第六章排队论-PPT精选.ppt
合集下载
《运筹学排队论》课件

资源分配
合理分配服务器资源,以提高系统的吞吐量 和响应时间。
最优服务策略问题
总结词
研究如何制定最优的服务策略,以最大化系 统的性能指标。
服务顺序策略
确定服务器的服务顺序,以最小化顾客的等 待时间和平均逗留时间。
服务中断策略
在服务器出现故障时,选择最优的服务中断 策略,以最小化对顾客的影响。
服务时间分布策略
等待队长
指在某一时刻,正在等待服务的顾客总数。
逗留时间与等待时间
逗留时间
指顾客从到达系统到离开系统所经过的时间 。包括接受服务和等待的时间。
等待时间
指顾客到达系统后到开始接受服务所经过的 时间。
忙期与空闲期
要点一
忙期
指系统连续有顾客到达并接受服务的时间段。在这个时间 段内,系统内的顾客数可能会超过系统的容量。
03
02
交通运输
分析铁路、公路、航空等交通系统 的调度和运输效率。
计算机科学
研究计算机网络、云计算、分布式 系统的性能和优化。
04
排队论的基本概念
服务器
提供服务的设施或 人员。
等待时间
顾客到达后到开始 接受服务所需的时 间。
顾客
需要接受服务的对 象。
队列
顾客按到达顺序等 待服务的排列。
服务时间
顾客接受服务所需 的时间。
《运筹学排队论》ppt课件
目录
• 排队论简介 • 排队系统的组成 • 排队模型的分类 • 排队模型的性能指标 • 排队论的优化问题 • 排队论的发展趋势与展望
01
排队论简介
排队论的定义与背景
1
排队论(Queueing Theory)是运筹学的一个重 要分支,主要研究排队系统(Queueing Systems)的行为特性。
合理分配服务器资源,以提高系统的吞吐量 和响应时间。
最优服务策略问题
总结词
研究如何制定最优的服务策略,以最大化系 统的性能指标。
服务顺序策略
确定服务器的服务顺序,以最小化顾客的等 待时间和平均逗留时间。
服务中断策略
在服务器出现故障时,选择最优的服务中断 策略,以最小化对顾客的影响。
服务时间分布策略
等待队长
指在某一时刻,正在等待服务的顾客总数。
逗留时间与等待时间
逗留时间
指顾客从到达系统到离开系统所经过的时间 。包括接受服务和等待的时间。
等待时间
指顾客到达系统后到开始接受服务所经过的 时间。
忙期与空闲期
要点一
忙期
指系统连续有顾客到达并接受服务的时间段。在这个时间 段内,系统内的顾客数可能会超过系统的容量。
03
02
交通运输
分析铁路、公路、航空等交通系统 的调度和运输效率。
计算机科学
研究计算机网络、云计算、分布式 系统的性能和优化。
04
排队论的基本概念
服务器
提供服务的设施或 人员。
等待时间
顾客到达后到开始 接受服务所需的时 间。
顾客
需要接受服务的对 象。
队列
顾客按到达顺序等 待服务的排列。
服务时间
顾客接受服务所需 的时间。
《运筹学排队论》ppt课件
目录
• 排队论简介 • 排队系统的组成 • 排队模型的分类 • 排队模型的性能指标 • 排队论的优化问题 • 排队论的发展趋势与展望
01
排队论简介
排队论的定义与背景
1
排队论(Queueing Theory)是运筹学的一个重 要分支,主要研究排队系统(Queueing Systems)的行为特性。
排队论课件

③服务方式(输出)指同一时刻有多少服务台可接纳顾客, 每一顾客服务了多少时间。每次服务可以接待单个顾客, 也可以成批接待,例如公共汽车一次就装载大批乘客。 服务时间的分布主要有如下几种: • 负指数分布:即各顾客的服务时间相互独立,服从相 同的负指数分布(看病); • 爱尔朗分布:即各顾客的服务时间相互独立,具有相 同的爱尔朗分布。
• 定长分布:每一顾客的服务时间都相等(发放物品);
为叙述方便,引用下列符号,令
• M代表泊松分布输入或负指数分布服务;
• D代表定长分布输入或定长分布服务; • Ek代表爱尔朗分布的输入或服务。 于是泊松输入、负指数分布服务,N个服务台的排队系 统可以写成M/M/N; • 泊松输入、定长服务、单个服务台的系统可以写成M/D/1。 • 同样可以理解M/ Ek /N,D/M/N…等符号的含义。 • 如果不附其它说明,则这种符号一般都指先到先服务, 单个服务通道的等待制系统。
多通道服务方式
(1)系统中没有车辆的概率 为: 1 P (0) N 1 k N N !(1 / N ) k 0 k! ( 2)系统中有 k个车辆的概率: k .P (0), k! P(k) k P (0), kN N! N k N k N
1
5 5 10s / 辆
两种系统比较
4个M/M/1
平均车辆数 平均排队长 平均耗时 平均等候时间 20 16.68 30 25
M/M/4
6.6 3.3 10 5
设顾客平均到达率为,则到达的平均时距为1/ 。排队从单通道通过接受 服务的平均服务率为,则平均服务时间为1/ 。比率 / 叫做服务强度 或交通强度,可以确定系统的状态。所谓状态,指的是排队系统的顾客数。 1)在系统中没有顾客的概率为P(0) 1 2)在系统中有n个顾客的概率为P (n) n (1 ) 3)系统中的平均车辆数n 4)系统中的平均方差 2 5)平均排队长度q n 6)非零平均排队长度q w 1 1 n
排队论

负指数分布 Poisson分布
(t )n et P( X (t ) n) n!
E ( X (t )) t
e t f T (t ) 0 1 E (T )
for t 0 for t 0
服务时间的概率 = t 1/ : 平均服务时间
在t时间内已经服务n个顾客 的概率 平均服务率=
队列
队列容量
有限/无限 先来先服务(FCFS);后来先服务; 随机服务; 有优先权的服务;
排队规则
3.服务机构
服务机构
服务设施, 服务渠道与服务台 服务台数量:1台和多台 服务时间分布:
指数, 常数,
排队模型分类-Kendall记号
Kendall 记号: X/Y/Z/ A/B/C 顾客到达时间间隔分布/服务时间分布/服务台数 目/排队系统允许的最大顾客容量/顾客总体数量/ 排队规则 M/M/1///FCFS M/M/1 / M: 指数分布 (Markovian) D: 定长分布 (常数时间) Ek: k级Erlang 分布 GI:一般相互独立的时间间隔分布 G: 普通的概率分布 (任意概率分布)
0.3 0.25 0.2 0.15 0.1 0.05 0 0 2 4 6 8 10 12 14 16 18 20 22 24 NUMBER IN SYSTEM 26 28 30 32 34 36 38 40
Probability
74.94% 0.2506 1.2294 1.9788 0.2734 0.4401 0.7494 0.1007
排队模型的记号
系统状态 = 排队系统顾客的数量。 N(t) = 在时间 t 排队系统中顾客的数量。 队列长度 = 等待服务的顾客的数量。 Pn(t) = 在时间t,排队系统中恰好有n个顾客的概率。 s = 服务台的数目。
(t )n et P( X (t ) n) n!
E ( X (t )) t
e t f T (t ) 0 1 E (T )
for t 0 for t 0
服务时间的概率 = t 1/ : 平均服务时间
在t时间内已经服务n个顾客 的概率 平均服务率=
队列
队列容量
有限/无限 先来先服务(FCFS);后来先服务; 随机服务; 有优先权的服务;
排队规则
3.服务机构
服务机构
服务设施, 服务渠道与服务台 服务台数量:1台和多台 服务时间分布:
指数, 常数,
排队模型分类-Kendall记号
Kendall 记号: X/Y/Z/ A/B/C 顾客到达时间间隔分布/服务时间分布/服务台数 目/排队系统允许的最大顾客容量/顾客总体数量/ 排队规则 M/M/1///FCFS M/M/1 / M: 指数分布 (Markovian) D: 定长分布 (常数时间) Ek: k级Erlang 分布 GI:一般相互独立的时间间隔分布 G: 普通的概率分布 (任意概率分布)
0.3 0.25 0.2 0.15 0.1 0.05 0 0 2 4 6 8 10 12 14 16 18 20 22 24 NUMBER IN SYSTEM 26 28 30 32 34 36 38 40
Probability
74.94% 0.2506 1.2294 1.9788 0.2734 0.4401 0.7494 0.1007
排队模型的记号
系统状态 = 排队系统顾客的数量。 N(t) = 在时间 t 排队系统中顾客的数量。 队列长度 = 等待服务的顾客的数量。 Pn(t) = 在时间t,排队系统中恰好有n个顾客的概率。 s = 服务台的数目。
排队论(脱产)PPT课件

等待制与损失制
等待制
顾客等待时间有限,超过一定时 间仍无法接受服务则离开;或者 顾客可以无限等待,直到获得服 务。
损失制
顾客到达时若无法立即接受服务 ,则离开系统。
稳态与瞬态
稳态
排队系统在长时间后达到平衡状态,顾客到达和服务的时间间隔均服从某一概 率分布。
瞬态
排队系统未达到平衡状态,顾客到达和服务的时间间隔不服从概率分布。
WENKU DESIGN
WENKU DESIGN
2023-2026
ONE
KEEP VIEW
排队论(脱产)ppt课件
WENKU DESIGN
WENKU DESIGN
WENKU
REPORTING
https://
CATALOGUE
目 录
• 引言 • 排队论的基本概念 • 常见的排队模型 • 排队论中的性能指标 • 排队论的应用实例 • 总结与展望
PART 04
排队论中的性能指标
队长与等待队长
队长
指在任意时刻队列中的顾客数。它通常用来衡量系统的负载状况。队长是描述系 统状态的重要参数,其分布情况决定了系统的性质。
等待队长
指在队列中等候的顾客数。等待队长是衡量系统性能的重要指标,特别是在处理 能力有限的情况下。等待队长的大小直接影响到顾客的等待时间和系统的效率。
交通系统
地铁调度
地铁调度中心需要确保列车按时到达车 站并保持适当的间隔。排队论可用于分 析列车的到达时间和等待时间,优化列 车的调度和运行计划,提高地铁系统的 运输效率和安全性。
VS
机场安检
机场安检是保证乘客安全的重要环节,但 安检队伍过长或等待时间过长会影响乘客 的满意度和机场的运行效率。排队论可用 于分析安检队伍的长度和等待时间,优化 安检流程和资源配置,提高机场的运行效 率和乘客满意度。
运筹学排队论

降低平均服务时间
降低服务时间旳可变性
增长服务人员
降低平均到达人数
经过顾客预约等方法来降低到达旳可变性
集中使用服务资源
更加好地计划和调度
23
处理排队问题旳措施
2.其他措施
服务场合提供娱乐设施
医生等待室放报纸杂志
自动维修间用收音机或电视
航空企业提供空中电影
等待电梯处放镜子
超级市场把冲动性商品摆放在收款台附
排队论
1
2
•
排队论,又称随机服务系统理论(,是一
门研究拥挤现象(排队、等待)旳科学。详细
地说,它是在研究多种排队系统概率规律性
旳基础上,处理相应排队系统旳最优设计和
最优控制问题。
•排队论是1923年由丹麦工程师爱尔朗
(A.K.Erlang)在研究电活系统时创建旳.
3
案例-1 银行排队系统
4
案例-2 医院排队系统
用更快旳服务人员、机器或采用不同旳设施布局和政
策来影响顾客旳到达时间和服务时间。
9
1 排队论旳基本问题
1.1 排队论旳主要研究内容
• 数量指标
– 研究主要数量指标在瞬时或平稳状态下旳
概率分布及其数字特征,了解系统旳基本
运营特征。
• 统计推断
– 检验系统是否到达平稳状态;检验顾客到
达间隔旳独立性;拟定服务时间分布及参
数。
• 系统优化
– 系统旳最优设计和最优运营问题。
10
1.2排队论旳经济含义
• 排队问题旳关键问题实际上就是对不同
原因做权衡决策。管理者必须衡量为提
供更快捷旳服务(如更多旳车道、额外
旳降落跑道、更多旳收银台)而增长旳
第六章 排队论模型

上述事例中的各种问题虽互不相同,但却都 有要求得到某种服务的人或物和提供服务的人或 机构。排队论里把要求服务的对象统称为“顾 客”,而把提供服务的人或机构称为“服务台”或 “服务员”。不同的顾客与服务组成了各式各样 的服务系统。顾客为了得到某种服务而到达系统、 若不能立即获得服务而又允许排队等待,则加入 等待队伍,待获得服务后离开系统。
12
③随机服务 (RAND) 。即当服务台空闲 时,不按照排队序列而随意指定某个顾客去 接受服务,如电话交换台接通呼叫电话就是 一例。 ④优先权服务 (PR)。如老人、儿童先进 车站;危重病员先就诊;遇到重要数据需要 处理计算机立即中断其他数据的处理等,均 属于此种服务规则。
13
(3)混合制.这是等待制与损失制相结合的一种 服务规则,一般是指允许排队,但又不允许队列无 限长下去。具体说来,大致有三种:
16
3、服务台
服务台可以从以下3方面来描述: (1) 服务台数量及构成形式。从数量上说,服务台有 单服务台和多服务台之分。从构成形式上看,服务台 有:①单队——单服务台式; ②单队——多服务台并联式; ③多队——多服务台并联式; ④单队——多服务台串联式; ⑤单队——多服务台并串联混合式,以及多队列多 服务台并串联混合式等等。 如之前的分类模型图所示。
2
排队论历史:
起源于1909年在丹麦哥本哈根电子公司工作的电话工程 师A. K. Erlang(A.K.爱尔朗)对电话通话拥挤问题的研究工作, 其开创性论文---概率论和电话通讯理论则标志此理论的诞生。 表明了排队论的发展最早是与电话,通信中的问题相联系的, 并到现在也还是排队论的传统的应用领域。近年来在计算机通 讯网络系统、交通运输、医疗卫生系统、各类生产服务、库存 管理等等各领域中均得到广泛的应用。 排队论具体事例:
6排队论

• “忙期”是一个随机变量,可以表征服务台 的工作强度; • 服务台连续保持空闲的时间长度称为闲期。 • 在排队系统中忙期和闲期是交替出现的。 • 服务设备利用率——指服务设备工作时间 占总时间的比例。 • 该指标可以衡量服务设备的工作强度、 磨损和疲劳程度。
• 顾客损失率——由于服务能力不足而造成 的顾客流失的概率称为顾客损失率。 • 该指标过高会造成服务系统利润减少, 因此损失制和混合制排队系统均会重视对 该指标的研究。
• 最简单流的4个基本性质: • 平稳性:在时间段t内,恰有n个顾客到达 系统的概率P{N(t)=n}仅与t的长短有关,而 与该时间段的起始时刻无关; • 无后效性:在不相交的时间区间内到达的 顾客数是相互独立的。 • 如:在[a,a+t]时段内到达K个顾客的概率 与时刻a之前到达多少顾客无关;
普通性:在充分小的间隔时间内至少到达两个 顾客的概率ψ(Δt)=o(t),t→0,即
• • • • •
C 表示服务台的个数; D 表示系统容量; E 表示顾客源包含的全部个体数量; F 表示服务规则 ; 举例:M/M/1/∞/∞/FCFS 表示泊松输入、 服务时间服从负指数分布、1个服务台、系 统容量无限制(即等待制)、顾客源无限、 先到先服务的排队系统 ;
• GI/EK/1/N/∞/FCFS • 表示一般独立输入(顾客到达的间隔时间 服从一般独立分布)、服务时间服从K阶爱 尔朗分布、1个服务台、系统容量为N、顾 客源无限、先到先服务的排队系统。
• 3、 爱尔朗分布 • 当顾客在系统内所接受的服务可以分为K 个阶段,每个阶段的服务时间T1,T2,…, Tk为服从同一分布(参数为kμ的负指数分 布)的k个相互独立的随机变量,顾客在完 成全部服务内容并离开系统后,另一个顾 客才能进入服务系统,则顾客在系统内接 受服务时间之和T=T1+T2+…+Tk服从k阶爱 尔朗分布Ek,其分布密度函数为:
排队论大学课件6-泊松过程

复杂系统建模
02
对于复杂的服务系统,如多服务台、多队列等,基于泊松过程
的排队论模型建模难度较大。
数据获取与处理03在实际应用中,获取准确的顾客到达和服务时间数据较为困难,
对模型的验证和应用带来挑战。
未来发展趋势及研究方向
A
非齐次泊松过程研究
针对事件发生率变化的情况,研究非齐次泊松 过程在排队论中的应用。
均值与方差
指数分布的均值和方差都是1/λ,其中λ是单位时间内事件的平 均到达率。因此,到达时间间隔的期望值(均值)和波动程度 (方差)都与事件到达率成反比。
到达次数分布
泊松分布
在给定时间区间内,事件到达的次数服从泊松分布。泊松分布是一种离散型概率分布,用于描述在固 定时间或空间范围内随机事件发生的次数。
泊松过程应用场景
01 02
电话交换系统
在电话交换系统中,用户呼叫的到达可以看作是一个泊松过程。通过泊 松过程可以预测在给定时间内呼叫到达的次数,从而合理安排交换机的 容量。
交通流
道路上车辆到达的情况也可以看作是一个泊松过程。通过泊松过程可以 分析交通流的特性,如车流量、车速等,为交通规划和管理提供依据。
期望值与方差
对于单个事件的等待时间,其期望值(均值)是1/λ,方差也是1/λ。对于多个事件的等待时间,其期望值(均值) 和方差都与事件数量成正比。因此,等待时间的期望值(均值)和波动程度(方差)都与事件到达率成反比。
泊松过程参数估计与检验
03
参数估计方法
01
矩估计法
利用样本矩来估计总体矩,从而获得泊松过程参数的估 计值。
02
最大似然估计法
根据样本数据,构造似然函数,通过最大化似然函数得 到参数的估计值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各符号的意义:
②——表示服务时间分布,所用符号与表示顾 客到达间隔时间分布相同。
③——表示服务台(员)个数:“1”表示单个服 务台,“s”(s>1)表示多个服务台。
④——表示系统中顾客容量限额,或称等待空 间容量。如系统有K个等待位子,则,0<K<∞, 当K=0时,说明系统不允许等待,即为损失制。 K=∞时为等待制系统,此时一般∞省略不写。 K为有限整数时,表示为混合制系统。
(1)损失制。这是指如果顾客到达排队系
统时,所有服务台都被先到的顾客占用, 那么他们就自动离开系统永不再来。
2.服务规则
(2)等待制 这是指当顾客来到系统时,所有服务台
都不空,顾客加入排队行列等待服务。等待制中,服务 台在选择顾客进行服务时常有如下四种规则: 1)先到先服务。按顾客到达的先后顺序对顾客进行服务。 2)后到先服务。 3)随机服务。即当服务台空闲时,不按照排队序列而随 意指定某个顾客接受服务。 4)优先权服务。
二、排队系统的主要数量指标
2.等待时间和逗留时间
从顾客到达时刻起到他开始接受服务止这段时间称 为等待时间。等待时间是个随机变量。从顾客到达时刻 起到他接受服务完成止这段时间称为逗留时间,也是随 机变量。
(3)顾客流的概率分布,或称相继顾客到达的时间间隔 的分布。这是求解排队系统有关运行指标问题时,首 先需要确定的指标。顾客流的概率分布一般有定长分 布、二项分布、泊松流(最简单流)、爱尔朗分布等若 干种。
2.服务规则
这是指服务台从队列中选取顾客进行 服务的顺序。一般可以分为损失制、等 待制和混合制等3大类。
3.服务台
(1)服务台数量及构成形式。从数量上说,服 务台有单服务台和多服务台之分。从构成形式 上看,服务台有:①单队—-单服务台式;② 单队--多服务台并联式;③多队—-多服务台 并联式;④单队—-多服务台串联式;⑤单 队—-多服务台并串联混合式,以及多队多服 务台并串联混合式等等。
(2)服务方式。这是指在某一时刻接受服务的 顾客数,它有单个服务和成批服务两种。
第六章 排 队 论
随机服务系统理论
第六章 排 队 论
排队系统描述 基本概念 M / M / 1 模型 M / M / S 模型
第一节 排队系统描述
顾客---要求服务的对象统称为“顾 客”
服务台---把提供服务的人或机构称 为“服务台”或“服务员”
各种形式的排队系统
各种形式的排队系统
2.服务规则
(3)混合制 这是等待制与损失制相结合的一
种服务规则,一般是指允许排队,但又不允许 队列无限长下去。具体说来,大致有三种: 1)队长有限。当排队等待服务的顾客人数超过 规定数量时,后来的顾客就自动离去,另求服 务,即系统的等待空间是有限的。 2)等待时间有限。即顾客在系统中的等待时间 不超过某一给定的长度T,当等待时间超过T时, 顾客将自动离去,并不再回来。 3)逗留时间(等待时间与服务时间之和)有限。
各种形式的排队系统
各种形式的排队系统
各种形式的排队系统
随机服务系统
排队论所要研究解决的问题
面对拥挤现象,人们通常的做法是增加服务 设施,但是增加的数量越多,人力、物力的支出 就越大,甚至会出现空闲浪费,如果服务设施太 少,顾客排队等待的时间就会很长,这样对顾客 会带来不良影响。如何做到既保证一定的服务质 量指标,又使服务设施费用经济合理,恰当地解 决顾客排队时间与服务设施费用大小这对矛盾, 就是随机服务系统理论——排队论所要研究解决 的问题。
(一)系统特征和基本排队过程
基本排队过程
可以用图6—6表示。从图6—6可知, 每个顾客由顾客源按一定方式到达服务 系统,首先加入队列排队等待接受服务, 然后服务台按一定规则从队列中选择顾 客进行服务,获得服务的顾客立即离开。
(二)排队系统的基本组成部分
排队系统由3个部分组成
1、输入过程 2、服务规则 3、服务台
第一节 基本概念;
一、排队系统的描述 二、排队系统的主要数量指标
一、排队系统的描述
(一)系统特征和基本排队过程 (二)排队系统的基本组成部分 (三)排队系统的描述符号
(一)系统特征和基本排队过程
共同特征:
(1)请求服务的人或者物——顾客; (2)有为顾客服务的人或者物,即服务员或服 务台; (3)顾客到达系统的时刻是随机的,为每一位 顾客提供服务的时间是随机的,因而整个排 队系统的状态也是随机的。
各符号的意义:
⑤——表示顾客源限额,分有限与无限两种, ∞表示顾客源无限,一般∞也可省略不写。
⑥——表示服务规则,常用下列符号 FCFS:表示先到先服务的排队规则; LCFS:表示后到先服务的排队规则; PR:表示优先权服务的排队规则。
各符号的意义:
例如,某排队问题为M/M/S/∞/ ∞/FCFS,则表示顾客到达间隔时间为负指数分 布(泊松流);服务时间为负指数分布;有s(s>1) 个服务台;系统等待空间容量无限(等待制); 顾客源无限,采用先到先服务规则。
某些情况下,排队问题仅用上述表达形式 中的前3个符号。例如,某排队问题为M/M/S,
如不特别说明则均理解为系统等待空间容量无 限;顾客源无限,先到先服务,单个服务的等 待制系统。
二,排队系统的主要数量指标
描述一个排队系统运行状况的主要数 量指标有:
1.队长和排队长(队列长) 队长是指系统中的顾客数(排队等待的 顾客数与正在接受服务的顾客数之和); 排队长是指系统中正在排队等待服务的 顾客数。队长和排队长一般都是随机变 量。
(3)服务时间的分布。在多数情况下,对每一 个顾客的服务时间是一随机变量。
(三)排队系统的描述符号
描述符号:①/②/③/④/⑤/⑥
各符号的意义:
①——表示顾客相继到达间隔时间分布,常用下列符号: M——表示到达的过程为泊松过程或负指数分布; D——表示定长输入; EK——表示K阶爱尔朗分布; G——按怎样的规律到达排队 系统的过程,有时也把它称为顾客流。一般可以从3 个方面来描述—个输入过程。
(1)顾客总体数,又称顾客源、输入源。这是指顾客的 来源。顾客源可以是有限的,也可以是无限的。
(2)顾客到达方式。这是描述顾客是怎样来到系统的, 是单个到达,还是成批到达。