人教版七年级数学上册教学课件-3.4 实际问题与一元一次方程1-
合集下载
人教版2020-2021学年七年级数学上册3.4 实际问题与一元一次方程--球赛积分表问题 电话计费问题课件

8. 用A4纸在某复印社复印文件,复印页数不超过20 时每页收费0.12元;复印页数超过20时,超过部 分每页收费0.09元. 在某图书馆复印同样的文件, 不论复印多少页,每页收费0.1元. 问:如何根据 复印的页数选择复印的地点使总价格比较便宜? (复印的页数不为零)
解:设复印页数为x,依题意,列表得:
解:由C队的得分可知,胜场积分+负场积分=27÷9=3. 设胜一场积x分,则负一场积(3-x)分.
根据A队得分,可列方程为 14x+4(3-x)=32,
解得x=2,则3-x=1. 答:胜一场积2分,则负一场积1分.
想一想:某队的胜场总积分能等于它的负场总积分吗?
能. 胜6场、负12场时,胜场总积分等于它的负场总积分.
(1) 比较下列表格的第2、3行,你能得出什么结论?
主叫时间t /分 t 小于150 t 等于150
方式一计费/元 方式二计费/元
58
<
88
58
< 88
①当t ≤150时,方式一计费少(58元);
(2) 比较下列表格的第2、4行,你能得出什么结论?
主叫时间t /分 方式一计费/元 方式二计费/元
4. 用方程解决实际问题时,要注意检验方程的解是 否正确,且符合问题的实际意义.
当堂练习
1. 某球队参加比赛,开局 9 场保持不败,积 21 分,
比赛规则:胜一场得 3 分,平一场得 1分,则该
队共胜
(C)
A. 4场 B. 5场 C. 6场 D. 7场
2. 中国男篮CBA职业联赛的积分办法是:胜一场积 2 分,负一场积 1 分,某支球队参加了12 场比赛, 总积分恰是所胜场数的 4 倍,则该球队共胜__4__ 场.
人教版初一数学七年级上册同步课堂课件3-4实际问题与一元一次方程 第1课时

【解析】设制作大月饼用 x kg 面粉,则制作小月饼用(330-x)kg 面粉.根据题意,
得
x 7×0.06
330-x = 0.015
,解得
x=120,则
330-x=210,120÷0.06=2
000(盒).所以当
制作大月饼用 120 kg 面粉,制作小月饼用 210 kg 面粉时,才能使制作的大、小月饼
10 个小饰品,已知 2 个大花瓶与 5 个小饰品配成一套,则要安排__5__名工人制作大
花瓶,才能使每天制作的大花瓶和小饰品刚好配套. 3.用铝片做听装饮料瓶,现有 100 张铝片,每张铝片可制瓶身 16 个或瓶底 45 个, 一个瓶身和两个瓶底可配成一套.用多少张制瓶身,多少张制瓶底可以正好制成配
7.甲厂有 91 名工人,乙厂有 49 名工人,为了赶制一批产品,又调来了 100 名工人, 使甲厂的人数比乙厂人数的 3 倍少 12 人,应往甲、乙两厂各调多少名工人? 【解析】设应往甲厂调 x 名工人,则往乙厂调(100-x)名工人, 由题意得:91+x=3(49+100-x)-12, 解得:x=86.所以 100-x=14. 答:应往甲厂调 86 名工人,往乙厂调 14 名工人.
知识点 2 工程问题 5.(2021·贵港期末)某地修一条公路,若甲工程队单独承包要 80 天完成,乙工程队单
独承包要 120 天完成.现在由甲、乙工程队合作承包,完成任务需要(A )
A.48 天 B.60 天 C.80 天 D.100 天
6.某中学的学生自己动手整理图书馆的图书,如果让七年级(1)班学生单独整理需要 5 小时;如果让七年级(2)班学生单独整理需要 3 小时.如果(2)班学生先单独整理 1 小时,(1)班学生也单独整理 2 小时,剩下的图书由两个班学生合作整理,则全部整
初中数学教学课件:3.4 实际问题与一元一次方程 第1课时(人教版七年级上)

3.4 实际问题与一元一次方程
第1课时
1.进一步掌握列一元一次方程解应用题的方法步骤.
2. 通过分析零件配套问题及工作量中的相等关系,进一步
经历运用方程解决实际问题的过程,体会方程模型的作用. 3.培养学生自主探究和合作交流的意识和能力,体会数学的 应用价值.
1.一件工作,甲单独做20小时完成,乙单独做12小时完成.
解:设乙队还需要x天才能完成.
1 1 1 ( )3 x 1 , 9 24 24
解得
x=13.
答:乙队还需要13天才能完成.
列方程解应用题的步骤:
设未知数 列方程 实际问题
→
数学问题 (一元一次方程)
↓
实际问题的 答案
解 方 程
↓
←
检验
数学问题的解 x=a
1. 已知关于x的方程3x + a = 0的解比方程 2x–3 =x + 5的解大2,则a = -30 .
.
解:设先安排x人工作4小时,根据相等关系: 两段完成的工作量之和应等于总工作量 列出方程: 4x 8 x 2 1
40 40
解得x=2 则应由2人先做4小时
一个道路工程,甲队单独做9天完成,乙队单独做24天 完成.现在甲乙两队共同施工3天,因甲另有任务,剩下 的工程由乙队完成,问乙队还需几天才能完成?
1 n
是
.
2.工作量= 人均效率×人数×时间.
3.各阶段工作量的和=总工作量.
各人完成的工作量的和=完成的工作总量.
分析:这里可以把工作总量看作 1
请填空:
4x 40
人均效率(一个人做1小时完成的工作量)为
由x人先做4小时,完成的工作量为
8 x 2 40
第1课时
1.进一步掌握列一元一次方程解应用题的方法步骤.
2. 通过分析零件配套问题及工作量中的相等关系,进一步
经历运用方程解决实际问题的过程,体会方程模型的作用. 3.培养学生自主探究和合作交流的意识和能力,体会数学的 应用价值.
1.一件工作,甲单独做20小时完成,乙单独做12小时完成.
解:设乙队还需要x天才能完成.
1 1 1 ( )3 x 1 , 9 24 24
解得
x=13.
答:乙队还需要13天才能完成.
列方程解应用题的步骤:
设未知数 列方程 实际问题
→
数学问题 (一元一次方程)
↓
实际问题的 答案
解 方 程
↓
←
检验
数学问题的解 x=a
1. 已知关于x的方程3x + a = 0的解比方程 2x–3 =x + 5的解大2,则a = -30 .
.
解:设先安排x人工作4小时,根据相等关系: 两段完成的工作量之和应等于总工作量 列出方程: 4x 8 x 2 1
40 40
解得x=2 则应由2人先做4小时
一个道路工程,甲队单独做9天完成,乙队单独做24天 完成.现在甲乙两队共同施工3天,因甲另有任务,剩下 的工程由乙队完成,问乙队还需几天才能完成?
1 n
是
.
2.工作量= 人均效率×人数×时间.
3.各阶段工作量的和=总工作量.
各人完成的工作量的和=完成的工作总量.
分析:这里可以把工作总量看作 1
请填空:
4x 40
人均效率(一个人做1小时完成的工作量)为
由x人先做4小时,完成的工作量为
8 x 2 40
人教版七年级上册数学第三章3.4实际问题与一元一次方程

计费方式一
基本费58元 加超时费0.25元/分
0
150
350加超时费
基本费88元
0.19元/分
计费方式二 问题2:你认为选择哪种计费
方式更省钱呢?
“与主叫时间相关”
问题3:设一个月内用移动电话主叫为t min(t是 正整数).列表说明:当 t 在不同时间范围内取
值时,按方式一和方式二如何计费.
主叫时间t /分
1. 甲队有32人,乙队有28人,现从乙队抽调x 人到甲队,使甲队人数是乙队人数的2倍,依 题意,列出的方程是__3_2_+_x_=_2_(_2_8_-_x_) __.
2. 制作一张桌子要用一个桌面和4条桌腿,1 m3 木材可制作20个桌面,或者制作 400条桌腿, 现有12 m3木材,应怎样安排用料才能制作尽可 能多的桌子?
方式一计费/元 方式二计费/元
答:应先安排 2人做4 h.
归纳
用一元一次方程解决实际问题的基本过程如下:
实际问题
设未知数 列方程
一元一次方程 解方程
实际问题 的答案
检验
一元一次方程的 解(x=a)
这一过程一般包括以下几个步骤: 1. 审:审题,分析题目中的数量关系; 2. 设:设适当的未知数,并表示未知量; 3. 列:根据题目中的数量关系列方程; 4. 解:解这个方程; 5. 答:检验并答话.
盈利 亏损
总售价 = 总成本 不盈不亏
3.4 实际问题与一元一次方程 第3课时 球赛积分表问题
R·七年级上册
球赛积分问题
队名
比赛 场次
胜负积 场场分
前进 14 10 4 24 1 你能从表格中看 东方 14 10 4 24 出负一场积多少分吗?
实际问题与一元一次方程(第二课时销售利润与球赛积分问题)(课件)七年级数学上册(人教版)

4 10 18
钢铁 14
0 14 14
互动新授
问题4:怎样用式子表示总积分与胜、负场数之间的关系?
解:若一个队胜 m场,则负(14-m) 场,胜场积分为2m,负场积分为14-m,总 积分为:
2m+(14-m)=m+14.
即胜m场的总积分为(m+14)分.
队名 前进 东方 光明 蓝天 雄鹰 远大 卫星 钢铁
售价 成本
老式剃须刀 2.5(元/把) 2 (元/把)
新式剃须刀
刀架
刀片
1 (元/把)
0.55(元/片)
5 (元/把)
0.05(元/片)
拓展训练
解:设这段时间内乙厂家销售了x把刀架.依题意,得
(0.55-0.05)×50x+(1-5)x=2×(2.5-2)×8 400.
解得
x=400.
销售出的刀片数=50×400=20000(片).
所以两个计算器总进价为120元,而总售价128元,进价小于售价, 因此两个计算器总的盈利情况为盈利8元.
课堂检测
2.某超市规定,若购买不超过50元的商品,按定价金额 收费;若购买超过50元的商品,超过部分按定价的九折收费. 某顾客在一次消费中付了212元,则该顾客购买的是定价为多 少元的商品?
解:设顾客购买的是定价为x元的商品, 依题意有:50+0.9(x-50)=212, 解得 x=230.
比赛场次 14 14 14 14 14 14 14 14
胜场 负场 积分 10 4 24 10 4 24 9 5 23 9 5 23 7 7 21 7 7 21 4 10 18 0 14 14
互动新授
问题5:某队胜场总积分能等于它负场总积分吗?
人教版七年级数学上册课件:3.4.1 配套问题与工程问题

第3章 一元一次方程
3.4 实际问题与一元一次方程
第1课时 配套问题与工程问题
知识点1:配套问题 1.教室里有40套课桌椅(一把椅子配一张桌子),总价值2800元,每 把椅子20元,则每张桌子多少元?设每张桌子x元,可列方程为( B ) A.40x+20=2800 B.40x+40×20=2800 C.40(x-20)=2800 D.40x+20(40-x)=2800 2.(例题1变式)某车间有27名工人,生产某种由一个螺栓套两个螺母 的配套产品,每名工人每天平均生产螺栓16个或螺母22个,设应分配x 名工人生产螺栓,其他工人生产螺母,才能使每天生产的螺栓和螺母正 好配套,所列方程正确的是( C ) A.22x=16(27-x) B.16x=22(27-x) C.2×16x=22(27-x) D.2×22x=16(27-x)
3.某服装厂有工人54人,每人每天可加工上衣8件,或裤子10条,应怎 样分配人数,才能使每天生产的上衣和裤子配套?设x人做上衣,则做 裤子的人数为__(_5_4_-__x_)__人,根据题意,可列方程为__8_x_=__1_0_(_5_4_-__x_) , 解得x=_3_0__.
知识点2:调配问题 4.七年级(2)班学生参加绿化劳动,在甲处有32人,乙处有22人,现 根据需要,要从乙处抽调部分同学前往甲处,使甲处人数是乙处人数的 2倍,问应从乙处抽调多少人前往甲处?设从乙处抽调x人前往甲处,可 得正确方程是( D ) A.32-x=2(22-x) B.32+x=2(22+x) C.32-x=2(22+x) D.32+x=2(22-x) 5.在加固某段河坝时,需要动用15台挖土、运土机械,每台机械每 小时能挖土18 m3或运土12 m3,挖出的土要及时运走,若安排x台机械挖 土,则可列方程_1_8_x_=__1_2_(_1_5_-__x_).
3.4 实际问题与一元一次方程
第1课时 配套问题与工程问题
知识点1:配套问题 1.教室里有40套课桌椅(一把椅子配一张桌子),总价值2800元,每 把椅子20元,则每张桌子多少元?设每张桌子x元,可列方程为( B ) A.40x+20=2800 B.40x+40×20=2800 C.40(x-20)=2800 D.40x+20(40-x)=2800 2.(例题1变式)某车间有27名工人,生产某种由一个螺栓套两个螺母 的配套产品,每名工人每天平均生产螺栓16个或螺母22个,设应分配x 名工人生产螺栓,其他工人生产螺母,才能使每天生产的螺栓和螺母正 好配套,所列方程正确的是( C ) A.22x=16(27-x) B.16x=22(27-x) C.2×16x=22(27-x) D.2×22x=16(27-x)
3.某服装厂有工人54人,每人每天可加工上衣8件,或裤子10条,应怎 样分配人数,才能使每天生产的上衣和裤子配套?设x人做上衣,则做 裤子的人数为__(_5_4_-__x_)__人,根据题意,可列方程为__8_x_=__1_0_(_5_4_-__x_) , 解得x=_3_0__.
知识点2:调配问题 4.七年级(2)班学生参加绿化劳动,在甲处有32人,乙处有22人,现 根据需要,要从乙处抽调部分同学前往甲处,使甲处人数是乙处人数的 2倍,问应从乙处抽调多少人前往甲处?设从乙处抽调x人前往甲处,可 得正确方程是( D ) A.32-x=2(22-x) B.32+x=2(22+x) C.32-x=2(22+x) D.32+x=2(22-x) 5.在加固某段河坝时,需要动用15台挖土、运土机械,每台机械每 小时能挖土18 m3或运土12 m3,挖出的土要及时运走,若安排x台机械挖 土,则可列方程_1_8_x_=__1_2_(_1_5_-__x_).
人教版七年级上册实际问题与一元一次方程课件

知识回顾 问题探究 课堂小结 随堂检测
探究二:解决生活中销售盈亏问题
活动3 反思过程,发现规律
重点、难点知识▲
点评:不要认为一件盈利25%,一件亏损25%,结果不盈 不亏,因为盈亏要看这两件的进价.例如盈利25%的一件 进价为40元,那么这一件盈利40%×25%=10(元),亏 损25%的一件进价为80元,那么这一件亏损了 80×25%=20(元),总的还是亏损10元,这就是说,亏 损25%的一件进价如果比盈利25%的一件进价高,那么总 的是亏损,反之才是盈利.
知识回顾 问题探究 课堂小结 随堂检测
探究二:解决生活中销售盈亏问题
活动2 集思广益,讨论交流解决问题
重点、难点知识▲
解决销售中的利润问题,一定掌握进价、售价、标价、利
润、利润率、打折等概念和它们之间的基本数量关系:
利润=售价-进价;
利润率=
利润 进价
100%=
售价-进价 进价
100%
折数
售价=标价 × 10 =进价×(1+利润率)
问题3 这里的盈利率、亏损率指的是什么?
这里盈利 25%= 进利价润,亏损25%就是盈利-25%.
利润率=
利润 进价
100%=
售价-进价 进价
100%
知识回顾 问题探究 课堂小结 随堂检测
探究二:解决生活中销售盈亏问题
活动2 集思广益,讨论交流解决问题
重点、难点知识▲
第一件 第二件
售价 60 60
知识回顾 问题探究 课堂小结 随堂检测
探究二:解决生活中销售盈亏问题
活动3 反思过程,发现规律
重点、难点知识▲
总结:有关销售盈亏问题的应用题中:
(1)当利润值为正数时是盈利,当利润值为负数时为亏损;
人教版数学初一上册3.4 实际问题与一元一次方程 第1课时:3.4.1-产品配套问题课件

解:设剩下的部分需要x小时完成,根据题意得:
1 (4+x)+ x 1.
20
12
解得x = 6. 答:剩下的部分需要6小时完成.
5. 一个道路工程,甲队单独施工9天完成,乙队单独 做24天完成.现在甲乙两队共同施工3天,因甲另 有任务,剩下的工程由乙队完成,问乙队还需几 天才能完成?
解:设乙队还需x天才能完成,由题意得:
样列方程?
列表分析:
产品类型 生产人数 单人产量 总产量
螺钉
x × 1200 = 1200 x
螺母 22-x × 2000 = 2000(22-x)
人数和为22人 螺母总产量是螺钉的2倍 等量关系:螺母总量=螺钉总量×2
解:设应安排 x 名工人生产螺钉,(22-x)名工人生
产螺母.
依题意,得
2000(22-x)=2×1200x .
7、若要功夫深,铁杵磨成针。20.7.1420.7.1420.7.14。2020年7月14日星期二二〇二〇年七月十四日
花一样美丽,感谢你的阅读。 8、人无远虑,必有近忧。20:2620:26:027.14.2020Tuesday, July 14, 2020
产螺母.依题意,得 2000(22 - x) 2000x.
2
解方程,得 x=10.所以2-x=12.
练习
1、一套仪器由一个A部件和三个B部件构 成。用1立方米钢材可做40个A部件或240个 B部件。现要用6立方米钢材制作这种仪器 ,应用多少钢材做A部件,多少钢材做B部 件,恰好配成这种仪器多少套?
1. 三个基本量:工作量、工作效率、工作时间. 它们之间的关系是:工作量=工作效率×工作时间.
2. 相等关系:工作总量=各部分工作量之和. (1) 按工作时间,工作总量=各时间段的工作量之和; (2) 按工作者,工作总量=各工作者的工作量之和.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
知识应用
练一练
某赛季篮球联赛部分球队积分榜:
队名 比赛场次 胜场 负场
上海
22
18
4
北京
22
14
8
浙江
22
7
15
江西
22
0
22
积分 40 36 29 22
(1)列式表示积分与胜、负场数之间的数量关系; (2)某队的胜场总积分能等于它的负场总积分吗?
三、知识讲解
解:观察积分榜,从最下面一行可看出,负一场 积1分.
依题意,得
10x+1×4=24
解得:
x=2
所以,胜一场积2分.
得出结论:胜一场积2分,负一场积1分
三、知识讲解
问一问
你能不能列一个用式子表示总积分与胜、负场数之间的数量关系? 若一个队胜m场,则负(14 – m)场, 总积分为: 2m+(14 – m) = m+14 即胜m场的总积分为 m +14 分
三、知识讲解
队名
比赛 场次
胜负积 场场分
前进 14 10 4 24
东方 14 10 4 24
光明 14 9 5 23
蓝天 14 9 5 23
雄鹰 14 7 7 21
远大 14 7 7 21
卫星 14 4 10 18
钢铁 14 0 14 14
你能从表格中看 出负一场积多少分吗?
0 + 14
= 14
胜场积分+负场积分= 总分积分
三、知识讲解
(2)设一个队胜了x场,则负了(22-x)场,
如果这个队的胜场总积分等于负场总积分,则有
方程
2 x-(22-x )=0.
x= 22 .
其中,x
3
(胜场)的值必须是整数,所以
x=
22 3
不符合实际意义. 由此可以判定没有哪个队伍的
胜场总积分等于负场总积分.
三、知识讲解
探究2 考试竞赛得分问题
二、学习目标
➢ 1.会从表格中获取信息寻找数量关系列方程.(难点) ➢ 2.知道列方程解应用题时,为什么要检验方程的解是否
符合题意.(重点)
三、知识讲解
探究1 比赛积分问题
三、知识讲解
问一问:
(1)你能从积分表格中哪一行最容 易看出负一场积多少分? 胜一场积多少分吗? (2)列式表示积分与胜,负场数之 间的数量关系吗? (3)某队的胜场总积分能等于它的 负场总积分吗?
学校组织知识竞赛,共设20道选择题,各题分值相同,每题必答,下表 记录的是5名参赛者的得分情况:
参赛者
A
B
C
D
E
答对数
20
19
18
14
10
答错数
0
1
2
6
10
得分
100
94
88
64
40
(1)由表格知,答对一题得__5__分,答错一题得__-_1_分。
(2)参赛者F得82分,他答对了几道题? (3)参赛者G说他得90分,你认为可能吗?为什么?
负一场积1分
三、知识讲解
队名
比赛 场次
胜负积 场场分
前进 14 10 4 24
东方 14 10 4 24
光明 14 9 5 23
蓝天 14 9 5 23
雄鹰 14 7 7 21
远大 14 7 7 21
卫星 14 4 10 18
钢铁 14 0 14 14
你能进一步算出胜一场积多少分吗?
设:胜一场积 x 分,
(2)设选对了y道题,则选错了(25 – y)道题. 由题意列出方程4y – (25 – y)=83, 解得 y=21.6 而答对的题数必须为整数,故不合题意舍去,不 可能会有得83分的同学.
六、布置作业
1.必做题:课本的对应习题
谢谢欣赏
四、课堂小结
比赛积分问题:积分问题中常用比赛总场数及比赛总得分来 找相等关系。 比赛总场数=胜场数+负场数 比赛总积分=胜场积分+负场积分+平场总分 考试竞赛问题:与比赛积分问题类似,其基本的相等关系为: 总题数=答对题数+答错题数+未答题数 总得分=答对得分+答错得分+一次篮球比赛中,包括罚球在内共出手22次, 命中14球,得28分,除了3个3分球全中外,他还投中了 __8__个2分球和__3__个罚球.
人教版·七年级 数学上册-第3章4节
3.4 实际问题与一元一次方程
课时3 解决比赛积分问题
1、新课导 入
4、课堂练习
目录
CONTENTS
2、学习目标
5、课堂小结
3、知识讲解 6、布置作业
一、新课导入
喜欢体育的同学经常观看各种不同类别的球赛, 如:足球赛、篮球赛、排球赛等,但是你们了解它 们的计分规则和如何计算积分吗? 这节课我们将学习如何用方程解决球赛积分问题.
三、知识讲解
解:(2)设他答对了x道题,则答错了 (20-x)道题。
根据题意,得 2x+(20-x)=82. 解得 x=17. 答:他答对了17道题.
(3) 不 可 能 . 理 由 : 设 参 赛 者 G 答 对 了 m 道 题 , 则 答 错 (根 因20据 为-题mm为意)道整,题数得. ,5m所+以(2不0-符m合)=题9意0.,解故得参m=赛1者16G0不可能90分.
五、课堂练习
2. 一份试卷共25道题,每道题都给出四个答案,其中只 有一个是正确的,要求学生把正确答案选出来,每题选 对得4分,不选或选错扣1分. (1)如果一个学生得90分,那么他选对几题? (2)现有500名学生参加考试,有得83分的同学吗?为 什么?
五、课堂练习
解:(1)设他选对x道题,则不选或选错了(25 – x)道题. 由题意列出方程4x - (25 – x) = 90, 解得 x=23. 即他选对了23题.
设胜一场积x分根据表中其他任意一行可以列方 程,求出x的值.例如,根据第一行可列方程:
18x+1×4=40. 由此得出 x=2. 用表中其他行可以验证,得出结论:负一场积1 分,胜一场积2分. (1)如果一个队胜m场,则负(22-m)场,胜场积分 为2m,负场积分为22-m,总积分为
2m+(22-m)=m+22.
三、知识讲解
问一问
某队的胜场总积分能等于它的负场总积分吗? 设一个队胜x场,则负(14-x)场,
依题意得: 2x=14-x
解得:
x= 14
3
想一想,x 表示什么量?它可以是分数吗?由此 你能得出什么结论?
三、知识讲解
解决实际问题时,要考虑得到的结果是不是
14
符合实际.x的值必须是整数,所以x= 3 不符合实 际,由此可以判定没有哪个队的胜场总积分等于 负场总积分.