水力学 泄水建筑物下游的水流衔接与消能
泄水建筑物下游水流衔接与消能

第九章泄水建筑物下游水流衔接与消能本章要求掌握底流式衔接与消能的水力计算思路、步骤;计算收缩断面水深h c及其共轭水深h c〃,判断水跃衔接形式,计算消力池池深S、池长L k。
理解坎式消力池及挑流消能的水力计算原理和方法。
为了控制、利用水流,在河、渠中修建了堰、闸、跌坎等泄水建筑物,泄水建筑物的泄流宽度一般都小于原河渠宽度,使建筑物上游水位升高,因此经建筑物下泄的水流,大都具有较大的动能,特别是对于上游为高水头的泄流建筑物来说,下泄水流的流速可达每秒几十米,若不采取有效工程措施消除下泄水流能量,会冲刷紧接泄水建筑物的河槽,危及建筑物的安全。
如瑞士某大坝,上、下游水位差5m,河床冲刷深度却达12m。
所以,需在泄水建筑物下游设置消能工程,以消除下泄水流能量,保护建筑物的安全。
目前,实际工程中常采用的水流衔接与消能形式主要有三种。
1、底流式衔接与消能水流自闸、坝下泄时,势能逐渐转化为动能,流速增大,水深减小,到达C-C断面,水深最小,称该断面为收缩断面,其水深以h c表示,h c一般都小于临界水深,水流属于急流,而下游河渠中的水深h t常大于临界水深,属于缓流。
由急流向缓流过渡,必然要发生水跃,如图9-1a所示。
底流式衔接与消能就是在建筑物下游修建消力池(即水池图9-1b、c),控制水跃在消力池内发生,利用水跃消能(可消耗大部分下泄水流能量),同时可以减小急流范围,使水流安全地与下游缓流衔接。
在这种衔接与消能过程中,因为水流主流靠近河床底部,因此称这种衔接消能为底流式衔接与消能。
底流式衔接与消能多用于中、低水头及下游地质条件较差的泄水建筑物的消能。
图9-12、挑流式衔接与消能这种消能方式是利用在泄水建筑物末端修建的反弧坎,将下泄的水流挑离建筑物,使之落入下游较远的河道中,如图9-2所示。
挑射的水流在空中受到空气阻力,水舌扩散,消耗一部分能量。
落入下游水流中后,与下游水体碰撞,产生剧烈的混掺紊动,又消耗大量的能量,从而达到消能目的。
水力学:泄水建筑物下游的水流衔接与消能

1
12
H1 ht z
z
vt2
2 g12
v12
2g
vt
q ht
v1
q hc02
z
q2 2g
1
1ht
2
( hc02 )2
❖ ③ 临界水跃的跃后水深hc02 ❖ 根据挖池后的收缩断面水深hc0用水跃共轭水
深的公式求得。用试算法求解。
z
q2 2g
1
1ht
2
( hc02 )2
d hc02 ht z
H
a1
v02
2g
hc0
vc20
2g
vc20 2g
❖
令H
a1
v02
2g
T , 2Tvg02为 有T0 效水头,T0为有效总水头,
则
T0
hc0
(
)
vc20 2g
1
1
2
T0
hc0
vc20
2g 2
vc0
Q Ac0
T0
hc0
Q2
2g 2 Ac20
一、收缩断面水深的计算
T0
hc0
Q2
2g 2 Ac20
综合式消力池:适用范围较广
(一)消力池的水力计算
❖ (1) 池深d的计算
❖ 计算原则:使消力池中形成稍有淹没的水跃,
要求池末水深
h2 , 一hc02般取
,1.h05c02
为池中发生临界水跃时的跃后水深。
h2 hc02 ht d z
d hc02 ht z
(一)消力池的水力计算
面流式消能:将下泄的高速水流导向 下游水流的上层,主流与河床被巨大 的底部旋滚隔开。余能主要通过水舌 扩散,流速分布调整及底部旋滚与主 流的相互作用而消除。
泄水建筑物下游的水流衔接与消能

第13章 泄水建筑物下游的水流衔接与消能13.1知识要点13.1.1泄水建筑物下游水流的特点及消能形式泄水建筑物下游水流衔接与消能的形式一般有三种,即底流消能、挑流消能和面流消能。
1.底流消能所谓底流消能,就是在建筑物下游采取一定的人工措施,控制水跃发生的位置,通过水跃产生的表面旋滚和强烈紊动以达到消能的目的。
这种水流衔接形式由于高速水流的主流在底部,故称为底流式消能。
2.挑流消能利用出流部分的挑流鼻坎和水流所挟带的巨大动能,将下泄的急流挑射至远离建筑物的下游,使射流对河床造成的冲刷坑不致影响建筑物的安全,下泄水流的余能一部分在空中消散,大部分则在水股跌入下游水垫后通过两侧形成水滚而消除。
3.面流消能当下游水位较高,而且比较稳定时,可采取一定的工程措施,将下泄的高速水流导向下游水流的上层,主流与河床之间由巨大的底流旋滚隔开,可避免高速水流对河床的冲刷,余能主要通过水舌扩散、流速分布调整及底部旋滚与主流的相互作用而消除。
由于衔接段中高流速的主流位于表层,故称为面流消能。
此外,还可以将上述三种基本类型的消能方式结合起来应用,如消力戽就是一种底流和面流结合应用的消能形式。
低于下游水位的消力戽斗,将出泄的急流挑射到下游水面形成涌浪,在涌浪的上游形成戽旋滚,在涌浪的下游形成表面旋滚,主流之下形成底部旋滚。
13.1.2底流消能的衔接形式和收缩断面水深的计算1.底流消能的三种衔接形式底流消能就是借助于一定的工程措施控制水跃的位置,水跃的位置决定于坝址收缩断面水深c h 的共轭水深ch ''与下游水深t h 的相对大小,可能出现下列三种衔接形式: 1)当t ch h =''时,产生临界水跃; 2)当t ch h >''时,产生远驱水跃; 3)当t ch h <''时,产生淹没水跃。
工程中,一般用ct h h ''/表示水跃的淹没程度,该比值称为水跃的淹没系数或淹没度,用j σ表示, c t j h h ''=/σ (13.1)当1>j σ时为淹没水跃;1=j σ时为临界水跃;1<j σ时为淹没水跃。
10 泄水建筑物下游水流衔接和消能

αv02
2g
下图给出了一个溢流坝下游收缩断面水深计算的示意
H
v0
P1
0
基准面
E
Ec
c hc
c
判断下游水面衔接形式
0
考虑上游0-0断面和c-c 断面的总水头
αv02
2g
E0hc2cvgc22vgc2hc(c)v2cg2
H
E0
P2
H0v02
2g
E
Ec
v0
P1
c
hc
基准面
0
c
判断下游水面衔接形式
0
αv02
考虑上游0-0断面和c-c 断面的总水头
2g
E0hc2 cvgc22vgc2hc(c)v2cg2
H
E0
P2
H0v02
2g
E
Ec
v0
P1
l et: 1
c
c
E0
hc
vc 2
2g 2
hc
基准面
0
c
αv02 2g
要求下游水位变幅不要大,这种消能方式有利于漂木、 泄冰。
漩滚
主流
典型的面流
以下请看消力池中流态转变过程
底流
这是典型的底流,从挑流鼻孔中 下泄的水流在消力池中形成水跃,主流 和鼻坎之间的漩涡有助于消能。
自由面流 下泄的主流
从鼻坎下泄的主流,在消力
池中抬高,水流漩涡把主流与
消力池底板隔开。
自由混合流
略去流速水头,不计水头损失
则单位宽度河床上每秒应消除的能量为 N = γq ΔE = 9800×80×60= 47000000 N-m/s = 47000 kW
这样巨大的能量,若不采取有效措施 淘刷河床 冲毁河堤 甚至建筑物遭到破坏
第10章泄水建筑物下游水流的衔接

f(d0)hc022gh qc 2 2 02d0s0H 10A 0
以 上 计 算 出 的 d 0 及 s 0 是 池 内 及 墙 下 游 都 发 生 临 界 水 跃 时 的 池 深 及 墙 高 。 实 际 采 用 的 池 深 d 比 d 0 略 加 大 , 而 实 际 采 用 的 墙 高 s 比 s 0 略 减 小 。
2.水下挑 L1的 距计算
L1 L0l
l hpcot
cos
2s 2szs
cos
10.3.2挑射角
一般挑 1角 5~35
10.3.3反弧半径 R
R(4~10 )hc0
10.3.4挑坎高程的确定
一般鼻坎需高出下高 游水 最位 1~ 2m
10.3.5冲刷坑的估算
10.2.1水跃发生的位置和形式
当 h t h c 0 2 时 为 远 离 式 水 跃 当 h t h c o 2 时 为 临 界 式 水 跃
当 h t h c 0 2 时 为 淹 没 式并效引入水跃系的数淹没
ht hco 2
对于远离水 跃 1
对于临界水 跃 1
对于淹没水 跃 1
一般 要 1.0求 ~ 51.10
10.2.2收缩断面水深的计算
Ha12vg0 2hc02vgc20v 2c2 g0
T0
hc0
()vc20
2g
T0
hc0
vc20
2g2
对任意T断 0hc面 02g : Q22Ac20
v12
2g
以vt
hqt ,v1
q 代入上式
hc02
z2qg2 (11ht)2
第九章 泄水建筑物下游水流的衔接与消能

第九章泄水建筑物下游水流的衔接与消能第一节概述一、问题的提出为了达到灌溉、发电、防洪等兴利目标,往往要在河渠上建造水闸、挡水坝等水工建筑物,用来调节河渠的水位和流量。
但这些水工建筑物的兴建,必然会改变天然河流原有的水流状态,主要表现在以下两个方面:①修建挡水建筑物之后,必然壅高上游水位,使挡水建筑物上游积聚了较大的水流能量(主要是势能),而挡水建筑物又不可能将上游源源不断的来水全部拦蓄在水库以内,必然要从溢洪道、泄洪洞、坝身泄水孔等泄水建筑物泄出一部分水流,在泄水工程中,上游水流积聚的势能必将转化为动能,使下泄水流具有较高的流速。
②由于水利工程枢纽布置的要求和为了节省工程造价,建筑物泄水宽度总是小于原有河床宽度,这就使得下泄流量相对集中,单宽流量较大。
而下游河道对同样流量有其与原河床的断面形状、尺寸、底坡、粗糙系数及其它地形地质条件相适应的正常流动情况,一般来讲,这种正常流动情况下,水流分布比较均匀,流速较小。
如此一来,就产生了从泄水建筑物泄出的高速集中水流如何顺利地衔接过渡到下游正常流动情况这一问题,即泄水建筑物下泄水流的衔接过渡问题。
如果对水流的衔接过渡不加控制,或者控制措施不当,都可能给工程建设造成严重的后果。
概括起来讲,会产生这样两个问题:第一,集中泄出的水流可能严重冲刷河床、河岸,甚至危害建筑物的安全。
第二,水流集中泄出,可能使下游水流在平面上形成不良的流动情况,影响枢纽的正常运行。
水力学中泄水建筑物下游水流衔接与消能的主要任务就是在确保闸坝安全、工程费用较省而又合乎流态要求的条件下,研究消除余能的具体方式。
通过采取一定的工程措施,利用有效的衔接方式,使下泄水流挟带的余能在较短的距离内转化为热能、声能逸散于空气之中,避免冲刷河床岸坡,保证水工建筑物的安全。
而实现消能的唯一方式就是依靠水流内部的相互摩擦和碰撞,促使水流分散掺气。
因为水流内部相对运动越是急剧紊乱,消能效果就越好。
因此,工程实际中常常利用下泄水流形成的大的漩滚来消能。
第9章-泄水建筑物下游的水流衔接与消能

§1.9.1 概述
§1.9.2 底流式消能
§1.9.3 挑流式消能 §1.9.4 面流式消能 §1.9.5 戽流式消能
§1.9.1 概述
在水利工程中,河道上经常修建一些水工建筑物(挡水、泄 水~溢流坝等),满足工程需要(泄洪、灌溉、发电…)。当建 筑物建好后,往往改变天然水流的特性。 从水力学的角度 看,研究消能实质 上是分析建筑物泄 出的高速射流,按 不同方式射入下游 河道的低速广阔水 域中,通过扩散、 掺混作用,消散大 量余能的过程。
2. 宽顶堰上的闸孔出流
hc 1e
1:闸孔出流垂直系数,e:闸门开度
二、底流衔接形式的判别
矩形断面的渠道,其收缩断面水深的共轭水深
2 2 h 8 q h 8 v // c c c c hc 1 3 1 1 1 2 2 ghc ghc
ht hc ht hc
e
'' '' ''
远驱式水跃 临界式水跃
ht ht ht
=0
ht hc
淹没式水跃
j 1.05 ~ 1.10
α
α
三、消能池的设计
α
α α
z
d
消能池是工程中用来控制水跃并利用水跃以消除余能的水工 建筑物。作用:使下游局部水深增加,形成稍有淹没的水跃。 降低护坦高程 护坦末端建造消能墙 综合方式
按出泄水流与河床的相对位置分
1
α
底流衔接与消能
α
2 挑流衔接与消能
a
L1 L
h d
L2
3
面流衔接与消能
主流
水力学 泄水建筑物下游水流衔接与消能

2
1
Байду номын сангаас
1
a ht
2S1 sin 2
ts ht
tan 2
a ht 2S1 cos2
冲刷坑深度估算用经验公式
坎型尺寸的选择:常用连续式挑坎,挑 坎尺寸包括挑角、反弧半径、及挑坎高 程,使用合理时可在同样的水力条件下 射程最大,冲刷坑深度较浅
9.3 面流及消能戽简介
主流在表面,旋涡在下游,对河床的冲 刷轻,有利于漂木、泄冰
应严格控制水下游水深,便其稳定并保 持在相应范围内
通过水工模型试验可比较准确确定尺寸
消能戽是结合底流面流的一种综合消能 方式
与底流比较:不需专门的消能池、工程 量小
与面流比较:适应水深变化范围广,流 态稳定
缺点:戽面戽端易被水流磨损,下游尾 水波动大,冲刷岸坡
Ch9 泄水建筑物下游的水流衔接与 消能
泄水建筑物下泄的高速水流对建筑物及 河道的破坏大,需要消能
衔接与消能措施大致有三种:
底流式消能、挑流式消能、面流式消能, 可结合使用或单独使用
9.1 底流消能的水力计算
应用面广,基本的消能型式
其水深计算公式从应用能量方程推导得
E0
hc
Q2
2gAc2 2
一般用试算法求解,也可借助于一些专 门的图表来简化计算
2、在护坦末端修建消能坎的消能池坎高 的计算
3、辅助消能工
4、护坦下游的河床保护
9.2 挑流消能的水力计算
优点是可以节省下游护坦,构造简单, 便于维修,缺点是雾气大,尾水波动大
水力计算内容:按已知的水力条件选定 适宜的挑坎型式、反弧半径、挑射角、 挑流射程及下游冲刷坑深度
挑流射程:
L
2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
sj =
ht hc
—淹没系数
σj>1 — 淹没水跃
消能要求:稳定略淹没的水跃 控制淹没系数 σj=1.05~1.1
例1 已知:H=5m, e=1.25m, ht=2.3m;求:(1) 单宽流量 和收缩断面水深hc
e
ht
求:(2) 判别是否要建消力池
解: (1)求单宽流量q和hc 计算闸孔流量系数:
水利工程的泄流建筑物 和下游消能设施
综合式消力池
消力墩
(2) 降低护坦消力池设计
(1) 消力池深 d
a) d=σj hc -△z-ht
b)
E+
0
d
=
hc
+
q2
2 gj 2hc2
C)
hc
=
hc
2
(
1+
q2 8ghc3
- 1)
d)
D
z
=
q2 2g
1
(j ht
2
)
-
1
(sj hc)2
估算池深 d = σj hc- ht
e H
=
0.25
查得ε2=0.622
∴ hc=ε2e = 0.78m
(2) 判别水跃形式
hc
=
hc
2
(
1+8
q2 ghc3
-1) =
3.19m
∵ hc > ht
∴ 所以产生远驱水跃
下游需要建消成消力池
ΔZ d
b) 护坦末端修建消力坎 c) 综合式消力池
(2) 消力池长度的计算
Lk=(0.7~0.8)Lj 对于宽顶堰: L=L0+Lk
(3) 设计流量
池深设计流量
h
Qd
(hc”-ht)max hc”
池长设计流量
ht
Qd Qmax
Qd
(hc”ht)max
Q
m
=
0.60
- 0.176
e H
=
0.556
解: (1) 计算q(先忽略行进流速)
q'=
Q b
=
m
e
2gH
= 6.88m3/s• m
v0
=
q' H
=
1.38m/
s
v02
2g
=
0.10 m
解: (1) 计算q和hc:
H0
=
H
+
v0 2 2g
=
5.10 m
∴ q =m e 2gH0 = 6.95m2/s