用555定时器构成占空比可调多谐振荡器
用555定时器构成占空比可调多谐振荡器ppt课件

TD止,电路又重新开始充、放电过
程。如此不断重复形成振荡,在VO
端得到连续方波。
3
3、暂态宽度TW1、TW2
VC
VCC
第一个周期由于电路没有进入稳 2 / 3VCC
定状态,因此不计算暂态时间。 1/ 3VCC
0
VC(0+)=1/3VCC
VO
TW 2
★ VC充电三要素:VC(∞)=VCC
TW 1
τ= (R1+R2) C
VO1 VO2
通过这个例子可以作出 警笛、救护等声音效果。
7
P307
8
R2
3
D1 6
VO
D2
2
15
通过改变RW,而不改变R1+R2相加之和
C
0.01μF
电路振荡周期T=0.7(R1+R2)C
5
输出方波占空比 q TW1 0.7R1C R1
T
0.7(R1 R2 )C R1 R2
★
如果取R1=R2,VO输出为对称方波。q 多谐振荡器应用举例
R1 R1 R2
50%
2
2、工作原理
假设:刚一通电VC=0
VTH VTR 0 都小为1
TD止
电容C充电
随着VC VTR、VTH
当:VC电压充至2/3VCC以前
VCC
4
8
R1 R2
VCO
5
6
5K VR1 +- C1 R
0VTH
V2
C VTR
5K VR2 +- C2 S
C 7 5K
G1 Q
& &Q
G2
V
' O
占空比可调的多谐振荡器电路

电压控制端
(8)
5k Ω
(2)两个电压比较器 C1和C2。
CO (5) TH (6)
高电平触发端
C1
5k Ω
v+
v-
C1
vO
TR (2)
C2
RD 复位,低电平有效
(4)
R&
& S
G
&
1 (3)
v
低电平触发端
电压比较器的功能:
5k Ω
v+> v-,vO=1
vO, (7)
T
v+< v-,vO=0
放电端
(1)
7.3施密特触发器
7.3.1用555定时器构成的施密特触发器 7.3.2 集成施密特触发器 7.3.3 施密特触发器的应用举例
退出
7.3 施密特触发器
施密特触发器——具有回差电压特性,能将边沿变化缓慢的 电压波形整形为边沿陡峭的矩形脉冲。
7.3.1 用555定时器构成的施密特触发器
1. 电路组成及工作原理
1. 用作接口电路——将缓慢变化的输入信号,转换成为符合 TTL系统要求的脉冲波形。
正弦 波振荡 器
1 VO
2. 用作整形电路——把不规则的输入信号整形成为矩形脉冲。
2/3VCC 1/3VCC
vI 下 降 过 程 中 , vO 由 低 电 平
t
VOL跳变到高电平VOH时,所对 vO1
应的输入电压值。VT—=1 /3VCC。
(3)回差电压ΔVT
ΔVT= VT+-VT—=1 /3VCC
t
(8)
5k Ω
VCC
(4)
2/3VCC
(6)
R& C1
由555定时器构成的多谐振荡器

由555定时器构成的多谐振荡器介绍多谐振荡器是一种能够产生多种频率输出的电路。
555定时器是一种经典的集成电路,它被广泛应用于定时、脉冲和振荡等电路中。
本文将介绍由555定时器构成的多谐振荡器的原理和工作方式。
原理多谐振荡器利用了555定时器的特殊功能和结构。
555定时器是一种8引脚的集成电路,通过控制引脚的电压来实现不同的功能。
其中,引脚1(GND)和引脚8(Vcc)分别是地(Ground)和电源(Power)引脚,引脚4(Reset)是重置引脚,引脚5(Control)是控制引脚,引脚6(Threshold)和引脚2(Trigger)是比较器的输入引脚,引脚3(Out)是输出引脚。
在多谐振荡器中,我们使用555定时器的比较器和比较器的输入引脚来实现不同频率的输出。
具体来说,我们通过控制电压在引脚5(Control)上的变化来改变555定时器的工作方式和输出频率。
通过调整控制引脚的电压,我们可以改变比较器的输出电平,从而控制555定时器的触发和重置行为,进而改变输出波形的频率。
构成由555定时器构成的多谐振荡器一般包括以下几个基本组成部分: 1. 555定时器:作为核心部件,控制多谐振荡器的工作以及输出频率的调节。
2. 电容器:用于控制振荡器的时间常数,进而影响输出频率。
3. 电阻器:用于控制电容器充电和放电的速度,从而进一步调节输出频率。
4. 比较器的输入引脚:通过改变引脚6(Threshold)和引脚2(Trigger)的电压,控制555定时器的触发和重置行为,改变输出频率。
5. 输出引脚:通过连接外部电路或元件,实现多种不同频率的输出。
工作方式多谐振荡器的工作方式如下: 1. 当电源接通时,555定时器的引脚5(Control)和引脚6(Threshold)的电压均为高电平。
2. 由于引脚5上的高电平,555定时器工作于稳态触发器模式,输出引脚保持低电平。
3. 当输出引脚为低电平时,通过电容器和电阻器进行充电。
555定时器的电路解析

1、模拟功能部件
(1)、电阻分压器
VCC经3个5K欧姆的电阻分压后,提供基准电压:当不外接固定电压C-V时, UR1=2/3VDD , UR2=VDD/3;当外接固定电压U时,UR1=U , UR2=U/2
(2)、电压比较器C1和C2
〈1〉TH≥2/3VDD 、TR ≥VDD/3时,输出uo1=1,uo2=0, Q=0 Q =1。
3、UI≥2/3VDD时,Uo1=0、Uo2=1、 Q=0、Q=1,UO由UOH→UOL,即UO=0。 当UI上升到2/3VCC时,电路的输出状态发生跃变。 4、UI再增大时,对电路的输出状态没有影响。
(二)、下降过程 1、UI由高电平逐渐下降,且1/3VDD<UI<2/3VDD时,Uo1=0、Uo2=0。 基本RS触发器保持原状态不变。即 Q =0、Q=1,输出UO=UOL
使电路迅速由暂稳态返
回稳态,uO1=UOH (全0出1)。 uO= UOL。
从暂稳态自动返回稳态之后,电容C将通过电阻R放电, 使电容上的电压恢复到稳态时的初始值。
单稳态触发器工作波形
2. 主要参数
(1)输出脉冲宽度tw 输出脉冲宽度tw,就是暂稳态的维持时间。 tw ≈0.7RC
(2) 恢复时间tre 暂稳态结束后,电路需要一段时间恢复到初始状态。
〈2〉TH < 2/3VDD 、TR < VDD/3时,输出uo1=0,uo2=1, Q=1 Q =0 。
〈3〉TH < 2/3VDD 、TR ≥VDD/3时, uo1=0,uo2=0, Q、 Q状态维持不变。 (3) R为直接置0端,低电平有效。 (4)集电极开路的放电管V、输出UO=0时,V导通,输出UO=1时,V截止。
用555定时器组成单稳态触发器
一、电路结构
用555构成的多谐振荡器

555构成多谐振荡器的报警电路设计一、设计目的555定时器是一种模拟电路和数字电路相结合的中规模集成器件,它性能优良,适用范围很广,外部加接少量的阻容元件可以很方便地组成单稳态触发器和多谐振荡器,以及不需外接元件就可组成施密特触发器。
因此集成555定时被广泛应用于脉冲波形的产生与变换、测量与控制等方面。
本实验根据555定时器的功能强以及其适用范围广的特点,设计实验研究它的内部特性和简单应用。
555 定时器是一种模拟和数字功能相结合的中规模集成器件。
一般用双极性工艺制作的称为555,555 定时器的电源电压范围宽,可在4.5V~16V 工作,7555 可在3~18V 工作,输出驱动电流约为200mA,因而其输出可与TTL、CMOS 或者模拟电路电平兼容。
555 定时器成本低,性能可靠,只需要外接几个电阻、电容,就可以实现多谐振荡器、单稳态触发器及施密特触发器等脉冲产生与变换电路。
它也常作为定时器广泛应用于仪器仪表、家用电器、电子测量及自动控制等方面。
555 定时器的内部包括两个电压比较器,三个等值串联电阻,一个RS 触发器,一个放电管T 及功率输出级。
它提供两个基准电压VCC /3 和2VCC /3图8-1 555定时器内部方框图通过对本次设计能够更好地掌握555的作用及应用。
同时掌握报警电路的原理及设计方法。
二、设计要求①画出电路原理图(或仿真电路图);②元器件及参数选择;③电路仿真与调试;④PCB文件生成与打印输出。
(3)制作要求自行装配和仿真,并能发现问题和解决问题。
(4)编写设计报告写出设计与制作的全过程,附上有关资料和图纸,有心得体会。
三、设计原理多谐振荡器是能产生矩形波的一种自激振荡器电路,由于矩形波中除基波外还含有丰富的高次谐波,故称为多谐振荡器。
多谐振荡器没有稳态,只有两个暂稳态,在自身因素的作用下,电路就在两个暂稳态之间来回转换,故又称它为无稳态电路。
由555定时器构成的多谐振荡器如图1所示,R1,R2和C是外接定时元件,电路中将高电平触发端(6脚)和低电平触发端(2脚)并接后接到R2和C的连接处,将放电端(7脚)接到R1,R2的连接处。
用555定时器构成占空比可调多谐振荡器

因 此 使 扬 声 器 发 出 1KHZ 的 间歇声响信号。
VO1 VO2
通过这个例子可以作 出警笛、救护等声音效果。
精品课件
而且占空比是固定不变的。 占空比:脉冲宽度与周期之比
ቤተ መጻሕፍቲ ባይዱ
q TW 1 R1 R2
改变R1或改变R2都会引起周期T的改变。 T
R1 2R2
在实际应用中常常需要频率固定而占空比可调。
占空比可调多谐振荡器电路
电路特点:
R1
电容C的充、放电通路分别用二极管D1和
D2隔离。RW为可调电位器。
R2
★ 充电时,只和R1有关, tW10.7R1C
随V C 着 V T、 RV TH 当:VC电压充至2/3VCC以前
VCC
4
8
R1 R2
VCO
5
6
5K VR1 +- C1 R
0VTH
V2
C VTR
C
7
5K
VR2 +- C2 S 5K
G1 Q
& &Q
G2
V
' O
TD
R
当:VVVCTT电RH><12压//33充VVCC至CC ≥一2/小3V一CC大是保持21。//33VVVCCCCC
爆光时间为1.1RC,爆光时间到自动恢复为初始状态。
要改变爆光时间,只要改变R、C值即可。
精品课件
★ 用555定时器构成多谐振荡器
多谐振荡器是一种无稳态电路,接通电源后,不需 外加触发脉冲,电路就能自动产生周期性矩形脉冲或方波。
用途:主要用于产生各种方波或时间脉冲。
实验二555定时器

555逻辑电路
由上表可得如 下口诀:
大于、大于、出0;T导通 小于、小于、出1;T截止
2020/3/26
小于、大于、保持
12
三,实验内容
1.用555定时器构成施密特触发器
按图3.52(a)电路接线,取R1=R2=100KΩ, C1=C2=0.01μf。输入正弦波信号1KHZ,逐渐加大Vi 的幅度,用双踪示波器分别观察记录Vi、Vi’、Vo波形,并测 出VT+、 VT-。
2. 555定时器功能表(CO未用时) <><222///333vvcccccc
现代电子技术实验
11 10
01
保持10 保01 持
保01 持
><11/3/3vvccc
c
注意:工作中不使用(co)电压控制输入端时, 一般都通过一个0.01μF的电容 接地,以旁路高频干扰。
现代电子技术实验
555定时器功能表(CO未用时)
2020/3/26
3
555定时器
1. 电路组成
控制
电阻分压器 电压比较器
现代电子技术实验
阈值 触脚图
放电管T
555定时器原理图
4
(1) 电阻分压器
由3个5kΩ的电阻R组成,为电压比较器提供基准电压 当CO 悬空时,UR1=2/3VCC,UR2=1/3VCC 当CO=UCO时,UR1=UCO,UR2=1/2UCO
输C出C高40电1平7提,脉供冲计宽数度脉为冲时钟。周C期C。4017为十进制/脉
2020/3/26 点冲亮这分。些配发脉光冲器二信。极号管依次 闪使烁T的1快-T慢6饱由和R导1、通R,2发、光VR二1及极C管决依定次。被
23
三、实验内容
555定时器构成的多谐振荡器

一、用555定时器构成的多谐振荡器1.电路组成:用555定时器构成的多谐振荡器电路如图6-11(a)所示:图中电容C、电阻R1和R2作为振荡器的定时元件,决定着输出矩形波正、负脉冲的宽度。
定时器的触发输入端(2脚)和阀值输入端(6脚)与电容相连;集电极开路输出端(7脚)接R1、R2相连处,用以控制电容C 的充、放电;外界控制输入端(5脚)通过0.01uF电容接地。
2.工作原理:多谐振荡器的工作波形如图6-11(b)所示:电路接通电源的瞬间,由于电容C来不及充电,Vc=0v,所以555定时器状态为1,输出Vo为高电平。
同时,集电极输出端(7脚)对地断开,电源Vcc对电容C充电,电路进入暂稳态I,此后,电路周而复始地产生周期性的输出脉冲。
多谐振荡器两个暂稳态的维持时间取决于RC充、放电回路的参数。
暂稳态Ⅰ的维持时间,即输出Vo的正向脉冲宽度T1≈0.7(R1+R2)C;暂稳态Ⅱ的维持时间,即输出Vo的负向脉冲宽度T2≈0.7R2C。
因此,振荡周期T=T1+T2=0.7(R1+2R2)C,振荡频率f=1/T。
正向脉冲宽度T1与振荡周期T之比称矩形波的占空比D,由上述条件可得D=(R1+R2)/(R1+2R2),若使R2>>R1,则D≈1/2,即输出信号的正负向脉冲宽度相等的矩形波(方波)。
二、多谐振荡器应用举例:1.模拟声响发生器:将两个多谐振荡器连接起来,前一个振荡器的输出接到后一个振荡器的复位端,后一个振荡器的输出接到扬声器上。
这样,只有当前一个振荡器输出高电平时,才驱动后一个振荡器振荡,扬声器发声;而前一个振荡器输出低电平时,导致后面振荡器复位并停止震荡,此时扬声器无音频输出。
因此从扬声器中听到间歇式的"呜......呜"声响。
2.电压——频率转换器:由555定时器构成的多谐振荡器中,若定时器控制输入端(5脚)不经电容接地,而是外加一个可变的电压源,则通过调节该电压源的值,可以改变定时器触发电位和阀值电位的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
★
充电结束转换电压VC(TW1)=2/3VCC
VCC
充电暂态持续时间TW1为:tW1 (R1 R2 )C ln
VC放电三要素:
VC(0+)=2/3VCC VC(∞)=0
VCC
1 3
VCC
2 3
VCC
0.7(R1 R2 )C
τ= R2 C
★
放电结束转换电压VC(TW2)=1/3VCC 放电暂态持续时间TW2为: tW 2 R2C ln
改变R1或改变R2都会引起周期T的改变。 T R1 2R2
在实际应用中常常需要频率固定而占空比可调。
占空比可调多谐振荡器电路
Vcc
电路特点:
R1
Rw
电容C的充、放电通路分别用二极管D1
48
7
555
和D2隔离。RW为可调电位器。
★ 充电时,只和R1有关,tW1 0.7R1C ★ 放电时,只和R2有关,tW 2 0.7R2C
应用举例: 爆光定时器
VCC
工作过程:暗室
工作时,不按开关K, R1 都大为0,继电器线圈 无电流通过,常闭 触点不动作,安全 K
R
7 6 2
48 3
555
C15
D1 D2
J
灯(红)亮。
~220V
按下开关K,电路进入暂稳态过程,同时输出为1,继电 器线圈一电流通过,常闭触点断开,常开触点闭合爆光灯 (白、)亮。开始爆光。
电路输出周期:
0
2 3
VCC
0
1 3
VCC
0.7R2C
T = tw1+ tw2 = 0.7(R1+2R2)C
通过改变R和C可以得到 0.1Hz~300KHz的振荡频率。
用555定时器组成的多谐振荡器暂态宽度tw1≠ tw2,
而且占空比是固定不变的。 占空比:脉冲宽度与周期之比
q TW1 R1 R2
48
适当选择定时元件, R2A
7 555( A)
VO1
3
7
R2 B
555(B) 3
VO2
使: f A 1HZ
6
6
2
2
fB 1KHZ
15
C
0.01μF
C
15
0.01μF
☆ 由于低频振荡器A的 输出接高频振荡器B的复
☆ 工作波形
位端(4),当VO1输出高 电平时,B振荡器才能振 荡,VO1输出低电平时,B 振荡器置0,停止振荡。 因此使扬声器发出1KHZ的 间歇声响信号。
V
' O
控制电压输入端VCO(5)通过103电 容接地,起滤波作用。
R2
VTR(2)、VTH(6)通过定时电容C 接地,同时通过R2与三极管集电极接
VTH VTR
在一起。
C
Vcc
48
7
555
3
VO
6
2 15
0.01μF
三极管开路输出VO′通过上拉电阻R1与电源VCC接在一起
R1、R2和C都是定时元件
TD
R
G3
1 3 VO
当:VVVCTT电RH><压12//33充VV至CCCC≥一2小/3V一C大C 是保持21。//33VVVCCCCC
VTH>2/3VCC VTR>1/3VCC
都大为0
TD导
VO
1
VCC
0
t
电容上的电压经TD放电 当:VC电压放至≤1/3VCC时:
t
VTH<2/3VCC 都小为1 VTR<1/3VCC
R2
3
D1 6
VO
D2
2
15
通过改变RW,而不改变R1+R2相加之和
C
0.01μF
电路振荡周期T=0.7(R1+R2)C
输出方波占空比 q TW1 0.7R1C R1
T
0.7(R1 R2 )C R1 R2
★
如果取R1=R2,VO输出为对称方波。q 多谐振荡器应用举例
ห้องสมุดไป่ตู้
R1 R1 R2
VO1 VO2
通过这个例子可以作出 警笛、救护等声音效果。
P307
50%
1、电子琴电路
S1~S8代表八个琴键开关,按下不同的琴键时,振荡器 接入不同的电阻,电路产生不同的振荡频率。
如果R21~R28阻值 选配得当,喇叭便可以
发出八个不同音阶。
48
7 555 3
VCC
6
2
15
C
0.01μF
2、模拟声响电路
用两个多谐振荡器
VCC
组成模拟声响电路。
R1A
48
R1B
2、工作原理
假设:刚一通电VC=0
VTH VTR 0 都小为1
TD止
电容C充电
随着VC VTR、VTH
当:VC电压充至2/3VCC以前
VCC
4
8
R1 R2
VCO
5
6
5K VR1 +- C1 R
0VTH
V2
C VTR
5K VR2 +- C2 S
C 7 5K
G1 Q
& &Q
G2
V
' O
爆光时间为1.1RC,爆光时间到自动恢复为初始状态。
要改变爆光时间,只要改变R、C值即可。
★ 用555定时器构成多谐振荡器
多谐振荡器是一种无稳态电路,接通电源后,不需外加 触发脉冲,电路就能自动产生周期性矩形脉冲或方波。
用途:主要用于产生各种方波或时间脉冲。
1、电路结构:
R1
/R:(4)正常工作接高电平
TD止,电路又重新开始充、放电过 程。如此不断重复形成振荡,在VO 端得到连续方波。
3、暂态宽度TW1、TW2
VC
VCC
第一个周期由于电路没有进入稳 2 / 3VCC
定状态,因此不计算暂态时间。 1/ 3VCC
0
VC(0+)=1/3VCC
VO
TW 2
★ VC充电三要素:VC(∞)=VCC
TW 1
τ= (R1+R2) C