模数转换器在音频方面应用的典型案例,如音乐制作和音频设备中的应用。
视Hale Waihona Puke 应用探索数模和模数转换器在视频处理和图像采集方面的重要性和实际应用案例。
传感器应用
研究数模和模数转换器在传感器技术中的关键作用,如温度、压力和光传感器。
结论
总结数模和模数转换器在现代电子领域中的重要性,并展望其未来发展的趋势。
参考文献
1 专业书籍、期刊论文、技术文献
列举与该主题相关的专业书籍、期刊论文、技术文献等的参考文献。
《数模和模数转换器》 PPT课件
# 数模和模数转换器 PPT课件大纲
介绍
数模和模数转换器将数字信号转换为模拟信号,或将模拟信号转换为数字信 号。探讨其定义、重要性、和应用领域。
数模转换器
二进制数和模拟信号的转换
深入了解数字信号如何通过数模转换器转化为 连续的模拟信号。
DAC芯片
介绍数模转换器所常用的数字模拟转换芯片 (DAC芯片)。
工作原理
解释数模转换器如何工作,并探讨其基本原理。
类型及应用场景
探索数模转换器的不同类型以及其在各个应用 领域中的使用情况。
模数转换器
模拟信号和二进制数的转换

数模和模数转换

数模和模数转换
通过模数转换,将模拟信号转换为数字信号, 实现过程控制和反馈控制。
自动控制系统
通过模数转换,实现模拟信号与数字信号之 间的转换,构建自动控制系统。
05
数模和模数转换的挑战与未 来发展
精度和分辨率的提高
总结词
随着技术的发展,对数模和模数转换 的精度和分辨率的要求越来越高。
详细描述
为了满足高精度和分辨率的需求,需 要采用先进的工艺、算法和校准技术, 以提高转换器的性能。这涉及到对噪 声抑制、非线性校正等方面的深入研 究和技术创新。
重要性
实现数字信号和模拟信号之间的相互转换,使得数字系统和模拟系统能够进行有效 的信息交互。
在信号处理中,数模和模数转换是实现信号滤波、放大、调制解调等操作的基础。
在通信中,数模和模数转换是实现信号传输、编解码、调制解调等操作的关键环节。
历史背景
早期的数模和模数转换器主要依 赖于机械和电子元件,精度和稳
于长距离传输和低功耗应用。
Σ-Δ DAC
03
Σ-Δ DAC采用过采样和噪声整形技术,具有高分辨率和低噪声
的特点,适用于音频和其他高精度应用。
DAC的应用
音频处理
DAC可将数字音频信号转换为模拟音频信号,用 于音频播放和处理。
仪器仪表
DAC可用于将数字信号转换为模拟信号,实现各 种物理量的测量和输出。
测量仪器
ADC在测量仪器中应用广泛,如电压表、电 流表、温度计等。
控制系统
ADC在控制系统中用于实时监测和调节系统 参数,如工业控制、汽车电子等。
音频处理
ADC在音频处理中用于将模拟音频信号转换 为数字信号,便于存储、传输和处理。
04
数模和模数转换的应用场景
音频处理

数字电子技术项目七数模和模数转换器

数字电子技术项目七数模和模数转换器

知识拓展
将T1=1 000TCP,UREF=100.0 mV代入上式得: N=10UIN或UIN=0.1 N. 只要把小数点定在十位上,即可直接读结果。满根量据程学时校N(=院2 0)0数0,控此机时床U的M数=量2U和RE学F=生2的00数mV, 仪表显示超量程符号“1”。若需改装成2 V量程的量数,字把电学压生表分,成可若按干表小7组.2互所相示讲选解择数元控件机值床。的
权电阻网络D/A转换器实现数字量到模拟量转换的原理易于理解且电路简单,使用电阻较少,这是它的优 点。但也存在两个严重的缺点:一是各相邻电阻之间应严格保持一次相差一半的要求;二是最大阻值和最小阻 值相差很大,当二进制数位数增多时,这种差别尤其严重。因此,要制造出能满足上述要求的高精度电阻是很 困难的。这两个缺点在集中工艺中尤为突出。采用R-2R倒T型电阻网络D/A转换器,可克服上述缺点。
实训任务
2.设计要求 (1)设计数字电压表电路。 (2)测量范围:直流电压0~1.999 V、0~19.99 V、0~199.9 V、0~1999 V。 (3)组装调试 位数字电压表。 (4)画出数字电压表电路原理图,写出总结报告。 (5)选做内容:自动切换量程。
实训任务
实训任务
实训任务
DS和EOC的时序关系是:在EOC脉冲结束后,紧接着DS1输出正脉冲,以下依次为DS2、DS3和DS4 。其中DS1对应最高位(MSD),DS4对应最低位(LSD)。在对应DS2、DS3和DS4选通期间,Q0~Q3 输出BCD全位数据,即以8421码方式输出对应的数字0~9;在DS1选通期间,Q0~Q3输出千位的半位 数“0”或“1”及过量程、欠量程和极性标志信号。
可靠性高。
知识拓展
(2)ICL7106的工作原理

数模和模数转换PPT课件

数模和模数转换PPT课件
第29页/共64页
2、量化和编码 由于输入电压的幅值是连续变化的,它的幅值不一定是其量化单位的整倍
数,所以量化过程会引入误差,这种误差叫量化误差。
量化后的信号只是一个幅值离散的信号,为了对量化后的信号进行处理, 还应该把量化的结果用二进制代码或其它形式表示出来,这个过程就叫做编码。
量化的方法一般有两种:只舍不入法和有舍有入法。
把模拟量转化为数字量的过程称为模-数转换,把相应的转换器件称为模-数转 换器(Analog-Digital Converter,简称A/D转换器或ADC )。
把数字量转化为模拟量的过程称为数-模转换, 把相应的转换器件称为数-模转 换器(Digital-Analog Converter,简称D/A转换器或DAC )
克,秤量步骤:
顺序 1 2 3 4
砝码重 8g 8g+4 g 8g+4g+2g 8g+4g+1g
比较判断 8g < 13g
保留
12g < 13g
保留
14g > 13g 撤去
13g =13g
保留
第38页/共64页
逐次渐近型A/D转换器的基本工作原理是: a. 控制电路首先把寄存器的最高位置1, 其它各位置0。
第25页/共64页
(2) 转换误差 偏移误差:数字输入代码全为0时, D/A转换器的输出电压与理想输出电 压0V之差。
增益误差: 为数字输入代码由全0变 全1时,输出电压变化量与理想输出 电压变化量之差。
第26页/共64页
非线性误差:为D/A转换器实际输出电 压值与理想输出电压值之间偏差的最大 值。
第30页/共64页
0~0.7V的模拟信号转化为3位二进制数码的量化过程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(2)由于A/D转换需要一定的时间,在每次采样 以后,需要把采样电压保持一段时间。
图7-8 采样―保持电路及输出波形
s(t)有效期间,开关管VT导通,uI向C充电,uO (=uc)跟随uI的变化而变化;
s(t)无效期间,开关管VT截止,uO (=uc)保持不变, 直到下次采样。(由于集成运放A具有很高的输入阻抗,
1. D/A转换器AD7520 AD7520是10位的D/A转换集成芯片,与微处理
器完全兼容。该芯片以接口简单、转换控制容易、通 用性好、性能价格比高等特点得到广泛的应用。
2020/4/22
19
图7-3 AD7520内部逻辑结构图
该芯片只含倒T形电阻网络、电流开关和反
馈电阻,不含运算放大器,输出端为电流输出。
2
第7章 数/模和模/数转换
模拟量:温度、湿度、压力、流量、速度等。
从模拟信号到数字信号的转换称为模/数转换 (简称A/D转换),实现模/数转换的电路叫做A/D 转换器(简称ADC);
从数字信号到模拟信号的转换称为数/模转换 (简称D/A转换),实现数/模转换的电路称为D/A 转换器(简称DAC)。
④ 时钟脉冲控制门G1:当uC =1时,门G1打开, CP脉冲通过门G1加到计数器输入端。
2020/4/22
36
(2)工作原理
先定时(T1)对uI正 向积分,得到Up,Up∝uI;
再对-UREF积分,积 分器的输出将从Up线性上 升到零。这段积分时间是 T2,T2∝Up∝uI;
第7章 数/模和模/数转换
7.1 D/A转换
7.1.1 D/A转换基本原理 7.1.2 倒T形电阻网络DAC 7.1.3 DAC的主要技术参数 7.1.4 集成D/A转换器及其应用
2020/4/22
1
复习
555定时器的逻辑功能? 555定时器为何能实现脉冲波形? 电容在脉冲电路中扮演怎样的角色?
2020/4/22
2020/4/22
12
对于n位的倒T形电阻网络DAC,则 :
由此可见,输出模拟电压uO与输入数字量D成 正比,实现了数模转换。
2020/4/22
13
电路特点: (1)解码网络仅有R和2R两种规格的电阻, 这对于集成工艺是相当有利的;
(2)这种倒T形电阻网络各支路的电流是直 接加到运算放大器的输入端,它们之间不存在传 输上的时间差,故该电路具有较高的工作速度。
(1)电路组成
2020/4/22
34
③ 计数器:为n+1位异步二进制计数器。第一次 计数,是从0开始直到2n对CP脉冲计数,形成固定 时时将C④Q2P0间Q时①②2脉n0/n=4T间/=21冲积检2时1,=间1通分 零钟,对2隔过器 比脉n使基TT门: 较c冲S2准(变1G器从控Q电T成1nC加cA制=图压为脉:点0到门7,-C冲-当当U转计G1P对R1个uu接脉1E数:OOF被数≥进<到双冲器当0测N积行0B的时输u时保电点分C积周,入,存型压。=分期u端1A下uCu第时D。)C=I。C进来=二电,,0行。1;路次门T。积计1G时分1数打间;,开到是,35
具体使用时需要外接集成运算放大器和基准
电压源。
2020/4/22
20
D0~D9:数据输入端 IOUT1:电流输出端1 IOUT2:电流输出端2 Rf:10KΩ反馈电阻引出端Vcc: 电源输入端
UREF:基准电压输入端 GND:地。
图7-4 AD7520外引脚图
2020/4/22
21
AD7520的主要性能参数如下:
2020/4/22
10位二进制加法计数器从全 “0”加到全“1”,电路的模拟输 出电压uo由0V增加到最大值。
如果计数脉冲不断,则可在
电路的输出端得到周期性的锯齿 波。
23
第7章 数/模和模/数转换
7.2 A/D转换
7.2.1 A/D转换基本原理 7.2.2 A/D转换器工作原理 7.2.3 ADC的主要技术参数 7.2.4 集成A/D转换器及其应用举例
在保持阶段,电容C上所存电荷不易泄放。)
2020/4/22
27
2. 量化和编码 数字量最小单位所对应的最小量值叫做量化单位
△。
将采样-保持电路的输出电压归化为量化单位△ 的整数倍的过程叫做量化。
用二进制代码来表示各个量化电平的过程,叫做 编码。
一个n位二进制数只能表示2n个量化电平,量化 过程中不可避免会产生误差,这种误差称为量化误差。 量化级分得越多(n越大),量化误差越小。
1
6 10101110
6.796875
1
7 10101111
6.8359375
1
相对误差仅为0.06%。转换精度取决于位数。
2020/4/22
32
图7-10 8位逐次比较型A/D转换器波形图
2020/4/22
33
2. 双积分型A/D转换器
基本原理:对输入模拟电压uI和基准电压-UREF 分别进行积分,将输入电压平均值变换成与之成正 比的时间间隔T2,然后在这个时间间隔里对固定频 率的时钟脉冲计数,计数结果N就是正比于输入模 拟信号的数字量信号。
I I D3 I D2 I D1 I D0 2 4 8 16
2020/4/22
9
由于从UREF向网络看进去的等效电阻是R,因 此从UREF流出的电流为:
I U REF R
2020/4/22
10
故:
2
D121
D020 )
2020/4/22
11
因此输出电压可表示为 :
本章小结
2020/4/22
24
7.2 A/D转换
7.2.1 A/D转换基本原理
A/D转换目标:将时间连续、幅值也连续的模 拟信号转换为时间离散、幅值也离散的数字信号。
四个步骤:采样、保持、量化、编码。
1. 采样与保持
(1)将一个时间上连续变化的模拟量转换成
时间上离散的模拟量称为采样。
2020/4/22
u0 (V) 0.5UREF 0.75/0.25UREF … … …
uI>uO? 1(D n-1为1)/0(D n-1为0) 1(D n-2为1)/0(D n-2为0) 1(D n-3为1)/0(D n-3为0) … 1(D 0为1)/0(D 0为0)31
实例 8位A/D转换器,输入模拟量uI=6.84V,
逐次比较思路:不同的基准电压--砝码。
2020/4/22
30
n位A/D转 换器
基准电压 UREF
电路由启动脉冲启图动7-9后逐: 次逼近型ADC电路框图
CP
D n-1D n-2 D n-3…D1D0
0
1 0 0… 00
1
D n-1 1 0… 00
2
D n-1 D n-2 1… 00


n-21020/4/22D n-1D n-2 D n-3…D11
(1)电路组成
① 积分器: Qn=0,对被测电压uI进行积分; Qn=1,对基准电压-UREF进行积分。
② 检零比较器C:当uO≥0时,uC=0;当uO< 0时,uC=1。
③ 计数器:为n+1位异步二进制计数器。第一
次计数,是从0开始直到2n对CP脉冲计数,形成固
定时间T1=2nTc(Tc为CP脉冲的周期),T1时间到 时Qn=1,使S1从A点转接到B点。第二次计数,是 将时间间隔T2变成脉冲个数N保存下来。
2020/4/22
28
划分量化电平的两种方法 (a)量化误差大;(b)量化误差小
2020/4/22
29
7.2.2 A/D转换器工作原理
直接A/D转换器:并行比较型A/D转换器 逐次比较型A/D转换器
间接A/D转换器:双积分型A/D转换器 电压转换型A/D转换器
1. 逐次比较型A/D转换器
天平称重过程:砝码(从最重到最轻),依次 比较,保留/移去,相加。
由于集成运算放大器的电流求和点Σ为虚地, 所以每个2R电阻的上端都相当于接地,从网络的A、 B、C点分别向右看的对地电阻都是2R。
2020/4/22
8
因此流过四个2R电阻的电流分别为I/2、I/4、 I/8、I/16。电流是流入地,还是流入运算放大器, 由输入的数字量Di通过控制电子开关Si来决定。故 流入运算放大器的总电流为:
分辨率:10位 线性误差:±(1/2)LSB(LSB表示输入数字量最低 位),若用输出电压满刻度范围FSR的百分数表示则 为0.05%FSR。 转换速度:500ns 温度系数:0.001%/℃
2020/4/22
22
2. 应用举例 (组成锯齿波发生器)
图7-5 AD7520组成的锯齿波发生器
图7-5 AD7520组成 的锯齿波发生器
16
3. 转换精度
转换精度是指电路实际输出的模拟电压值和理论 输出的模拟电压值之差。通常用最大误差与满量程 输出电压之比的百分数表示。通常要求D/A转换器 的误差小于ULSB/2。
例如,某D/A转换器满量程输出电压为10V,如 果 误 差 为 1% , 就 意 味 着 输 出 电 压 的 最 大 误 差 为 ±0.1V。百分数越小,精度越高。
转换精度是一个综合指标,包括零点误差、增益 误差等,它不仅与D/A转换器中元件参数的精度有 关,而且还与环境温度、集成运放的温度漂移以及 D/A转换器的位数有关。
2020/4/22
17
4. 非线性误差
通常把D/A转换器输出电压值与理想输出电压值 之间偏差的最大值定义为非线性误差。
D/A转换器的非线性误差主要由模拟开关以及 运算放大器的非线性引起。
25
取样定理:设 取样脉冲s(t)的频率 为fS,输入模拟信 号x(t)的最高频率 分量的频率为fmax, 必须满足
fs ≥ 2fmax
相关文档
最新文档