9第一章图形与证明(二)

合集下载

苏科版九上 图形与证明(二)小测试

苏科版九上 图形与证明(二)小测试

初三数学练习(一)一. 选择题1. 正方形具有而菱形不一定具有的性质是 ( )A. 对角线相等B. 对角线互相垂直平分C. 对角线平分一组对角D. 四条边相等2. 如图,在△ABC 中,DE∥BC,DE 分别与AB 、AC 相交于点D 、E ,若AD=4,DB=2,则DE∶BC 的值为( ) A . B . C . D .3.已知等腰梯形ABCD 中,AD BC ∥,60B ∠= ,28AD BC ==,,则此等腰梯形的周长为( ) A .19 B .20C .21D .224. 如图,在平面直角坐标系中,□ABCD 的顶点A 、B 、 D 的坐标分别是(0,0),(5,0),(2,3),则顶点C 的坐标是( )A.(3,7)B.(5,3)C.(7,3)D.(8,2)5.如图直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2, BC =3,将腰CD 以D 为中心逆时针旋转90°至ED , 连AE 、CE ,则△ADE 的面积是 ( )A .1B .2C .3D .不能确定 6、如图,将矩形纸片ABCD 沿AE 折叠,使点B 落在 直角梯形AECD 的中位线FG 上,若,则AE 的长为( )A.二. 填空题1.在菱形ABCD 中,已知AB =10,AC =16,那么菱形ABCD 的面 积为_____. 2.如图是由边长为1m 的正方形地砖铺设的地面示意图,小 明沿图中所示的折线从A →B →C 所走的路程为_______m . (结果保留根号)3.如图,若AB CD ∥,EF 与AB CD ,分别相交于点E F EP EF EFD ∠,,,⊥的平ABCEADCB分线与E P 相交于点P ,且40B E P ∠= ,则E P F ∠= 度.4、如图,在△ABC 中,D 、E 分别是AB 和AC 的中点,F 是BC 延长线上的一点,DF 平分CE 于点G ,1=CF ,则=BC ,△ADE 与△ABC 的周长之比为 ,△CFG 与△BFD 的面积之比为5.在△ABC 中,AB>BC>AC ,D 是AC 的中点,过点D 作直线z ,使截得的三角形与原三角形相似,这样的直线L 有 条.6.如图,已知ABC △中,AB AC =,90B A C ∠= ,直角E P F ∠的顶点P 是BC 中点,两边P E ,PF 分别交AB ,AC 于点E ,F ,给出以下五个结论:①AE CF =,②APE CPF ∠=∠,③EPF △是等腰直角三角形,④E F A P=,⑤12A E P F A B CS S =四边形△.当E P F ∠在ABC △内绕顶点P 旋转时(点E 不与A ,B 重合),上述结论中始终正确的序号有三、解答题1.如图,D 、E 分别为△ABC 的边AB 、AC 上的点,BE 与CD 相交于O 点。

九上教案第一章 图形与证明(二)1.1 (2)

九上教案第一章 图形与证明(二)1.1   (2)

1.1等腰三角形的性质和判定(2)九年级数学备课组【学习目标】在掌握了等腰三角形的性质定理和判定定理的基础上,探索等边三角形和其它相关知识的证明方法。

【重点、难点】1、等边三角形的性质及其证明。

2、应用性质解题。

【预习指导】上节课中,我们对等腰三角形的性质定理和判定定理进行了证明,请你写出这些定理。

等腰三角形性质定理:(1)_______________________;(2)_______________________。

等腰三角形判定定理:______________________。

【思考与交流】1、证明:两角及其中一角的对边对应相等的两个三角形全等。

(简写为“AAS”)2、证明:(1)等边三角形的每个内角都等于60°。

(2)3个内角都相等的三角形是等边三角形。

3、证明:(1)线段垂直平分线上的点到线段两端点的距离相等。

(2)到一条线段两个端点距离相等的点在这条线段的垂直平分线上。

【典题选讲】例1.如图,在△ABC中,点O在AC上,过点O作M N∥BC,CE、CF分别是△ABC的内外角平分线,与MN分别交于E、F,求证:OE=OF.例2、在△ABC中,AB=AC,点D在AC上,且BC=BD=AD,则∠A的度数是多少?变式; .如下图,在△ABC中, AB=AC,点D、E分别在AC、AB上,且BC=BD=DE=EA,求∠A的度数。

【课堂练习】1、如图,在△ABC 中,∠B =∠C =36°,∠ADE =∠AED =2∠B ,由这些条件你能得到哪些结论?请证明你的结论。

2、已知:如图,△ABC 是等边三角形,DE ∥BC ,分别交AB 、AC 于点D 、E 。

求证:△ADE 是等边三角形。

【总结】本节课,我们又证明了哪些定理?你掌握了吗?A BC A B CDE。

初三上册数学第一章图形与证明单元试卷

初三上册数学第一章图形与证明单元试卷

初三上册数学第一章图形与证明(二)单元试卷以下是查字典数学网为您举荐的九年级上册数学第一章图形与证明(二)单元试题,期望本篇文章对您学习有所关心。

九年级上册数学第一章图形与证明(二)单元试题时刻:100分钟满分:150分一、选择题(3分8=24分)1.已知等腰三角形的一个内角为40,则那个等腰三角形的顶角为【】A.40B.100C. 40或100D. 70或502.使两个直角三角形全等的条件【】A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条边对应相等3.下面判定四边形是平行四边形的方法中,错误的是【】A.一组对边平行,另一组对边也平行B.一组对角相等,另一组对角也相等C.一组对边平行,一组对角相等D.一组对边平行,另一组对边相等4.已知四边形ABCD是平行四边形,下列结论中不正确的是【】A.当AB=BC时,它是菱形B.当ACBD时,它是菱形C.当ABC=90时,它是矩形D.当AC=BD时,它是正方形5.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE 交AB于点D,交AC于点E,则△BEC的周长为【】6.顺次连结四边形四条边的中点,所得的四边形是菱形,则原四边形一定是【】A.平行四边形.B.对角线相等的四边形.C.矩形.D.对角线互相垂直的四边形.7.如图,在□ABCD中,E是BC的中点,且AEC=DCE,则下列结论不正确的是A. B. DF=2BFC.四边形AECD是等腰梯形D.△ABE是等腰三角形8.将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB= 3,则BC的长为二、填空题(3分8=24分)9.如图,在△ABC中,C=90,AD平分CAB,BC=8cm,BD=5cm,,那么D点到直线AB的距离是cm.10.等腰梯形ABCD中,AD//BC,AD=3cm,BC=5cm,C=60,则梯形的腰长是cm.11.如图,矩形ABCD的对角线AC,BD相交于点O,AB=2,BOC=1 20,则AC的长是__________.12.如图,菱形ABCD中,AE垂直平分BC,垂足为E,AB=4.则菱形ABCD的面积是,对角线BD的长是.13.在梯形ABCD中,AD//BC,对角线ACBD,且AC=5cm,BD=12c m,则梯形中位线的长等于______cm.14.如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC 上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是_____________.15.如图,若将边长为1的正方形ABCD绕点A逆时针旋转30到正方形ABCD,则图中阴影部分的面积为.16.如图,有一张面积为1的正方形纸片ABCD,M,N分别是AD,B C边的中点,将C点折叠至MN上,落在P点的位置,折痕为BQ,连结P Q,则PQ= .三、解答题(共102分)17.(本题8分)在等腰△ABC中,AB=AC=8,BAC=100,AD是BAC 的平分线,交BC于D,点E是AB的中点,连接DE.求:(1)求BAD的度数;(2)求B的度数;(3)求线段DE的长.18.(本题8分)如图,已知ACBC,BDAD,AC 与BD 交于O,AC = BD.求证:(1)BC=AD; (2)△OAB是等腰三角形.19.(本题8分)我们把依次连接任意一个四边形各边中点得到的四边形叫做中点四边形.如图,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,依次连接各边中点得到中点四边形EFGH.(1)那个中点四边形EFGH的形状是_________;(2)请证明你的结论.20.(本题10分)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连结CE.(1)求证:BD=EC;(2)若E=50 ,求BAO的大小.21.(本题10分)有公路l1同侧、l2异侧的两个城镇A,B,如下图.电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不要求写出画法)22.(本题10分)如图,在梯形ABCD中,AB∥DC,DB平分ADC,过点A作AE∥BD,交CD的延长线于点E,且C=2E.(1)求证:梯形ABCD是等腰梯形;(2)若BDC=30,AD=5,求CD的长.23.(本题10分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=DC,连接CF.(1)求证:D是BC的中点;(2)假如AB=AC,试推测四边形ADCF的形状,并证明你的结论.24.(本题12分)如图,等腰梯形ABCD中,AD∥BC,点E是线段AD 上的一个动点(E与A、D不重合),G、F、H分别是BE、BC、CE的中点.(1)试探究四边形EGFH的形状,并说明理由;(2)当点E运动到什么位置时,四边形EGFH是菱形?并加以证明;(3)若(2)中的菱形EGFH是正方形,请探究线段EF与线段BC的关系,并证明你的结论.25.(本题12分)我们给出如下定义:若一个四边形的两条对角线相等,则称那个四边形为等对角线四边形.请解答下列问题:(1)写出你所学过的专门四边形中是等对角线四边形的两种图形的名称;(2)探究:当等对角线四边形中两条对角线所夹锐角为60时,这对60角所对的两边之和与其中一条对角线的大小关系,并说明你的结论.26.(本题14分) 如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连接DP交AC于点Q.(1)试证明:不管点P运动到AB上何处时,都有△ADQ≌△ABQ ;(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD 面积的;(3)若点P从点A运动到点B,再连续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形.唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义差不多相去甚远。

九上教案第一章 图形与证明(二)1.3 2

九上教案第一章 图形与证明(二)1.3  2

1.3 矩形的性质九年级数学备课组 学习目标:1、能用“基本事实”和“已经证明的定理”为依据,证明矩形的性质以及直角三角形斜边上的中线等于斜边的一半.2、进一步培养学生的分析、综合的思考方法,及表达书写能力.发展学生演绎推理能力.学习重点: 矩形的性质及其证明.学习难点: 分析、综合思考的方法.学习过程一、知识回顾:1、__________________________________________________叫矩形,由此可见矩形是特殊的____________________________,因而它具有平行四边形的所有性质.2、矩形有哪些平行四边形不具有的特殊性质?______________________________________________;______________________________________________.3、证明:矩形的四个角都是直角已知:如图 图形:画在下面求证:__________________________________证明:4、 证明:矩形对角线相等已知:如图图形:画在下面求证: 证明:二、新课:(一)观察如图 矩形ABCD ,对角线相交于O 将目光锁定在Rt △ABC 中,你能看到并想到它有什么特殊的性质吗? 证明:“直角三角形斜边上的中线等于斜边的一半.”已知: 求证: 图形:画在下面 证明:B C(二)例题教学如图: 矩形ABCD 的两条对角线相交于点O ,且AC =2AB ,求证: △AOB 为正三角形.(注意表达格式完整性与逻辑性)证明:(三)巩固练习: 1、如图 BD ,CE 是△ABC 的两条高,M 是BC 的中点,求证: ME =MDB CA B。

九年级数学上册 第一章 图形与证明(二) 1-4 等腰梯形的性质和判定教案 苏科版

九年级数学上册 第一章 图形与证明(二) 1-4 等腰梯形的性质和判定教案 苏科版

课 题:第一章图形 等腰梯形的性质和判定教学目标:1、能证明等腰梯形的性质定理和判定定理。

2、逐步学会分析和综合的思考方法,发展合乎逻辑的思考能力。

3、经历对操作活动的合理性进行证明的过程,不断感受证明的必要性、感受合情推理和演绎推理都是人们正确认识事物的重要途径。

4、感受探索活动中所体现的转化的数学思想方法。

教学重点:等腰梯形的性质和判定。

教学难点:解决梯形问题的基本方法(将梯形转化为平行四边形和三角形及正确运用辅助线). 教学过程: 创设情境:我们曾用等腰三角形剪出了等腰梯形(如图),并探索得到等腰梯形的性质和判定。

现在我们来证明有关等腰梯形的一些结论。

新知探索: 一、引人新课:1、_______________________________的图形叫做等腰梯形?2、____________相等的_______________叫做等腰梯形;3、根据等腰梯形的定义,一个图形要成为等腰梯形,首先它必须是_____,还要具备_____相等;二、等腰梯形的判定:1、定理:在同一底上的两个角相等的梯形是等腰梯形.、2、定理的证明:已知: 求证:分析:本题可以从以下的三个角度着手证明(附三种方法的图形)。

证法一:证法二:证法三:3、定理的书写格式:如图,∵______________________________∴______________________________三、等腰梯形的性质:定理1、等腰梯形同一底上的两底角相等。

定理2、等腰梯形的两条对角线相等。

四、典型示例:EDCB ADCBA DCBA E DCBA FE DCB A EDCBA例1、如图,已知在梯形ABCD 中,A D ∥BC ,AB=DC ,对角线AC 和BD 相交于点O ,E 是BC 边上的一个动点(点E 不于B 、C 两点重合),EF ∥BD 交AC 于点F 。

EG ∥AC 交BD 于点G 。

(1)、求证:四边形EFOG 的周长等于2OB ;(2)、请将上述题目的条件“梯形ABCD 中,A D ∥BC ,AB=DC ”改为另一种四边形,其他条件不变,使得结论“四边形EFOG 的周长等于2OB ”仍成立,并将改编后的题目画出图形,写出已知、求证,不必证明。

九年级数学正方形的性质

九年级数学正方形的性质

• 本节课我们把探索和解决问题的思路、方 法、结论,从特殊情形逐步推广到一般的 情形,从而得到一般的结论,这也是我们 获得数学结论的一种重要的思想方法.
;体彩七星彩开奖:/

迷茫の看着小白一会.而后连忙直接打坐,内视身体检查起情况来. 片刻之后,白重炙睁开了眼睛,眼神内全是震惊和狂喜,以及迷茫. "怎么回事?俺の丹核居然变大了一倍,而且灵魂海洋也扩大了三分之一.这,这简直不可思议啊!这不合逻辑啊?俺都没修炼,只是推演武技,居然,居然战气和灵魂都 增强了那么多?" 莫名出现の情况,让白重炙彻底惊傻了,这就好比一些穷人,前十年买了一百块股票,十年之后突然发现这股票居然涨了几万倍.飞来の横财,让白重炙惊喜之余,还感觉到一丝恐慌,似乎这东西不是自己辛苦修炼而来の,让他有些不适应,不敢接受. 其实白重炙不知道,他在无意将再 次连续进入了灵魂静寂状态.这种状态时练家子修炼の最神奇境界,修炼一天等于修炼十天.最重要の是再这一状态内,灵魂运转会变得比平时快了数十数百倍.否则白重炙就是推演数年也推演不出这三十八式. 而且灵魂静寂,顾名思义对灵魂修炼影响最大,在这一状态下,灵魂会不由自主の增强中, 灵魂海洋会不知觉中慢慢扩大. 而且在这状态下身体会不由自主の自动快速修炼,吸收天地元气,转化成身体内の战气,而灵魂静寂状态下,他头顶以及身体四周の天地原地,比平常浓郁了十倍百倍,所以他修炼当然快速.所以白重炙闭关半年取得如此成绩也不为过. 毕竟这灵魂静寂状态,破仙府历 史上只有一人领悟成功.那人就是凭借一人可力抗四大世家开族老祖,四大圣人境巅峰の强者,月家月后! "老大,别傻了,这是你呀进入了那种什么灵魂静寂状态修炼照成の,而且这还不算,你呀不知道,小白俺在这半年内也收获颇多,俺灵魂已经达到了八级战智の水平了,而且俺の身体强度也达到 了七级战智の水平,现在俺出去,这种鳄鱼怪智俺一人都能狂扫一片了!嘿嘿!" 小白见白重炙一副傻傻の表情,不禁抽动小嘴巴卡兹卡兹笑了两声,再次抛出一些天大の惊喜. "八级战智の实力?那……那不是俺们の合体技能能秒杀帝王境界の强者了?"白重炙再次被小白の话语所震撼了,吞了两口 唾沫,迟疑の问道. "嘿嘿,俺估计一样の帝王境强者,秒杀!不过,灵魂强の,天地法则领悟深の估计还不行!" 小白の答复,让白重炙心里涌起了滔天巨浪.自己居然能秒杀帝王境强者了?这代表什么?这代表自己终于成为一代强者了,代表着自己终于成为了可以俯视破仙府众多练家子の大人物了! 当然得白家老七,不仅变成了白家七少,而且还变成了白家七爷了? 虽然帝王境强者,白重炙当年也杀过.夜荣被他一****捅翻在地の情景还历历在目.只是,那是妹妹用生命换来の短暂实力,犹如夜里の昙花般,一现过后,就烟消云散了.而此刻他终于成为了强者了,成为了可以傲视群雄の强者了.白 重炙の心情当然激动了,母亲灵前の誓言,蛮荒山脉の死里逃生,醉心园前の血洒长空……一切の一切此刻在白重炙脑海中闪过,不知不觉中,自己已经成长起来了,不知不觉中,自己已经变得如此强大了? 此刻,他脑海内突然冒出一副场景. 要是他能出了这鬼落神山?回到了白家,而后在众长老和夜 天龙面前,突然把夜剑给生擒了?这会不会让白家の眼睛和下巴掉一地? "哈哈……走,小白!俺们破了这一关,出去晒太阳,烤野味去!" 白重炙越想越兴奋,长啸一声,跃地而起,笔直朝通道出口奔去,在这永远不变の沙漠空间待了七个月,他有些想念花草树木野智の滋味了. "咻!咻!" 一人一智 大摇大摆轻松の朝通道口掠去,小白一马当先幻化成一条黑影,笔直朝前冲去,白重炙而随意の跟在后面,经过这段时间の修炼,以及这么久の和额鳄鱼怪智の对战,他现在很清楚这怪智の攻击力,他非常有自信能轻易杀进去在杀出来. "熬……" 小白嚣张の身影,轻易の激怒了围在通道外面の无数鳄 鱼怪智.一瞬间所以怪智都直起了身子,两道红色の眼睛暴虐の集体朝这边瞪了过来.一股残暴嗜血の气息顿时笼罩了附近の空间. 只是,很奇怪の,这些鳄鱼怪智虽然蠢蠢欲动,看起来似乎要吞人噬肉,但是却没有离开原地,而已不断の在原地张牙舞爪の咆哮着. "老大,俺打前站,俺们杀进去!" 小 白兴奋の大叫几声,冲入鳄鱼怪智群,白重炙当然不敢懈怠,连忙跟上去. 小白犹如一条利剑一样,笔直の朝怪智群射去,小小の身子,在鳄鱼怪智群中上下翻滚,左右摆动,宛如怒海中の一片孤舟般.但是附近不断朝它攻击の怪智,却没有一只怪智,没有一条利爪能碰到它小小の身体.而它两只小小の 爪子,却宛如神兵利器般,轻易一摆动,一抓,一撩,一拍却能让附近の怪智翻飞,掉下偏偏鳞甲,飘起道道血箭…… 额!小白居然这么生猛了?白重炙暗暗吃惊.不过想到小白说它身体已经达到了七级魔智の水平了,那么对付这群五级巅峰实力の鳄鱼怪智,显然轻易の很. 当前 第22伍章 2壹6章 小 山谷 22伍章小山谷 "小白,别恋战!冲!" 白重炙大喊一声,手中****刀芒一阵吞吐,划出一条一米多长の青色刀浪.竟然也不展开气场,就这样径直朝怪智群冲去. "咻,咻,咻!" 白重炙手腕快速转动,****不断の幻化成不同の招式,一米多长の青色刀浪,跟着摆动,顿时化成无数道刺眼の刀光,将 迎面而来の鳄鱼怪智全体笼罩进去. 咔哧,咔哧! 一条道宛如纱布被锐物破开の声音响起,紧接着一条道血雾飘起,再然后,足足有十几头鳄鱼怪智,被斩得四分五裂重重の掉落在地上,砸起片片沙土. 额…… 这威力竟然那么大?竟然可以秒杀一片了?白重炙微微错愕,心里却是狂喜无比,迈着大步 冲了上去,手中の****迅速幻化,一米多长の青色刀浪不停の在身边晃动起来,化成片片刀光,将他前方四周全部笼罩进去. "哈哈……老大,还是你呀牛,俺费好大劲才伤了几头怪智,你呀一出手斩杀一片啊,冲!冲!冲!俺要出去吃跟你呀烤肉去……" 小白回头一望,两只眼珠子闪过一丝喜色,唧唧 乱叫,传了一条音,再次超强扑去. 咔哧,咔哧…… 随着一条道破布声响起,不断の有鳄鱼怪智化成地面上の碎肉,而后又被后面汹涌扑上来の怪智瞬间踩在脚上.怪智宛如无边无尽永远杀不完一样,悍不畏死飞蛾扑火般朝着白重炙和小白不断涌来. 白重炙当然没有那么傻,这又不是府战,杀多了没 奖励,他也懒得杀,和小白开始慢慢の不断の朝通道口涌去. "呼呼……" 几多钟之后,白重炙和小白终于突破了重围,靠近了通道口那个半透明の光罩. "小白战智合体!" 白重炙不敢大意,化出几道刀浪,劈开附近の鳄鱼怪智,朝小白大喊一声.毕竟没有探查清楚,冒然进去,还是小心一点好. 小白 当然懂白重炙の意思,回头过来,化作一条虚影,钻进了白重炙の胸口.感受到身体内の战气能量再次增大了几分,白重炙更加放心了.在怪智群中,宛如闲庭信步一样,一挥手无数刀芒挥洒而出,很容易就靠近了半透明光罩. 一脚跨入,光罩陡然间亮起一条刺眼の白光,而白重炙身边の鳄鱼怪智纷纷怪 叫起来,惊恐の回退,不敢在靠近半步. 白重炙诧异の挑了挑眉头,没有考虑那么多,身体一闪,走进了白色光罩内. 一步之遥,宛如千里.白光一闪,白重炙发现周围の景色完全变幻.他出现在一些山青水绿の山谷内,山谷有山有水,有树有花,有阳光,而且还有许多低级の小生物.而山谷中央一些巨大 の黑色阶梯赫然在目,阶梯上一些黑色の洞口正闪着幽幽の黑光. "俺叉,这落神山创造者太牛叉了!无语了……" 白重炙心里第一时间想到の就是,落神山の创造者实在太强大了.神级大能,果然法力无边,无所不能啊! 再次沐浴在阳光照耀下,再次闻到清晰の空气,再次看到熟悉の花草树木野智 小水潭,白重炙不禁对落神山の创造者涌起了一股无比钦佩の感觉. "小白,出来玩玩,俺们在这山谷休息五天!" 白重炙心情大好,连忙唤出小白,自己却朝山谷旁边の小水潭扑去. "哗啦!" 半空中把身体上の金色皮甲解开,并且把背后の包

等腰三角形的性质和判定图形与证明(二)

等腰三角形的性质和判定图形与证明(二)
如何证明“等腰三角形的两个底角相等” 的逆命题是正确的? (1)写出它的逆命题;
(2)画出图形,写出已知、求证,并进行 证明.
通过上面的证明,我们又得到了等腰三角形的 判定定理: 定理:如果一个三角形的两个角相等,那么 这两个角所对的边也相等. (简称“等角对等边”)
练习1.
1、如果等腰三角形的周长为12,一边长 为5,那么另两边长分别为 . 2、如果等腰三角形有两边长为2和5,那么 周长为 .
在△ABC中, AB=AC, 填空 D在BC上 1.如果 AD⊥BC, CAD 那么∠BAD=∠___, A CD BD=___.
2.如果∠BAD=∠CAD , BC 那么AD⊥___, CD BD=___. 3.如果BD=CD, CAD 那么∠BAD=∠___, B BC AD⊥___.
D
C
思考与探索
求证:∠B=∠C.
A
B
D
C
证明:作∠BAC的平分线AD. 在△ABD和△ACD中, A
AB AC(已 知) , ) BAD CAD(辅 助线 画法 , AD AD(公 共边) ,
∴△ABD ≌ △ACD(SAS). B D
C
∴ ∠ B= ∠ C(全等三角形的对应角相等).
第一章 图形与证明(二)
1.1 等腰三角形的性质和判定(1)
回首往事:
1、证明三角形全等的方法有? 2、什么叫做等腰三角形? 3、等腰三角形有哪些性质? 4、上述性质你以前是怎么得到的?
5、这些性质都是真命题吗?你能证明 它吗?如何证明一个文字命题呢?
试一试
求证:等腰三角形的两个底角相等.
已知:如图,在△ABC中,AB=AC.
6、若∠A=36°, ∠C=72°, ∠DBC=36°, 试找出图中所有的等腰三角形,并说明理由.

九上教案第一章 图形与证明(二) 1.1

九上教案第一章 图形与证明(二) 1.1

1.1等腰三角形的性质和判定(1)九年级数学备课组【学习目标】1、进一步掌握证明的基本步骤和书写格式。

2、能用“基本事实”和“已经证明的定理”为依据,证明等腰三角形的性质定理和判定定理。

【重点、难点】1、等腰三角形的性质及其证明。

2、应用性质解题。

【预习指导】:在初中数学八(下)的第十一章中,我们学习了证明的相关知识,你还记得吗?不妨回忆一下。

1、用_______________的过程,叫做证明。

经过________________称为定理。

2、证明与图形有关的命题,一般步骤有哪些?(1)_________________________;(2)_________________________;(3)_________________________.3、推理和证明的依据有哪几类?_____________、___________、___________。

4、我们初中数学中,选用了哪些真命题作为基本事实:(1)______________________;(2)______________________;(3)______________________;(4)______________________;(5)______________________。

此外,还有_____________和____________也都看作是基本事实。

5、在八(下)的第十一章中,我们依据上述的基本事实,证明了哪些定理?你能一一列出来吗?(1)______________________;(2)______________________;(3)______________________;(4)______________________;(5)______________________;(6)______________________;(7)______________________;(8)______________________;(9)______________________;(10)______________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1 等腰三角形的性质和判定学习目标1、经历探索——发现——猜想——证明等腰三角形的性质和判定的过程,初步文字命题的证明方法、基本步骤和书写格式。

2、会运用等腰三角形的性质和判定进行有关的计算与简单的证明。

3、逐步学会分析几何证明题的方法及用规范的数学语言表述证明过程。

学习重、难点重点:等腰三角形的性质与判定定理的证明难点:证明过程的书写格式教学方法:观察、启发,总结学习过程一、知识回顾:在初中数学八(下)的第十一章中,我们学习了证明的相关知识,你还记得吗?不妨回忆一下。

1、什么叫证明?什么叫定理?2、证明与图形有关的命题,一般步骤有哪些?3、我们初中数学中,选用了哪些真命题作为基本事实?此外,还有什么被看作是基本事实?二、情景创设:以前,我们曾经学习过等腰三角形,你还记得吗?不妨我们来回忆一下下列几个问题:1、什么叫做等腰三角形?(等腰三角形的定义)2、等腰三角形有哪些性质?3、上述性质你是怎么得到的?(不妨动手操作做一做)4、这些性质都是真命题吗?你能否用从基本事实出发,对它们进行证明?三、探索活动:1、合作与讨论证明:等腰三角形的两个底角相等。

2、思考与讨论怎样证明:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。

3、通过上面两个问题的证明,我们得到了等腰三角形的性质定理。

定理:等腰三角形的两个底角相等,(简称:“等边对等角”)定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,(简称:“三线合一”)4、你能写出上面两个定理的符号语言吗?5、思考与探索如何证明“等腰三角形的两个底角相等”的逆命题是正确的?要求:(1)写出它的逆命题:_________________________________。

(2)画出图形,写出已知、求证,并进行证明。

6么这两个角所对的边也相等,(简称“等边对等角”)。

四、例题讲解已知:如图,∠EAC是△ABC的外角,AD平分∠EAC,且AD∥BC.求证:AB=AC分析:要证AB=AC,只需证∠B=∠C,由已知∠EAD=∠DAC,只需证∠EAD=∠B,∠DAC=∠C。

在例题中,如果AB=AC,AD∥BC,那么AD平分∠EAC吗?如果结论成立,你能证明吗?你还能得出其他结论吗?五、体会与交流1、在本节课中,我们用基本事实又证明了哪些定理。

2、实际上,我们以前曾学习过很多图形的知识,(如:直角三角形全等,平行四边形、矩形、菱形、正方形、梯形等)。

对于这些图形,我们通过动手操作也得到了它们的性质和判定,在今后的学习中,我们将进一步证明它们的正确性。

六、随堂练习1、如果等腰三角形的周长为12,一边长为5,那么另两边长分别为_____________________。

2、如果等腰三角形有两边长为2和5,那么周长为______________。

3、如果等腰三角形有一个角等于50°,那么另两个角为_________。

4、如果等腰三角形有一个角等于120°,那么另两个角为________。

5、在△ABC中,∠A=40°,当∠B等于多少度数时,△ABC是等腰三角形?七、作业P8习题1.1 3、4八、板书设计九、教后感B 1.2 直角三角形全等的判定(1)学习目标1、能证明直角三角形全等的“HL ”判定定理,进一步理解证明的必要性。

2、利用直角三角形全等的“HL ”定理解决有关的计算和证明问题。

3、初步学会从数学的角度提出问题、理解问题、解决问题。

学习重、难点重点:能证明直角三角形全等的“HL ”判定定理; 难点:发展演绎推理的能力学习过程:教学方法:观察、启发,总结一、情境创设1、直角三角形全等的条件有哪些?2、你认为具备这样条件的两个直角三角形一定全等吗?为什么? 二、探索活动证明:斜边和一条直角边对应相等的两个直角三角形全等( 简写为“HL ” )问题一:你能从基本的事实出发,证明斜边和一条直角边对应相等的两个直角三角形全等吗? 问题二:证明这个结论你有没有困难?说说你准备如何解决这个问题?问题三:如果用“把斜边和一条直角边对应相等的两个直角三角形拼合”的方法来证明“HL ”定理,那么:⑴如何拼合?⑵可以拼合成一个什么图形?为什么可以拼合成一个等腰三角形? ⑶说说你的证明思路。

三、例题教学1、如图:如果∠BAC= 30°,那么BC =12AB ,你能证明这个结论吗?2、如图,在△ABC 中,已知D 是BC 中点,DE ⊥AB ,DF ⊥AC ,垂足分别是E 、F ,DE =DF . 求证:AB=ACDC B A四、练习P10 1、2;五、小结1、图形的“拆(把一个等腰三角形拆成两个全等的直角三角形)”和“拼(把两个直角三角形拼成一个等腰三角形)”两种方法体现了同一种思想——转化思想,即可把待证的问题转化为可证的问题;2、本节课我们证明了一般三角形所不具有的直角三角形的特殊的判定定理、特殊的直角三角形的特殊性质,你还能列举一些关于特殊与一般的例子吗?六、作业P12 1、2。

七、板书设计八、教后感1.2 直角三角形全等的判定(2)学习目标1、学会对角平分线性质定理与判定定理的证明,进一步发展推理证明的意识和能力2、初步掌握用角平分线性质定理与判定定理解决有关问题3、结合具体问题,提高将文字语言转化为符号语言、图形语言的能力学习重、难点重点:从简单的数学例子中体会反证法的含义难点:逐步学会分析的思考方法,发展演绎推理能力教学方法:观察、启发,总结学习过程:一、情境创设证明:角平分线上的点到角的两边的距离相等1、你能用折纸的方法说明“角平分线上的点到角的两边的距离相等“吗?引导学生通过“角是轴对称图形,角平分线所在的直线是它的对称轴,折叠得到的折痕(垂线段)重合来说明2、你还能用什么方法说明这个结论是正确的?引导学生不断感受合情推理道贺演绎推理都是人们正确认识事物的重要途径,并且这也是每个学生都能参与的学习活动。

二、探索活动证明:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上问题一、“角平分线上的点到角的两边的距离相等”的逆命题是什么?引导学生体会构造一个命题的逆命题,也是获得数学结论的一个途径问题二、你人为这个命题是真命题吗?如果正确,如何证明?注意:关注学生能否与角平分线的性质定理有区别的画出图形,并根据图形写出已知和求证。

引导学生进一步认识图形的我位置关系与数量关系之间的内在联系:角平分线上的点到角的两边的距离都相等;反过来,在一个角内,到角的两边的距离相等的点都在这个角的平分线上,为问题三的思考做铺垫问题三:如果某点到角的两边的距离不相等,那么这个点会在这个角的平分线上吗?为什么?(初步渗透反证法)三、例题教学例1 “如果一个点到角的两边的距离不相等,那么这个点不在这个角的平分线上。

”你认为这个结论正确吗?如果正确,你能证明它吗?例2 如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于E.(1)若BC在DE的同侧(如图(1))且AD=CE,说明:BA⊥AC.(2)若BC在DE的两侧(如图(2))其他条件不变,问AB与AC仍垂直吗?若是请予证明,若不是请说明理由.(图1) (图2)例3 如图,△ABC 的角平分线AD 、BE 相交与点O 。

(1)点O 到△ABC 各边的距离相等吗?点O 在∠C 的平分线上吗?即证明:三角形的三条角平分线交与一点四、练习P 11 练习五、小结1、图形的“拆(把一个等腰三角形拆成两个全等的直角三角形)”和“拼(把两个直角三角形拼成一个等腰三角形)”两种方法体现了同一种思想——转化思想,即可把待证的问题转化为可证的问题;2、本节课我们证明了一般三角形所不具有的直角三角形的特殊的判定定理、特殊的直角三角形的特殊性质,你还能列举一些关于特殊与一般的例子吗?六、作业P 12 3、4。

七、板书设计八、教后感O D C B E A1.3 平行四边形、矩形、菱形、正方形的性质与判定(1)学习目标1、会证明平行四边形的性质定理及其相关结论2、能运用平行四边形的性质定理进行计算与证明3、在进行探索、猜想、证明的过程中,进一步发展推理论证的能力 学习重、难点重点:平行四边形的性质证明 表达格式的逻辑性 完整性 精炼性 难点:分析 综合 思考的方法 教学方法:观察、启发,总结 学习过程:一、情境创设从上面的几种特殊四边形的性质中,你能说说它们之间有什么联系与区别吗? 如图''''''//,//,//AB A B BC BC CA C A ,图中有______个平行四边形。

二、探索活动1、上表中平行四边形的性质中,你能证明哪些性质?2、你认为平行四边形性质中,可以先证明哪一个?为什么?3、证明定理“平行四边形对角线互相平分”。

由此证明过程,同时也证明了定理“平行四边形对边相等”、“平行四边形对角相等”,这样我们可得平行四边形的三条性质定理:平行四边形对边相等。

平行四边形对角相等。

平行四边形对角线互相平分。

三、例题教学例1 证明“夹在两条平行线之间的平行线段相等”分析:根据命题先画出相应图形,再由命题与所画图形写出已知、求证,最后根据已知条件写出证明过程。

例2 已知:如图,□ ABCD 中,E 、F 分别是AD 、BC 的中点。

求证:BE=DF分析:可根据证明△ABE ≌△CDF 得到结论。

若将例2中的“E 、F 分别是AD 、BC 的中点”改为“AE=13AD ,CF=13BC ”,是否还能得到同样的结论?四、练习P15 练习 1、2五、小结分析法:注意分析条件,由什么样的条件,我们可以得到什么样的结论,至于这样的结论对下面的解题有何作用先不说,但你要在脑中“反应”。

对于有两个或者两个问以上的题目,一般先完成第一个问(实际上这个是简单的,很可能是为下一个问进行“搭桥”作用。

) 再利用上面的“桥”来完成下面的问题。

综合法:由问题入手,要证明这样的问题,我们得有什么样的条件,那这样的条件又如何从已知条件中得到?如果条件中很“难”直接得到,我们是不是要“创造”出这样的条件。

这种思维在表达书写时,大家不太习惯。

所以我们要注意自己的表达书写格式。

六、作业P25 习题1.3 1、2七、板书设计八、教后感1.3 平行四边形、矩形、菱形、正方形的性质与判定(2)学习目标1、会证明平行四边形的判定定理,结合具体命题了解反证法2、能运用平行四边形的判定定理及反证法进行简单的计算与证明3、能运用平行四边形的性质与判定定理进行比较简单的综合推理与证明4、初步体会证明过程中的反证法的思想及其说理的过程学习重、难点重点:平行四边形判定定理的证明,反证法难点:用反证法证明教学方法:观察、启发,总结学习过程:一、情境创设回忆我们曾探索得到的一个四边形是平行四边形的条件,填写下表:二、探索活动问题一你能证明我们曾探索得到的平行四边形的判定方法是正确的吗?证明:一组对边平行且相等的四边形是平行四边形。

相关文档
最新文档