高二数学知识点:排列与组合

合集下载

高考数学知识点:排列与组合知识总结

高考数学知识点:排列与组合知识总结

高考数学知识点:排列与组合知识总结陈列组合与二项式定理知识点1.计数原理知识点①乘法原理:N=n1·n2·n3·…nM 〔分步〕②加法原理:N=n1+n2+n3+…+nM 〔分类〕2. 陈列〔有序〕与组合〔无序〕Anm=n〔n-1〕〔n-2〕〔n-3〕-…〔n-m+1〕=n!/〔n-m〕! Ann =n!Cnm = n!/〔n-m〕!m!Cnm= Cnn-mCnm+Cnm+1= Cn+1m+1 k k!=〔k+1〕!-k!3.陈列组合混合题的解题原那么:先选后排,先分再排陈列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再思索其他元素。

以位置为主思索,即先满足特殊位置的要求,再思索其他位置。

捆绑法〔集团元素法,把某些必需在一同的元素视为一个全体思索〕插空法〔处置相间效果〕直接法和去杂法等等在求解陈列与组合运用效果时,应留意:〔1〕把详细效果转化或归结为陈列或组分解绩;〔2〕经过火析确定运用分类计数原理还是分步计数原理;〔3〕剖析标题条件,防止〝选取〞时重复和遗漏;〔4〕列出式子计算和作答。

经常运用的数学思想是:①分类讨论思想;②转化思想;③对称思想。

4.二项式定理知识点:①〔a+b〕n=Cn0ax+Cn1an-1b1+ Cn2an-2b2+ Cn3an-3b3+…+ Cnran-rbr+-…+ Cn n-1abn-1+ Cnnbn特别地:〔1+x〕n=1+Cn1x+Cn2x2+…+Cnrxr+…+Cnnxn②主要性质和主要结论:对称性Cnm=Cnn-m最大二项式系数在中间。

〔要留意n为奇数还是偶数,答案是中间一项还是中间两项〕一切二项式系数的和:Cn0+Cn1+Cn2+ Cn3+Cn4+…+Cnr+…+Cnn=2n奇数项二项式系数的和=偶数项而是系数的和Cn0+Cn2+Cn4+ Cn6+ Cn8+...=Cn1+Cn3+Cn5+ Cn7+ Cn9+ (2)-1③通项为第r+1项:Tr+1= Cnran-rbr 作用:处置与指定项、特定项、常数项、有理项等有关效果。

高三数学排列和组合知识点

高三数学排列和组合知识点

高三数学排列和组合知识点数学作为一门理科学科,其中的排列和组合是高三学生必须掌握的重要知识点。

本文将为大家详细介绍高三数学排列和组合的知识,并提供一些相关例题和解析,帮助大家理解和掌握这一知识点。

一、排列的概念和性质排列是从给定的对象中选出一部分进行有序排列的方式,每个对象只能使用一次。

在排列中,对象的顺序是重要的。

下面是排列的一些基本概念和性质:1. 排列的定义:从n个不同的对象中取出m个进行有序排列,称为从n个对象中取出m个的排列,记作P(n,m)。

2. 排列的计算公式:P(n,m) = n!/(n-m)!3. 重要性质一:对于任意正整数n,有P(n,n) = n!,即n个不同的对象全排列的总数为n的阶乘。

排列数为1。

5. 重要性质三:P(n,1) = n,即从n个对象中取出一个对象进行排列的方式数为n。

二、组合的概念和性质组合是从给定的对象中选出一部分进行无序组合的方式,每个对象只能使用一次。

在组合中,对象的顺序不重要。

下面是组合的一些基本概念和性质:1. 组合的定义:从n个不同的对象中取出m个进行无序组合,称为从n个对象中取出m个的组合,记作C(n,m)。

2. 组合的计算公式:C(n,m) = n!/[(n-m)!*m!]3. 重要性质一:对于任意正整数n,有C(n,n) = 1,即n个不同的对象全组合的总数为1。

组合数为1。

5. 重要性质三:C(n,1) = n,即从n个对象中取出一个对象进行组合的方式数为n。

三、排列与组合的应用排列和组合在实际生活和数学问题中有着广泛的应用。

下面是一些常见的应用领域:1. 排列的应用:排列在一些需要考虑顺序的情况下很有用,比如密码的穷举破解和赛车比赛的计算等。

2. 组合的应用:组合在一些不考虑顺序的情况下很有用,比如从一组物品中选取特定数量的搭配问题和抽奖活动中奖的计算等。

四、例题和解析下面是一些与排列和组合相关的例题和解析,帮助大家更好地理解和应用这一知识点:例题一:有6个人参加足球比赛,其中3人是A队的球员,3人是B队的球员。

高考数学排列与组合知识点

高考数学排列与组合知识点

高考数学排列与组合知识点在高考数学中,排列与组合是一个重要的知识点。

它涉及到集合中元素的选择和排列方式,充满了逻辑思维和计算技巧。

掌握好这个知识点对于高考数学的考试是至关重要的。

下面我将从几个重要方面介绍排列与组合的基础知识和解题技巧。

一、基本概念1. 排列:排列是指从给定的元素集合中选择一部分元素,按照一定的顺序排列起来。

如果从n个不同元素中选取m个元素进行排列,那么排列的数目用P(n, m)表示,其计算公式为:P(n, m) = n! / (n-m)!其中,"!"表示阶乘运算,即n! = n(n-1)(n-2)...1。

2. 组合:组合是指从给定的元素集合中选择一部分元素,不考虑顺序的方式。

如果从n个不同元素中选取m个元素进行组合,那么组合的数目用C(n, m)表示,其计算公式为:C(n, m) = n! / [(n-m)! * m!]二、排列与组合的性质和定理1. 重复排列:当元素中有重复的情况时,排列的计算公式需要进行相应的修正。

假设有n个元素中有r1个元素相同,r2个元素相同......ri个元素相同,排列的数目可以通过以下公式计算:P(n, m) = n! / (r1! * r2! * ... * ri! * (n-m)!)2. 求整数解的排列:当要求整数解的排列时,我们可以使用分别代表每个数位的元素进行排列的方法。

比如,要求x、y、z三个整数之和为10,且满足x>0,y>0,z>0,我们可以将它们看作是从[1, 10]的元素集合中选取的排列。

3. 禁忌排列:禁忌排列是指排列中出现某些特殊情况需要剔除的情况。

比如,要求三个不同字母A、B、C排列成3位数,且BC不得出现,那么我们可以通过计算总的排列数减去BC出现的排列数得到最终的结果。

三、解题技巧1. 确定问题类型:在解决排列与组合问题时,首先需要明确题目中给出的要求是排列还是组合。

排列要考虑元素顺序,组合则不考虑。

高中数学排列组合

高中数学排列组合

1、排列定义
一般地,从n个不同元素中取出m(m≤n) 个元素按照一定顺序排成一列,叫做从n个不同 元素中取出m个元素的一个排列.
排列的定义中包含两个基本内容: 一是“取出元素”;二是“按照一定顺序排列”.“一定 顺序”就是与位置有关,这也是判断一个问题是不是排列问 题的重要标志.
根据排列的定义,两个排列相同,当且仅当这两个排 列的元素完全相同,而且元素的排列顺序也完全相同.
思考 上述问题1,2 的共同特点是什么?你能将它 们推广到一般情形吗?
一般地,从n个不同的元素中取出m(m n)个元素, 按 照 一 定 顺 序 排 成 一 列,叫 做 从n个 不 同 元 素 中 取
出m个元素的一个排列 (arrangement).
思考 你能归纳一下排列的特征吗?
根据排列的定义,两个排列相同,当且仅当两个排 列的元素完全相同,且元素的排列顺序也相同.例 如在问题2中,123与134的元素不完全相同,它们 是 不 同 的 排 列;123与132虽 然 元 素 完 全 相 同, 但 元 素的排列顺序不同,它们也是不同的排列.
(5)20位同学互通一次电话 (6)20位同学互通一封信
(7)以圆上的10个点为端点作弦 (8)以圆上的10个点中的某一点为起点,作 过另一个点的射线
(9)有10个车站,共需要多少种车票? (10)有10个车站,共需要多少种不同的票价?
例2.某年全国足球甲级 A组 联赛有14
个队参加, 每队要与其余各队在主、客场 分别比赛一次, 共进行多少场比赛?
nn
1n
2 n n m
m 1n
2 1
m
2
1
n! nm!
A
n n
A nm nm
.

高二数学排列和组合知识点

高二数学排列和组合知识点

高二数学排列和组合知识点排列与组合是高中数学中的重要内容,它们在解决实际问题时具有广泛的应用。

本文将详细介绍排列和组合的基本概念、公式以及解题方法,帮助学生掌握这一知识点。

基本概念排列和组合都是从一组元素中选择一定数量的元素进行分析的数学方法。

排列强调元素的顺序,而组合则不考虑元素的顺序。

排列1. 排列数公式:从n个不同元素中取出m个元素的所有排列的个数,记作A_{n}^{m},计算公式为:\[ A_{n}^{m} = \frac{n!}{(n-m)!} \]其中n!表示n的阶乘,即从1乘到n。

2. 举例说明:假设有5本不同的书,我们要选出2本来阅读。

如果考虑阅读的顺序,那么第一天读哪本书,第二天读哪本书是有区别的。

这里就有A_{5}^{2}种不同的排列方式。

组合1. 组合数公式:从n个不同元素中取出m个元素的所有组合的个数,记作C_{n}^{m},计算公式为:\[ C_{n}^{m} = \frac{n!}{m!(n-m)!} \]同样,这里的n!表示n的阶乘。

2. 举例说明:继续上述的例子,如果我们只关心选出哪2本书来阅读,而不关心阅读的顺序,那么这就是一个组合问题。

计算方法为C_{5}^{2}。

解题方法1. 区分排列与组合:首先要明确问题是要求排列还是组合。

如果问题中涉及到元素的顺序,那么就是排列问题;如果不涉及顺序,则是组合问题。

2. 公式运用:根据问题的具体要求,选择合适的排列或组合公式进行计算。

3. 实际应用:排列和组合的知识可以应用于许多实际问题,如概率计算、统计分析等。

在解题时,要结合实际情况,灵活运用所学知识。

练习题1. 有7个人排队,其中甲必须排在乙的前面,问有多少种排队的排列方式?2. 一个班级有10个男生和5个女生,从中选出3个代表,其中至少有1个女生的组合有多少种?通过以上介绍和练习题,相信学生可以更好地理解和掌握排列与组合的概念、公式及解题方法。

在实际解题过程中,要注意区分排列和组合的不同,并正确运用公式,这样才能有效地解决问题。

高二数学学习:高二数学知识点排列组合公式

高二数学学习:高二数学知识点排列组合公式

高二数学学习:高二数学知识点排列组合公式你还在为高中数学学习而苦恼吗?别担心,看了高二数学学习:高二数学知识点排列组合公式以后你会有很大的收获:高二数学学习:高二数学知识点排列组合公式排列组合公式/排列组合计算公式排列P------和顺序有关组合C-------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法.排列把5本书分给3个人,有几种分法组合1.排列及计算公式从n个不同元素中,任取m(mn)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(mn)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)(n-m+1)=n!/(n-m)!(规定0!=1). 2.组合及计算公式从n个不同元素中,任取m(mn)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(mn)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m)表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m 2019-07-0813:30公式P是指排列,从N个元素取R个进行排列。

数学中的排列与组合知识点总结

数学中的排列与组合知识点总结

数学中的排列与组合知识点总结在数学中,排列和组合是两个重要的概念。

它们在各个领域都有广泛的应用,特别是在概率论、统计学和组合数学中。

本文将对排列和组合的概念、性质和应用进行总结。

一、排列的概念与性质排列是从一组元素中选取若干个元素按照一定的顺序进行排列。

设有n个元素,则从中选取m个元素进行排列的方式记为P(n, m)。

排列的计算公式为:P(n, m) = n!/(n-m)!其中,n!表示n的阶乘,即n! = n × (n-1) × (n-2) × ... × 2 × 1。

排列的性质如下:1. 排列数P(n, m)满足如下关系:P(n, m) = P(n-1, m) + P(n-1, m-1)2. 对于任意正整数n,有P(n, n) = n!,即n个元素的全排列数为n 的阶乘。

3. 当m>n时,P(n, m) = 0,即不能取出超过给定元素总数的元素进行排列。

4. 当m=0时,P(n, m) = 1,即不取任何元素进行排列时,排列数为1。

二、组合的概念与性质组合是从一组元素中选取若干个元素组成一个集合,而不考虑元素的顺序。

设有n个元素,则从中选取m个元素进行组合的方式记为C(n, m)。

组合的计算公式为:C(n, m) = n!/(m!(n-m)! )组合的性质如下:1. 组合数C(n, m)满足如下关系:C(n, m) = C(n-1, m) + C(n-1, m-1)2. 对于任意正整数n,有C(n, 0) = C(n, n) = 1,即不取任何元素或者取出全部元素的组合数为1。

3. 当m>n时,C(n, m) = 0,即不能取出超过给定元素总数的元素进行组合。

4. 组合数C(n, m)与排列数P(n, m)之间存在以下关系:C(n, m) = P(n, m)/m!三、排列与组合的应用1. 概率计算:排列和组合在概率计算中有广泛的应用。

高中数学第一章计数原理1.2排列与组合1.2.1.1排列与排列数公式a23a高二23数学

高中数学第一章计数原理1.2排列与组合1.2.1.1排列与排列数公式a23a高二23数学

12/7/2021
第三十九页,共四十九页。
忽视排列问题中的限制条件致误 【例 4】 在 1,2,3,4 的排列 a1a2a3a4 中,满足 a1>a2,a3>a2, a3>a4 的排列个数是_____5___. 【错解】 排列的个数是 12 个或 8 个. 【错因分析】 3 个限制只注意 1 个限制条件或 2 个限制条 件.
12/7/2021
第七页,共四十九页。
知识点一 排列的概念
1.排列的定义
[填一填]
一般地,从 n 个 不同 元素中取出 m(m≤n)个元素,按照一 定的顺序 排成一列,叫做从 n 个 不同 元素中取出 m 个
元素的一个排列.
2.相同排列 两个排列相同,当且仅当两个排列的元素 完全相同 ,且 元素的 排列顺序 也相同.
12/7/2021
第三十三页,共四十九页。
(2)计算AA5525的值. 解:AA5255=5×4×5×3×4 2×1=6.
12/7/2021
第三十四页,共四十九页。
类型三 列举法解决排列问题 【例 3】 (1)从 1,2,3,4 四个数字中任取两个数字组成两位
数,共有多少个不同的两位数? (2)写出从 4 个元素 a,b,c,d 中任取 3 个元素的所有排列.
Hale Waihona Puke [目标] 1.理解排列和排列数的特征.2.正确运用排列数公式 进行计算.
[重点] 理解排列的概念,会用排列数公式进行计算. [难点] 对排列的有序性的正确理解,排列数公式的逆用.
12/7/2021
第五页,共四十九页。
要点整合夯基础 课堂达标练经典
典例讲练破题型 课时作业
12/7/2021
第六页,共四十九页。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学知识点:排列与组合
排列组合公式/排列组合计算公式
排列P------和顺序有关
组合C-------不牵涉到顺序的问题
排列分顺序,组合不分
例如把5本不同的书分给3个人,有几种分法."排列"
把5本书分给3个人,有几种分法"组合"
1.排列及计算公式
从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.
p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(规定0!=1).
2.组合及计算公式
从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n 个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号
c(n,m)表示.
c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);
3.其他排列与组合公式
从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n 个元素的全排列数为
n!/(n1!*n2!*...*nk!).
k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).
排列(Pnm(n为下标,m为上标))
Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符
号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n
组合(Cnm(n为下标,m为上标))
Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m
2019-07-0813:30
公式P是指排列,从N个元素取R个进行排列。

公式C是指组合,从N个元素取R个,不进行排列。

N-元素的总个数R参与选择的元素个数!-阶乘,如9!=9*8*7*6*5*4*3*2*1
从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);
因为从n到(n-r+1)个数为n-(n-r+1)=r
举例:
Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?
A1:123和213是两个不同的排列数。

即对排列顺序有要求的,既属于“排列P”计算范畴。

上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。

计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)
Q2:有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?
A2:213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。

即不要求顺序的,属于“组合C”计算范畴。

上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1
排列、组合的概念和公式典型例题分析
例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?
解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.
(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.
点评由于要让3名学生逐个选择课外小组,故两问都用乘法
原理进行计算.
例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?
解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴符合题意的不同排法共有9种.
点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.
例3判断下列问题是排列问题还是组合问题?并计算出结果.
(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?
(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?
(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?
(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?
分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是
不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.
(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).
(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.
(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.
(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.
例4证明.
证明左式
右式.
∴等式成立.
点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.
例5化简.
解法一原式
解法二原式
点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.
例6解方程:(1);(2).
解(1)原方程
解得.
(2)原方程可变为
∴原方程可化为.
即,解得
第六章排列组合、二项式定理
一、考纲要求
1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.
2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.
3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.
二、知识结构
三、知识点、能力点提示
其实,任何一门学科都离不开死记硬背,关键是记忆有技
巧,“死记”之后会“活用”。

不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。

这样,就会在有限的时
间、空间里给学生的脑海里注入无限的内容。

日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。

(一)加法原理乘法原理
单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。

让学生把一周看到或听到的新鲜事记下来,摒弃那些假话套话空话,写出自己的真情实感,篇幅可长可短,并要求运用积累的成语、名言警句等,定期检查点评,选择优秀篇目在班里朗读或展出。

这样,即巩固了所学的材料,又锻炼了学生的写作能力,同时还培养了学生的观察能力、思维能力等等,达到“一石多鸟”的效果。

说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.。

相关文档
最新文档