浙江省金华市八年级(下)期中数学试卷

合集下载

。2017-2018学年浙江省金华市八年级(下)期中数学试卷

。2017-2018学年浙江省金华市八年级(下)期中数学试卷

2017-2018学年浙江省金华市八年级(下)期中数学试卷一、仔细选一选(本题共10小题,每题3分,共30分)1.(3分)在下列代数式中,不是二次根式的是()A.B.C.D.2.(3分)下列方程是一元二次方程的是()A.ax2+bx+c=0B.3x2﹣2x=3(x2﹣2)C.(x﹣2)2﹣2=0D.x3﹣2x﹣4=03.(3分)下面四个图案分别是步行标志、禁止行人通行标志、禁止驶入标志和直行标志,其中是中心对称图形的是()A.B.C.D.4.(3分)矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分5.(3分)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.149.159.149.15方差 6.6 6.8 6.7 6.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁6.(3分)抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.20,20B.30,20C.30,30D.20,307.(3分)如图,在四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是()A.AB=DC,AD=BC B.AB∥DC,AD∥BC C.AB∥DC,AD=BCD.OA=OC,OB=OD8.(3分)若关于x的一元二次方程kx2﹣2kx+4=0有两个相等的实数根,则k的值为()A.0或4B.4或8C.0D.49.(3分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.32x+2×20x=32×20﹣570B.(32﹣2x)(20﹣x)=570C.(32﹣x)(20﹣x)=32×20﹣570D.32x+2×20x﹣2x2=57010.(3分)如图,在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点,若∠DAC=20°,∠ACB=84°,则∠FEG等于()A.32°B.38°C.64°D.30°二、认真填一填(共6题,每题4分,共24分)11.(4分)函数的自变量x的取值范围是.12.(4分)若方程x2+x﹣13=0的两根分别为a、b,则ab(a+b)=.13.(4分)已知一组数据:3,3,4,5,5,则它的方差为.14.(4分)已知△ABC中,AB=AC,求证:∠B<90°,若用反证法证这个结论,应首先假设.15.(4分)平行四边形的一个内角平分线将该平行四边形的一边分为2cm和3cm 两部分,则该平行四边形的周长为.16.(4分)如图,在矩形ABCD中,点E,F分别是BC,DC上的一个动点,以EF为对称轴折叠△CEF,使点C的对称点G落在AD上,若AB=5,BC=13.则CF的取值范围为.三、全面解一解(8个小题,共66分,各小题都必须写出解答过程)17.(6分)计算下列各题:(1)3;(2)(2)(2)18.(6分)如图,在?ABCD中,点E、F分别是AD、BC的中点,求证:AF=CE.19.(6分)学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如表:选手表达能力阅读理解综合素质汉字听写甲85788573乙73808283(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.20.(8分)解方程:(1)x (x+2)=5(x+2);(2)2m 2+3m ﹣1=021.(8分)如图,AD 是等腰△ABC 底边BC 上的高.点O 是AC 中点,延长DO 到E ,使OE=OD ,连接AE ,CE .(1)求证:四边形ADCE 的是矩形;(2)若AB=17,BC=16,求四边形ADCE 的面积.22.(10分)阅读下表:解答下列问题:线段AB 上的点数n(包括A 、B 两点)图例线段总条数N33=2+146=3+2+1510=4+3+2+1615=5+4+3+2+1(1)根据表中规律猜测线段总条数N与线段上点数n(包括线段的两个端点)的关系,用含n的代数式表示N,则N=.(2)2018年“俄罗斯世界杯足球赛”,第一轮小组赛共有32支球队分成8组(每组4个队),每组组内分别进行单循环赛(即每个队与本小组的其它队各比赛一场),求第轮共要进行儿场比赛?(3)2018年“中国足球短级联赛”,不分小组,所有球队直接进行双循环赛(即每两个队之间按主客场共要进行两场比赛),共要进行240场比赛,求共有儿支球队参加比赛?23.(10分)“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E 的度数;(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F的度数;(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)24.(12分)如图,矩形ABCD中,AB=12cm,BC=6cm,动点P从点A出发,按折线ADCBA方向以4cm/s的速度运动,动点Q从点A出发,按折线ABCDA 方向以2cm/s的速度运动,点E在线段DC上,且CE=2cm,若P、Q两点同时从点A出发,到第一次相遇时停止运动.(1)求经过几秒钟P、Q两点停止运动?(2)求点B、E、P、Q构成平行四边形时,P、Q两点运动的时间;(3)写出△EPQ的面积S(cm2)与运动时间为t(s)之间的函数表达式.2017-2018学年浙江省金华市八年级(下)期中数学试卷参考答案与试题解析一、仔细选一选(本题共10小题,每题3分,共30分)1.(3分)在下列代数式中,不是二次根式的是()A.B.C.D.【分析】直接利用二次根式的定义分析得出答案.【解答】解:A、,是二次根式,故此选项错误;B、,是二次根式,故此选项错误;C、,是二次根式,故此选项错误;D、,不是二次根式,故此选项正确;故选:D.【点评】此题主要考查了二次根式的定义,正确把握定义是解题关键.2.(3分)下列方程是一元二次方程的是()A.ax2+bx+c=0B.3x2﹣2x=3(x2﹣2)C.(x﹣2)2﹣2=0D.x3﹣2x﹣4=0【分析】根据一元二次方程的定义进行判断.【解答】解:A、当a=0时,该方程不是一元二次方程,故本选项错误;B、由原方程得到:4x=0,不含二次项,属于一元一次方程,故本选项错误;C、(x﹣2)2﹣2=0整理得x2﹣4x+2=0,是一元二次方程,故此选项正确;D、x3﹣2x﹣4=0不含二次项,故此选项错误;故选:C.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.3.(3分)下面四个图案分别是步行标志、禁止行人通行标志、禁止驶入标志和直行标志,其中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念判断即可.【解答】解:A、不是中心对称图形;B、不是中心对称图形;C、是中心对称图形;D、不是中心对称图形.故选:C.【点评】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如,矩形的对角线相等.5.(3分)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)9.149.159.149.15方差 6.6 6.8 6.7 6.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁【分析】利用平均数和方差的意义进行判断.【解答】解:丁的平均数最大,方差最小,成绩最稳当,所以选丁运动员参加比赛.故选:D.【点评】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.6.(3分)抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()A.20,20B.30,20C.30,30D.20,30【分析】根据众数和中位数的定义,出现次数最多的那个数就是众数,把一组数据按照大小顺序排列,中间那个数或中间两个数的平均数叫中位数.【解答】解:捐款30元的人数为20人,最多,则众数为30,中间两个数分别为30和30,则中位数是30,故选:C.【点评】本题考查了条形统计图、众数和中位数,这是基础知识要熟练掌握.7.(3分)如图,在四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是()A.AB=DC,AD=BC B.AB∥DC,AD∥BC C.AB∥DC,AD=BCD.OA=OC,OB=OD【分析】根据平行四边形的判定定理分别进行分析即可.【解答】解:A、根据“两组对边分别相等的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;B、根据“两组对边分别平行的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;C、“一组对边平行,另一组对边相等”是四边形也可能是等腰梯形,故本选项符合题意;D、根据“对角线互相平分的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;故选:C.【点评】此题主要考查了平行四边形的判定,关键是掌握判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.第11页(共25页)8.(3分)若关于x 的一元二次方程kx 2﹣2kx+4=0有两个相等的实数根,则k 的值为()A .0或4B .4或8C .0D .4【分析】根据已知一元二次方程有两个相等的实数根得出k ≠0,△=(﹣2k )2﹣4×k ×4=0,求出k 的值即可.【解答】解:∵关于x 的一元二次方程kx 2﹣2kx+4=0有两个相等的实数根,∴k ≠0,△=(﹣2k )2﹣4×k ×4=0,解得:k=4,故选:D .【点评】本题考查了根的判别式和一元二次方程的定义,能得出关于k 的不等式和方程是解此题的关键.9.(3分)如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是()A .32x+2×20x=32×20﹣570B .(32﹣2x )(20﹣x )=570C .(32﹣x )(20﹣x )=32×20﹣570D .32x+2×20x ﹣2x 2=570【分析】六块矩形空地正好能拼成一个矩形,设道路的宽为xm ,根据草坪的面积是570m 2,即可列出方程.【解答】解:设道路的宽为xm ,根据题意得:(32﹣2x )(20﹣x )=570,故选:B .【点评】此题主要考查了由实际问题抽象出一元二次方程,这类题目体现了数形结合的思想,需利用平移把不规则的图形变为规则图形,进而即可列出方程.。

金华市八年级下学期数学期中考试试卷

金华市八年级下学期数学期中考试试卷

金华市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2018·聊城模拟) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2. (2分)(2018·惠山模拟) 下列说法中,正确的是()A . 为检测我市正在销售的酸奶质量,应该采用抽样调查的方式B . 两名同学连续五次数学测试的平均分相同,方差较大的同学数学成绩更稳定C . 抛掷一个正方体骰子,点数为奇数的概率是D . “打开电视,正在播放广告”是必然事件3. (2分)下列说法正确的是()A . 一个游戏的中将概率是,则做10次这样的游戏一定会中奖B . 一组数据6,8,7,8,8,9,10的众数和中位数都是8C . 为了解江苏省中学生的心理健康情况,应该采用普查的方式D . 若甲组数据的方差S2甲=0.01,乙组数据方差S2乙=0.1,则乙组数据比甲组数据稳定4. (2分)(2011·常州) 若在实数范围内有意义,则x的取值范围()A . x≥2B . x≤2C . x>2D . x<25. (2分) (2019七下·仁寿期中) 下列解方程过程中,变形正确的是()A . 由5x-1=3,得5x=3-1B . 由,得C . 由3- =0,得6-x+1=0D . 由 =1,得2x-3x=16. (2分)在平行四边形ABCD中,∠A:∠B:∠C:∠D的可能情况是()A . 2:7:2:7B . 2:2:7:7C . 2:7:7:2D . 2:3:4:57. (2分)方程:2x2=5x+3的根是()A . x1=-6,x2=1B . x1=3,x2=-1C . x1=1,x2=D . x1= - ,x2=38. (2分)若1﹣(2﹣x)=1﹣x,则代数式2x2﹣7的值是()A . ﹣5B . 5C . 1D . ﹣1二、填空题 (共10题;共10分)9. (1分)一元二次方程ax2+bx+c=0(a≠0)的求根公式是________ ,条件是________ .10. (1分)如图,在▱ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于点F,则CF=________.11. (1分) (2018八上·仙桃期末) 若关于x的方程无解,则m的值是________.12. (1分)二次根式有最大值,则m=________.13. (1分) (2019八下·鹿邑期中) 如果最简二次根式与可以合并成一个二次根式,则________.14. (1分)若 =﹣a,则a应满足的条件是________.15. (1分)若分式的值为0,则a=________ .16. (1分)对于分式,当x________时,它的值为正;当x________时,它的值为负;当x________时,它的值为零.17. (1分)(2019·合肥模拟) 的整数部分是________.18. (1分) (2019八上·通州期末) 关于x的方程的解为x=1,则a=________.三、解答题 (共10题;共82分)19. (10分) (2019七下·平川月考)20. (10分) (2019九上·阳东期末) 解方程:3x(x﹣1)=x﹣1.21. (5分)(2017·安阳模拟) 先化简:(x﹣1﹣),然后从满足﹣2<x≤2的整数值中选择一个你喜欢的数代入求值.22. (5分)用4块如所示的瓷砖拼成一个正方形,使所得正方形(包括色彩因素)分别是具有如下对称性的美术图案:只是轴对称图形而不是中心对称图形;既是轴对称图形又是中心对称图形.画出符合要求的图形各两个.23. (5分)已知关于x的方程x2+2x+a-2=0.若该方程有两个不相等的实数根,求实数a的取值范围24. (7分) (2019九上·道外期末) 某学校开展以素质提升为主题的研学活动,推出了以下四个项目供学生选择:A.模拟驾驶;B.军事竞技;C.家乡导游;D.植物识别.学校规定:每个学生都必须报名且只能选择其中一个项目.八年级(3)班班主任宁老师对全班学生选择的项目情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1)八年级(3)班学生总人数是多少,并将条形统计图补充完整;(2)宁老师发现报名参加“植物识别”的学生中恰好有两名男生,现准备从这组学生中任意挑选两名担任活动记录员,那么恰好选1名男生和1名女生担任活动记录员的概率;(3)若学校学生总人数为2000人,根据八年级(3)班的情况,估计全校报名军事竞技的学生有多少人?25. (5分)如图,四边形ABCD是平行四边形,以边AB为直径的⊙O经过点C,E是⊙O上的一点,且∠BEC=45°.(1)试判断CD与⊙O的位置关系,并说明理由;(2)若BE=8cm,sin∠BCE=,求⊙O的半径.26. (5分)(2018·溧水模拟) 某工厂有甲、乙两台机器加工同一种零件,已知一小时甲加工的零件数与一小时乙加工的零件数的和为36个,甲加工80个零件与乙加工100个零件的所用时间相等.求甲、乙两台机器每小时分别加工零件多少个?27. (10分) (2020八下·扬州期中) 观察下列等式:①② ;③ ;……回答下列问题:(1)利用你观察到的规律,①化简:②仿照上例等式,写出第n个式子(2)计算: .28. (20分) (2020八下·扬州期中) 如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连结PM并延长到点E,使ME=PM,连结DE.(1)请你利用图2,选择Rt△ABC内的任意一点P按上述方法操作;(2)经历(1)之后,观察两图形,猜想线段DE和线段BC之间有怎样的数量和位置关系?请选择其中的一个图形证明你的猜想;(3)观察两图,你还可得出AC和DE相关的什么结论?请说明理由.(4)若以A为坐标原点,建立平面直角坐标系,其中A、C、D的坐标分别为(0,0),(5,3),(4,2),能否在平面内找到一点M,使以A、C、D、M为点构造成平行四边形,若不能,说明理由,若能,请直接写出点M的坐标.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共10题;共10分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共82分)19-1、20-1、21-1、22-1、23-1、24-1、24-2、24-3、25-1、26-1、27-1、27-2、28-1、28-2、28-3、28-4、。

浙江省金华市八年级下学期期中数学试卷

浙江省金华市八年级下学期期中数学试卷

浙江省金华市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018八上·城东月考) 设的小数部分为b,那么(4+b)b的值是()A . 1B . 是一个有理数C . -3D . 3【考点】2. (2分)(2017·高淳模拟) 如图,⊙O的半径为1,△ABC是⊙O的内接等边三角形,点D,E在圆上,四边形BCDE为矩形,这个矩形的面积是()A . 2B .C .D .【考点】3. (2分)下列二次根式中与是同类二次根式的是()A .B .C .D .【考点】4. (2分) (2019八下·罗湖期中) 如图,在Rt△ABC中,AB=AC , D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB ,连接EF ,下列结论中正确的个数有()①∠EAF=45°;②△ABE∽△ACD;③AE平分∠CAF;④BE2+DC2=DE2 .A . 1个B . 2个C . 3个D . 4个【考点】5. (2分)顺次连结对角线互相垂直的等腰梯形四边中点得到的四边形是()A . 平行四边形B . 矩形C . 菱形D . 正方形【考点】6. (2分)如图,将一张长为70cm的矩形纸片ABCD沿对称轴EF折叠后得到如图所示的形状,若折叠后AB 与CD的距离为60cm,则重叠部分四边形较长边的长度为()A . 20 cmB . 15 cmC . 10 cmD . cm【考点】7. (2分) (2019七上·罗湖期中) 有理数a、b在数轴上的位置如图所示,则化简代数式的结果是()A . 2bB . -2aC . 0D . 2a-2b【考点】8. (2分) (2019八上·惠山期中) 点P在等腰的斜边所在直线上,若记:,则()A . 满足条件的点P有且只有一个B . 满足条件的点P有无数个C . 满足条件的点P有有限个D . 对直线AB上的所有点P,都有【考点】9. (2分)(2019·巴中) 下列命题是真命题的是()A . 对角线相等的四边形是矩形B . 对角线互相垂直的四边形是矩形C . 对角线互相垂直的矩形是正方形D . 四边相等的平行四边形是正方形【考点】10. (2分) (2019八上·长兴月考) 如图①,在△ABC中,D,E分别是AB,AC的中点把△ADE沿线段DE向下折叠,使点A落在BC上的点A'处,得到图②,则下列四个结论中,不一定成立的是()A . DB=DAB . ∠B+∠C+∠1=180°C . △ADE≌△A'DED . BA=CA【考点】二、填空题 (共10题;共10分)11. (1分) (2019八下·中山期末) 若是正整数,则整数的最小值为________。

浙江省金华市南苑中学2023-2024学年八年级下学期 数学期中试题

浙江省金华市南苑中学2023-2024学年八年级下学期 数学期中试题

2023学年第二学期八年级数学期中作业质量检测出卷人:王彩屏俞珊珊一、选择题(本大题共10小题,每小题3分,共30分)1.未来将是一个可以预见的AI时代.AI一般指人工智能,它研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学.下列是世界著名人工智能品牌公司的图标,其中是轴对称图形但不是中心对称图形的是(▲)A.B.C.D.2.下列式子中属于最简二次根式的是(▲)A.3B.C.8D.0.13.把一元二次方程x(x+1)=3x+2化为一般形式,正确的是(▲)A.x2﹣2x﹣2=0B.x2﹣2x+2=0C.x2﹣3x﹣1=0D.x2+4x+3=04.为筹备班级联欢会,班长对全班同学喜爱的水果做了民意调查,最值得关注的统计量是(▲)A.中位数B.平均数C.方差D.众数5.用反证法证明“在△ABC中,若AB=AC,则∠B=∠C”时,则应假设(▲)A.∠A=∠B B.∠B≠∠C C.AB≠AC D.BC=AC6.如图,已知△ABD,用尺规进行如下操作:①以点B为圆心,AD长为半径画弧;②以点D为圆心,AB长为半径画弧;③两弧在BD上方交于点C,连接BC,DC.可直接判定四边形ABCD为平行四边形的条件是(▲)A.两组对边分别平行B.一组对边平行且相等C.对角线互相平分D.两组对边分别相等7.东东家有一块等腰三角形的空地△ABC,如图,已知E,F分别是边AB,AC的中点,量得AB=AC=12米,BC=10米,他想把四边形BCFE用篱笆围成一圈放养小鸡,则需要篱笆的长是(▲)A.22米B.24米C.27米D.32米8.对于任意4个实数a,b,c,d定义一种新的运算bcaddcba-=,例如:2212-646124=⨯⨯=,则关于x的方程024=-kxx的根的情况为(▲)A.只有一个实数根B.有两个相等的实数根C.有两个不相等的实数根D.没有实数根9.如图,矩形ABCD中,E为CD的中点,连结AE,过E作EF AE⊥交BC于点F,连结AF,若BAFα∠=,则∠FEC的度数为(▲)A.452α︒-B.αC.452α︒+D.90α︒-10.已知点D与点,,,,,,)()82()08(aaCBA--是一平行四边形的四个顶点,则CD的最小值是(▲)A.10B.92C.72D.9第6题图第7题图第9题图二、填空题(本大题共6小题,每小题4分,共24分)11.若二次根式x -5有意义,则x 的取值范围是▲.12.一个多边形的内角和是720°,这个多边形的边数是▲.13.若方程2−3+=0(为常数)的一个解是1=1,则另一个解2=▲.14.如图,四边形OABC 、BDEF 是面积分别为S 1、S 2的正方形,点A 在x 轴上,点F 在BC 上,点E 在反比例函数y=kx (x >0)的图象上,若S 1﹣S 2=4,则k 值为▲.15.如图,在菱形ABCD 中,AB =10,AC =16,P 为AC 上一动点,过P 作EF ⊥AC 交AD 于点E ,交AB 于点F ,将△AEF 沿EF 折叠,使点A 落在对角线AC 上的点A ′处,当△A ′CD 为直角三角形时,AP 的长为▲.16.如图1是某小车侧面示意图,图2是该车后备箱开起侧面示意图,具体数据如图所示(单位:cm ),AC=BD ,AF//BE ,∠BAF=60︒,箱盖开起过程中,点A ,C ,F 不随箱盖转动,点B ,D ,E 绕点A 沿逆时针方向转动相同角度,分别到点B ′,D ′,E ′的位置,气簧活塞杆CD 随之伸长到CD ′,已知直线BE ⊥BE ′,垂足为E ′,CD ′=2CD ,BE ′=30+303,那么AB 的长为▲cm ,CD ′的长为▲cm .三、解答题(本大题共8小题,共66分)17.(1)计算:312)3()2(22⨯-+-(2)解方程:2430x x -+=18.如图是5×5的方格纸,点A ,B ,C 都在格点上,按要求作图.(1)在图1中找到一个格点D ,使得以A ,B ,C ,D 为顶点的四边形是平行四边形;(2)在图2中仅用无刻度的直尺,作出△ABC 的中位线MN 使得M 在AB 上,N 在AC 上.(保留作图痕迹,不写作法).19.某校举办国学知识竞赛,设定满分10分,学生得分均为整数.在初赛中,甲、乙两组(每组10人)学生成绩如下(单位:分)甲组:5,6,6,6,6,6,7,9,9,10.乙组:5,6,6,6,7,7,7,7,9,10.第15题图第16题图图1图2图1图2第14题图组别平均数中位数众数方差甲组7a 6 2.6乙组b 7cd (1)以上成绩统计分析表中a =▲,b =▲,c =▲,d =▲;(2)小明同学说:“这次竞赛我得了7分,在我们小组中属中游略偏上!”观察上面表格判断,小明可能是▲组的学生;(3)从平均数和方差看,若从甲、乙两组学生中选择一个成绩较为稳定的小组参加决赛,应选▲组.20.如图,已知在矩形ABCD 中,E 是边BC 的中点,连接AE 并延长,与DC 的延长线交于点F 连接AC 和BF .(1)求证:四边形ABFC 是平行四边形;(2)若AB=3,BF=5,求AF 的长21.如图,一次函数y 1=kx +b 与反比例函数xny =2图象相交于A(1,3),B(3,m).(1)直接写出两个函数的解析式;(2)在x 轴上找一点P ,使得△OAP 的面积为6,求出P 点坐标;(3)根据图象,直接写出不等式xnb kx ≥+的解集.22.根据以下素材,探索完成任务.如何设计实体店背景下的网上销售价格方案?素材1某公司在网上和实体店同时销售一种自主研发的小商品,成本价为40元/件.素材2该商品的网上销售价定为60元/件,平均每天销售量是200件,在实体店的销售价定为80元/件,平均每天销售量是100件.按公司规定,实体店的销售价保持不变,网上销售价可按实际情况进行适当调整,需确保网上销售价始终高于成本价.素材3据调查,网上销售价每降低1元,网上销售每天平均多售出20件,实体店的销售受网上影响,平均每天销售量减少2件.问题解决任务1计算所获利润当该商品网上销售价为50元/件时,求公司在网上销售该商品每天的毛利润与实体店销售该商品每天的毛利润各是多少元?任务2平衡市场方案该商品的网上销售价每件▲元时,该公司网上销售该商品每天的毛利润与实体店销售该商品每天的毛利润相等任务3拟定价格方案公司要求每天的总毛利润(总毛利润=网上毛利润+实体店毛利润)达到8160元,求每件商品的网上销售价是多少元?第20题图第21题图23.已知点P 的坐标为(m ,0),点Q 在x 轴上(不与P 重合),以PQ 为边,∠PQM =60°作菱形PQMN ,使点M 落在反比例函数xy 32-=的图象上.(1)如图所示,若点P 的坐标为(1,0),求出图中点M 的坐标;(2)点P (1,0)时,在(1)图中已经画出一个符合条件的菱形PQMN ,请您在原图上画出另一个符合条件的菱形PQ 1M 1N 1,并求点M 1的坐标;(3)随着m 的取值不同,这样的菱形还可以画出三个和四个.当符合上述条件的菱形刚好能画出四个时,请求出m 的取值范围.24.如图,在矩形OABC 中AB=8,BC=4,点D 为对角线OB 中点,点E 在OC 所在的直线上运动,连结DE ,把△ODE 沿DE 翻折,点O 的对应点为点F ,连结BF .(1)当点F 在OC 下方时(如图1),求证:DE ∥BF .(2)当点F 落在矩形的对称轴上时,求EF 的长.(3)是否存在点E ,使得以D ,E ,F ,B 为顶点的四边形是平行四边形?若存在,求OE 的长;若不存在,请说明理由.第23题图备用图图12023学年第二学期八年级数学期中作业质量检测答案1-10:BAADBDCCAA11.5≤x ;12.6;13.2;14.4;15.;16.60,.17.(1)-1(2)3121==x x ,18.略.19.(1)a =6,b =7,c =7,d =2;(2)甲;(3)乙.20.(1)略;(2)AF=132.21.(1)xy x y 3421=+-=,;(2)P(4,0)或(-4,0);(3)031<≤≤x x 或.22.(1)任务1:网上销售:4000元实体店销售:3200元;(2)任务2:60或46;(3)任务3:58或56.23.(1))3-2(,M ;(2))321-(,M ;(3)2222-<>m m 或.24.(1)略;(2)5-55552或或+;10652或或.474或77120。

金华市八年级下学期期中数学试卷

金华市八年级下学期期中数学试卷

金华市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)方程的根是()A .B .C .D . 没有实数根2. (2分)(2020·武汉模拟) 如图,是某市6月份日平均气温情况,在日平均气温这组数据中,众数和中位数分别是()A . 21,22B . 21,21.5C . 10,21D . 10,223. (2分)下列关于四边形是矩形的判断中,正确的是().A . 对角线互相平分B . 对角线互相垂直C . 对角线互相平分且垂直D . 对角线互相平分且相等4. (2分) (2016九上·达拉特旗期末) 用配方法解方程x2+8x+7=0,则配方正确的是()A . (x-4)2=9B . (x+4)2=9C . (x-8)2=16D . (x+8)2=575. (2分)下面哪个点不在函数y=-2x+3的图像上()A . (-5,13)B . (0.5,2)C . (3,0)D . (1,1)6. (2分) (2017八下·澧县期中) 菱形的两条对角线长分别是6cm和8cm,则它的面积是()A . 6cm2B . 12cm2C . 24cm2D . 48cm27. (2分)甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好是9.4环,方差分别是S甲2=0.90,S乙2=1.22,S丙2=0.43,S丁2=1.68,在本次射击测试中,成绩最稳定的是()A . 甲B . 乙C . 丙D . 丁8. (2分)已知函数y=,当x=2时,函数值y为()A . 5B . 6C . 7D . 89. (2分)下列各点中,在直线y=2x-1上的是()A . (2,3)B . (3,2)C . (-2,3)D . (1,3)10. (2分)已知一个等腰三角形的两条边长分别为3和8,则这个等腰三角形的周长为()A . 11B . 14C . 19D . 14或1911. (2分)如图,已知直线y=3x+b与y=ax﹣2的交点的横坐标为﹣2,根据图象有下列3个结论:①a>0;②b>0;③x>﹣2是不等式3x+b>ax﹣2的解集.其中正确的个数是()A . 0B . 1C . 2D . 312. (2分)如图,平行四边形ABCD中,∠C=108°,BE平分∠ABC,则∠AEB =()A . 18°B . 36°C . 72°D . 108°二、填空题 (共4题;共4分)13. (1分) (2017八上·灯塔期中) 将函数 -1的图象向上平移个单位,再向右平移2个单位后,所得图象的函数表达式为________.14. (1分)若x1 , x2是一元二次方程x2+10x+16=0的两个根,则代数式x1+x2的值是________15. (1分) (2020八下·哈尔滨月考) 如图,点E为正方形ABCD的边DC上一点,且EC=3DE , F为AC上的一动点,连接FD和FE ,若AB=8,则DF+EF的最小值是________.16. (1分)(2012·丽水) 甲、乙两人以相同路线前往离学校12千米的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人前往目的地所行驶的路程S(千米)随时间t(分)变化的函数图象,则每分钟乙比甲多行驶________千米.三、解答题 (共6题;共81分)17. (10分) (2017九上·黄岛期末) 解答题。

金华市初中数学八年级下期中测试卷(培优专题)(1)

金华市初中数学八年级下期中测试卷(培优专题)(1)

一、选择题1.(0分)[ID:9928]按图(1)﹣(3)的方式摆放餐桌和椅子,照这样的方式维续摆放,如果摆放的餐桌为x张,摆放的椅子为y把,则y与x之间的关系式为( )A.y=6x B.y=4x﹣2C.y=5x﹣1D.y=4x+22.(0分)[ID:9927]如图,四边形ABCD是长方形,AB=3,AD=4.已知A(﹣32,﹣1),则点C的坐标是()A.(﹣3,32)B.(32,﹣3)C.(3,32)D.(32,3)3.(0分)[ID:9892]正方形具有而菱形不具有的性质是()A.四边相等 B.四角相等C.对角线互相平分 D.对角线互相垂直4.(0分)[ID:9888]为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A .①②④B .①③④C .③④D .①②5.(0分)[ID :9884]如图,直线y x m =-+与3y x 的交点的横坐标为-2,则关于x的不等式30x m x -+>+>的取值范围( )A .x>-2B .x<-2C .-3<x<-2D .-3<x<-16.(0分)[ID :9882]有一直角三角形纸片,∠C =90°BC =6,AC =8,现将△ABC 按如图那样折叠,使点A 与点B 重合,折痕为DE ,则CE 的长为( )A .27B .74C .72D .47.(0分)[ID :9877]周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )A .小丽从家到达公园共用时间20分钟B .公园离小丽家的距离为2000米C .小丽在便利店时间为15分钟D .便利店离小丽家的距离为1000米8.(0分)[ID :9876]△ABC 的三边分别是 a ,b ,c ,其对角分别是∠A ,∠B ,∠C ,下列条件不能判定△ABC 是直角三角形的是( )A .∠B = ∠A - ∠C B .a : b : c = 5 :12 :13 C .b 2- a 2= c 2D .∠A : ∠B : ∠C = 3 : 4 : 59.(0分)[ID :9874]顺次连结对角线相等的四边形各边中点所得的四边形是( ) A .正方形 B .菱形 C .矩形 D .梯形10.(0分)[ID :9873]若正比例函数y =mx (m 是常数,m≠0)的图象经过点A (m ,4),且y 的值随x 值的增大而减小,则m 等于( )A .2B .﹣2C .4D .﹣411.(0分)[ID :9868]若一次函数y =(k -3)x -k 的图象经过第二、三、四象限,则k 的取值范围是( )A .k <3B .k <0C .k >3D .0<k <312.(0分)[ID :9864]如图,在Rt ABC ∆中,90ACB ∠=︒,CD ,CE 分别是斜边上的高和中线,30B ∠=︒,4CE =,则CD 的长为( )A .25B .4C .23D .513.(0分)[ID :9857]如图,矩形纸片ABCD ,3AB =,点E 在BC 上,且AE EC =.若将纸片沿AE 折叠,点B 恰好落在AC 上,则矩形ABCD 的面积是( )A .12B .63C .93D .1514.(0分)[ID :9854]如图,已知圆柱底面的周长为4dm ,圆柱的高为2dm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为( )A .42dmB .22dmC .25dmD .45dm 15.(0分)[ID :9847]如图所示□ABCD ,再添加下列某一个条件, 不能判定□ABCD 是矩形的是( )A .AC=BDB .AB ⊥BC C .∠1=∠2D .∠ABC=∠BCD二、填空题16.(0分)[ID :10030]如图,已知在Rt △ABC 中,AB =AC =3√2,在△ABC 内作第1个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第2个内接正方形HIKJ ;再取线段KJ 的中点Q ,在△QHI 内作第3个内接正方形…,依次进行下去,则第2019个内接正方形的边长为_____.17.(0分)[ID :10028]使二次根式1x -有意义的x 的取值范围是 _____.18.(0分)[ID :10021]比较大小:52_____13.19.(0分)[ID :10018]一次函数y =(m +2)x +3-m ,若y 随x 的增大而增大,函数图象与y 轴的交点在x 轴的上方,则m 的取值范围是____.20.(0分)[ID :10007]如图是“赵爽弦图”,△ABH 、△BCG 、△CDF 和△DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形,如果AB =10,EF =2,那么AH 等于21.(0分)[ID :10001]如图,□ABCD 的周长为16cm ,AC 、BD 相交于点O ,OE ⊥AC 交AD 于E ,则△DCE 的周长为________22.(0分)[ID :9979]菱形ABCD 中,对角线AC =8,BD =6,则菱形的边长为_____.23.(0分)[ID :9967]如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为____.24.(0分)[ID :10011]将一个矩形 纸片折叠成如图所示的图形,若∠ABC=26°,则∠ACD=____.25.(0分)[ID :9957]如图,ABC 是以AB 为斜边的直角三角形,4AC =,3BC =,P 为AB 上一动点,且PE AC ⊥于E ,PF BC ⊥于F ,则线段EF 长度的最小值是________.三、解答题26.(0分)[ID :10104]甲、乙两座仓库分别有农用车12辆和6辆.现在需要调往A 县10辆,需要调往B 县8辆,已知从甲仓库调运一辆农用车到A 县和B 县的运费分别为40元和80元;从乙仓库调运一辆农用车到A 县和B 县的运费分别为30元和50元. (1)设乙仓库调往A 县农用车x 辆,求总运费y 关于x 的函数关系式;(2)若要求总运费不超过900元,问共有几种调运方案?试列举出来.(3)求出总运费最低的调运方案,最低运费是多少元?27.(0分)[ID :10103]ABC ∆在平面直角坐标系中的位置如图所示,先将ABC ∆向右平移3个单位,再向下平移1个单位到111A B C ∆,111A B C ∆和222A B C ∆关于x 轴对称.(1)画出111A B C ∆和222A B C ∆;(2)在x 轴上确定一点P ,使1BP A P +的值最小,试求出点P 的坐标.28.(0分)[ID :10084]如图,在ABCD 中,边AB 的垂直平分线交AD 于点E ,交CB 的延长线于点F ,连接,AF BE 求证:四边形 AFBE 是菱形29.(0分)[ID :10069]如图,轮船甲位于码头O 的正西方向A 处,轮船乙位于码头O 的正北方向C 处,某一时刻,AC =2,且OA =OC .轮船甲自西向东匀速行驶,同时轮船乙沿正北方向匀速行驶,它们的速度分别为40km/h 和30km/h ,经过0.2h ,轮船甲行驶至B 处,轮船乙行驶至D 处,求此时B 处距离D 处多远?30.(0分)[ID :10051]已知,如图,BD 平分ABC ∠交AC 于点D ,点E 、F 分别是AB 、BC 的中点,连接DE ,且// DE BC .(1) 求证:BE CF =;(2)连接DF ,若5AB BC ==,6AC =,求四边形BEDF 的面积.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.D2.D3.B4.C5.C6.B7.C8.D9.B10.B11.D12.C13.C14.A15.C二、填空题16.3×122018【解析】【分析】首先根据勾股定理得出BC的长进而利用等腰直角三角形的性质得出DE的长再利用锐角三角函数的关系得出EIKI=PFEF=12即可得出正方形边长之间的变化规律得出答案即可【17.x≤1【解析】由题意得:1-x≥0解得x≤1故答案为x≤1点睛:二次根式有意义的条件是:a≥018.>【解析】【分析】根据实数大小比较的方法比较即可【详解】解:∵5=∴5故答案为>【点睛】本题考查实数大小的比较熟练掌握实数大小的比较方法是解题关键19.-2<m<3【解析】【分析】【详解】解:由已知得:解得:-2<m<3故答案为:-2<m<320.6【解析】试题分析:由全等可知:AH=DEAE=AH+HE由直角三角形可得:代入可得考点:全等三角形的对应边相等直角三角形的勾股定理正方形的边长相等21.cm【解析】∵平行四边形ABCD∴AD=BCAB=CDOA=OC∵EO⊥AC∴AE=EC∵AB+BC+CD+AD=16∴AD+DC=8cm∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD22.5【解析】【分析】根据菱形的对角线互相垂直平分求出OAOB再利用勾股定理列式进行计算即可得解【详解】如图∵四边形ABCD是菱形∴OAAC=4OBBD=3AC⊥BD∴AB5故答案为:5【点睛】本题主要23.6【解析】【分析】先根据矩形的特点求出BC的长再由翻折变换的性质得出△CEF是直角三角形利用勾股定理即可求出CF的长再在△ABC中利用勾股定理即可求出AB的长【详解】解:∵四边形ABCD是矩形AD=24.128°【解析】【分析】如图延长DC到F根据折叠的性质可得∠ACB=∠BCF继而根据平行线的性质可得∠BCF=∠ABC=26°从而可得∠ACF=52°再根据平角的定义即可求得答案【详解】如图延长DC25.【解析】【分析】先由矩形的判定定理推知四边形PECF是矩形;连接PC则PC=EF 所以要使EF即PC最短只需PC⊥AB即可;然后根据三角形的等积转换即可求得PC的值【详解】连接PC∵PE⊥ACPF⊥B三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】观察可得,第一张餐桌上可以摆放6把椅子,进一步观察发现:多一张餐桌,多放4把椅子.第x张餐桌共有6+4(x-1)=4x+2,由此即可解答.【详解】有1张桌子时有6把椅子,有2张桌子时有10把椅子,10=6+4×1,有3张桌子时有14把椅子,14=6+4×2,∵多一张餐桌,多放4把椅子,∴第x张餐桌共有6+4(x-1)=4x+2.∴y与x之间的关系式为:y=4x+2.故选D.【点睛】本题考查了图形的变化类问题,注意结合图形进行观察,发现数字之间的运算规律,利用规律即可求得y与x之间的关系式.2.D解析:D【解析】【分析】由矩形的性质可知CD=AB= 3,BC=AD= 4,结合A点坐标即可求得C点坐标.【详解】∵四边形ABCD是长方形,∴CD=AB= 3,BC=AD= 4,∵点A(﹣32,﹣1),∴点C的坐标为(﹣32+3,﹣1+4),即点C的坐标为(32,3),故选D.【点睛】本题考查了矩形的性质和坐标的平移,根据平移的性质解决问题是解答此题的关键.3.B解析:B【解析】解:正方形和菱形都满足:四条边都相等,对角线平分一组对角,对角线垂直且互相平分;菱形的四个角不一定相等,而正方形的四个角一定相等.故选B.4.C解析:C【解析】【分析】根据频数分布直方图中的数据,求得众数,平均数,中位数,即可得出结论.【详解】解:①根据频数分布直方图,可得众数为60−80元范围,故每人乘坐地铁的月均花费最集中的区域在60−80元范围内,故①不正确;②每人乘坐地铁的月均花费的平均数=876001000=87.6=87.6元,所以每人乘坐地铁的月均花费的平均数范围是80~100元,故②错误;③每人乘坐地铁的月均花费的中位数约为80元,在60~100元范围内,故③正确;④为了让市民享受到更多的优惠,若使50%左右的人获得折扣优惠,则乘坐地铁的月均花费达到80元以上的人可以享受折扣,故④正确.故选:C【点睛】本题主要考查了频数分布直方图,平均数以及中位数的应用,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.C解析:C【解析】【分析】【详解】解:∵直线y x m =-+与3y x 的交点的横坐标为﹣2,∴关于x 的不等式3x m x -+>+的解集为x <﹣2,∵y=x+3=0时,x=﹣3,∴x+3>0的解集是x >﹣3,∴3x m x -+>+>0的解集是﹣3<x <﹣2,故选C .【点睛】本题考查一次函数与一元一次不等式.6.B解析:B【解析】【分析】已知,∠C=90°BC=6,AC=8,由勾股定理求AB ,根据翻折不变性,可知△DAE ≌△DBE ,从而得到BD=AD ,BE=AE ,设CE=x ,则AE=8-x ,在Rt △CBE 中,由勾股定理列方程求解.【详解】∵△CBE ≌△DBE ,∴BD=BC=6,DE=CE ,在RT △ACB 中,AC=8,BC=6,∴.∴AD=AB-BD=10-6=4.根据翻折不变性得△EDA ≌△EDB∴EA=EB∴在Rt △BCE 中,设CE=x ,则BE=AE=8-x ,∴BE 2=BC 2+CE 2,∴(8-x)2=62+x2,解得x=74.故选B.【点睛】此题考查了翻折变换的问题,找到翻折后图形中的直角三角形,利用勾股定理来解答,解答过程中要充分利用翻折不变性.7.C解析:C【解析】解:A.小丽从家到达公园共用时间20分钟,正确;B.公园离小丽家的距离为2000米,正确;C.小丽在便利店时间为15﹣10=5分钟,错误;D.便利店离小丽家的距离为1000米,正确.故选C.8.D解析:D【解析】【分析】根据三角形内角和定理判断A、D即可;根据勾股定理的逆定理判断B、C即可.【详解】A、∵∠B=∠A-∠C,∴∠B+∠C=∠A,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,即△ABC是直角三角形,故本选项错误;B、∵52+122=132,∴△ABC是直角三角形,故本选项错误;C、∵b2-a2=c2,∴b2=a2+c2,∴△ABC是直角三角形,故本选项错误;D、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形,故本选项正确;故选D.【点睛】本题考查了三角形内角和定理,勾股定理的逆定理的应用,主要考查学生的计算能力和辨析能力.9.B【解析】【分析】根据三角形的中位线定理可知中点四边形的各边均等于四边形对角线长度的一半,再根据四边形对角线相等即可判断.【详解】解:根据三角形的中位线定理可知中点四边形的各边均等于四边形对角线长度的一半,而四边形对角线相等,则中点四边形的四条边均相等,即可为菱形,故选B.【点睛】本题考查的是三角形的中位线,解答本题的关键是熟练掌握三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半.10.B解析:B【解析】【分析】利用待定系数法求出m,再结合函数的性质即可解决问题.【详解】解:∵y=mx(m是常数,m≠0)的图象经过点A(m,4),∴m2=4,∴m=±2,∵y的值随x值的增大而减小,∴m<0,∴m=﹣2,故选:B.【点睛】本题考查待定系数法,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.D解析:D【解析】【分析】由一次函数图象经过第二、三、四象限,利用一次函数图象与系数的关系,即可得出关于k的一元一次不等式组,解之即可得出结论.【详解】∵一次函数y=(k-3)x-k的图象经过第二、三、四象限,∴{k−3<0−k<0,解得:0<k<3,【点睛】本题考查了一次函数图象与系数的关系,牢记“k <0,b <0⇔y=kx+b 的图象在二、三、四象限”是解题的关键.12.C解析:C【解析】【分析】由直角三角形斜边上的中线求得AB 的长度,再根据含30°角直角三角形的性质求得AC 的长度,最后通过解直角△ACD 求得CD 的长度.【详解】如图,在Rt ABC ∆中,90ACB ∠=︒,CE 是斜边上的中线,4CE =,28AB CE ∴==.30B ∠=︒,60A ∴∠=︒,142AC AB ==. CD 是斜边上的高,30ACD ∠=︒122AD AC ∴== 22224223CD AC AD ∴=-=-=故选:C .【点睛】考查了直角三角形斜边上的中线、含30度角直角三角形的性质.直角三角形斜边上的中线等于斜边的一半.13.C解析:C【解析】【分析】证明30BAEEAC ACE ,求出BC 即可解决问题.【详解】解:四边形ABCD 是矩形,EA=EC,∴∠=∠,EAC ECAEAC BAE,又∵将纸片沿AE折叠,点B恰好落在AC上,30BAE EAC ACE,AB=,3BC AB,333∴矩形ABCD的面积是33393AB BC.故选:C.【点睛】本题考查矩形的性质,翻折变换,直角三角形30角性质等知识,解题的关键是灵活运用所学知识解决问题.14.A解析:A【解析】【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度,圆柱底面的周长为4dm,圆柱高为2dm,BC BC dm,AB dm,22222AC,22448AC dm,22∴这圈金属丝的周长最小为242AC dm.故选:A.【点睛】本题考查了平面展开-最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.15.C解析:C【解析】【分析】根据矩形的判定定理逐项排除即可解答.【详解】解:由对角线相等的平行四边形是矩形,可得当AC=BD 时,能判定口ABCD 是矩形; 由有一个角是直角的平行四边形是矩形,可得当AB ⊥BC 时,能判定口ABCD 是矩形; 由平行四边形四边形对边平行,可得AD//BC ,即可得∠1=∠2,所以当∠1=∠2时,不能判定口ABCD 是矩形;由有一个角是直角的平行四边形是矩形,可得当∠ABC=∠BCD 时,能判定口ABCD 是矩形.故选答案为C .【点睛】本题考查了平行四边形是矩形的判定方法,其方法有①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线互相平分且相等的四边形是矩形.二、填空题16.3×122018【解析】【分析】首先根据勾股定理得出BC 的长进而利用等腰直角三角形的性质得出DE 的长再利用锐角三角函数的关系得出EIKI=PFEF=12即可得出正方形边长之间的变化规律得出答案即可【解析:3×(12)2018【解析】【分析】首先根据勾股定理得出BC 的长,进而利用等腰直角三角形的性质得出DE 的长,再利用锐角三角函数的关系得出EI KI =PF EF =12,即可得出正方形边长之间的变化规律,得出答案即可.【详解】∵在Rt △ABC 中,AB =AC =3√2,∴∠B =∠C =45°,BC =√2AB =6,∵在△ABC 内作第一个内接正方形DEFG ;∴EF =EC =DG =BD ,∴DE =13BC =2, ∵取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ;再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形…依次进行下去,∴EI KI =PF EF=12, ∴EI =12KI =12HI ,∵DH =EI ,∴HI =12DE =(12)2﹣1×3, 则第n 个内接正方形的边长为:3×(12)n ﹣1. 故第2019个内接正方形的边长为:3×(12)2018. 故答案是:3×(12)2018.【点睛】考查了正方形的性质以及数字变化规律和勾股定理等知识,根据已知得出正方形边长的变化规律是解题关键.17.x≤1【解析】由题意得:1-x≥0解得x≤1故答案为x≤1点睛:二次根式有意义的条件是:a≥0解析:x ≤1【解析】由题意得:1-x ≥0,解得x ≤1.故答案为x ≤1. a a ≥0.18.>【解析】【分析】根据实数大小比较的方法比较即可【详解】解:∵5=∴5故答案为>【点睛】本题考查实数大小的比较熟练掌握实数大小的比较方法是解题关键解析:>【解析】【分析】根据实数大小比较的方法比较即可.【详解】解:∵250∴213>.故答案为>.【点睛】本题考查实数大小的比较,熟练掌握实数大小的比较方法是解题关键19.-2<m <3【解析】【分析】【详解】解:由已知得:解得:-2<m <3故答案为:-2<m <3解析:-2<m <3【解析】【分析】【详解】解:由已知得:20 30 mm>>+⎧⎨-⎩,解得:-2<m<3.故答案为:-2<m<3.20.6【解析】试题分析:由全等可知:AH=DEAE=AH+HE由直角三角形可得:代入可得考点:全等三角形的对应边相等直角三角形的勾股定理正方形的边长相等解析:6【解析】试题分析:由全等可知:AH=DE,AE=AH+HE,由直角三角形可得:222AE DE AB+=,代入可得.考点:全等三角形的对应边相等,直角三角形的勾股定理,正方形的边长相等21.cm【解析】∵平行四边形ABCD∴AD=BCAB=CDOA=OC∵EO⊥AC∴AE=EC∵AB+BC+CD+AD=16∴AD+DC=8cm ∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD解析:cm【解析】∵平行四边形ABCD,∴AD=BC,AB=CD,OA=OC,∵EO⊥AC,∴AE=EC,∵AB+BC+CD+AD=16,∴AD+DC=8cm,∴△DCE的周长是:CD+DE+CE=AE+DE+CD=AD+CD=8cm,故答案为8cm.点睛:此题考查了平行四边形的性质以及线段的垂直平分线的性质,解答本题的关键是判断出EO示线段BD的中垂线.22.5【解析】【分析】根据菱形的对角线互相垂直平分求出OAOB再利用勾股定理列式进行计算即可得解【详解】如图∵四边形ABCD是菱形∴OAAC=4OBBD =3AC⊥BD∴AB5故答案为:5【点睛】本题主要解析:5【解析】【分析】根据菱形的对角线互相垂直平分求出OA、OB,再利用勾股定理列式进行计算即可得解.【详解】如图,∵四边形ABCD是菱形,∴OA12=AC=4,OB12=BD=3,AC⊥BD,∴AB22OA OB=+=5故答案为:5【点睛】本题主要考查了菱形的对角线互相垂直平分的性质,勾股定理的应用,熟记菱形的各种性质是解题的关键.23.6【解析】【分析】先根据矩形的特点求出BC的长再由翻折变换的性质得出△CEF是直角三角形利用勾股定理即可求出CF的长再在△ABC中利用勾股定理即可求出AB的长【详解】解:∵四边形ABCD是矩形AD=解析:6【解析】【分析】先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.【详解】解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8-3=5,在Rt△CEF中,2222534CF CE EF=-=-=设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,则AB=6.故答案为:6.【点睛】本题考查了翻折变换及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.24.128°【解析】【分析】如图延长DC到F根据折叠的性质可得∠ACB=∠BCF继而根据平行线的性质可得∠BCF=∠ABC=26°从而可得∠ACF=52°再根据平角的定义即可求得答案【详解】如图延长DC解析:128°.【解析】【分析】如图,延长DC到F,根据折叠的性质可得∠ACB=∠BCF,继而根据平行线的性质可得∠BCF=∠ABC=26°,从而可得∠ACF=52°,再根据平角的定义即可求得答案.【详解】如图,延长DC到F,∵矩形纸条折叠,∴∠ACB=∠BCF,∵AB∥CD,∴∠BCF=∠ABC=26°,∴∠ACF=52°,∵∠ACF+∠ACD=180°,∴∠ACD=128°,故答案为128°.【点睛】本题考查了折叠的性质,平行线的性质,熟练掌握相关知识是解题的关键.25.【解析】【分析】先由矩形的判定定理推知四边形PECF是矩形;连接PC则P C=EF所以要使EF即PC最短只需PC⊥AB即可;然后根据三角形的等积转换即可求得PC的值【详解】连接PC∵PE⊥ACPF⊥B解析:12 5【解析】【分析】先由矩形的判定定理推知四边形PECF是矩形;连接PC,则PC=EF,所以要使EF,即PC最短,只需PC⊥AB即可;然后根据三角形的等积转换即可求得PC的值.【详解】连接PC,∵PE ⊥AC ,PF ⊥BC ,∴∠PEC =∠PFC =∠C =90°;又∵∠ACB =90°,∴四边形ECFP 是矩形,∴EF =PC ,∴当PC 最小时,EF 也最小,即当CP ⊥AB 时,PC 最小,∵AC =4,BC =3,∴AB =5, ∴12AC•BC =12AB•PC , ∴PC =125. ∴线段EF 长的最小值为125; 故答案是:125. 【点睛】 本题考查了勾股定理、矩形的判定与性质、垂线段最短.利用“两点之间垂线段最短”找出PC ⊥AB 时,PC 取最小值是解答此题的关键.三、解答题26.(1)20860y x =+(06)x ≤≤;(2)3种;方案一:甲调往A :10辆;乙往A :0辆;甲调往B :2辆;乙调往B :6辆; 方案二:甲调往A :9辆;乙往A :1辆;甲调往B :3辆;乙调往B :5辆;方案三:甲调往A :8辆;乙往A :2辆;甲调往B :4辆;乙调往B :4辆;(3)方案一的总运费最少为860元.【解析】【分析】(1)若乙仓库调往A 县农用车x 辆,那么乙仓库调往B 县农用车、甲给A 县调农用车、以及甲县给B 县调车数量都可表示出来,然后依据各自运费,把总运费表示即可; (2)若要求总运费不超过900元,则可根据(1)列不等式确定x 的取值,从而求解; (3)在(2)的基础上,结合一次函数的性质求出最低运费即可.【详解】解:(1)乙仓库调往A 县农用车x 辆,则调往B 县农用车()6x -辆.(6)x ≤ A 县需10辆车,故甲给A 县调10x -辆,给B 县调车(2)x +辆∴40(10)80(2)3050(6)y x x x x =-++++-化简得20860y x =+(06)x ≤≤(2)总运费不超过900,即900y ≤代入(1)结果得20860900x +≤解得2x ≤又因为x 为非负整数∴012x =,,即如下三种方案方案一:甲调往A :10辆;乙往A :0辆;甲调往B :2辆;乙调往B :6辆. 方案二:甲调往A :9辆;乙往A :1辆;甲调往B :3辆;乙调往B :5辆. 方案三:甲调往A :8辆;乙往A :2辆;甲调往B :4辆;乙调往B :4辆. (3)总运费20860y x =+,其中06x ≤≤∵200k =>∴y 随x 的增大而增大∴当x 取最小时,运费y 最小代入0x =得200860860y =⨯+=∴方案为(2)中方案1:甲往A :10辆;乙往A :0辆;甲往B :2辆;乙往B :6辆.总运费最少为860元.【点睛】本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景-建立模型-解释、应用和拓展”的数学学习模式.27.(1)详见解析;(2)3,05P ⎛⎫- ⎪⎝⎭【解析】【分析】(1)△ABC 向右平移3个单位,再向下平移1个单位到△A 1B 1C 1,△A 1B 1C 1和△A 2B 2C 2关于x 轴对称,据此作图即可;(2)依据轴对称的性质,连接BA 2,交x 轴于点P ,此时BP+A 1P 的值最小,依据直线BA 2的解析式,即可得到点P 的坐标.【详解】解:(1)如图所示,△A 1B 1C 1和△A 2B 2C 2即为所求;(2)如图所示,连接BA 2,交x 轴于点P ,则点P 即为所求;设直线BA 2的解析式为y kx b =+,由B (-3,2),A 2(3,-3)可得,3233k b k b -+=⎧⎨+=-⎩,解得5612k b ⎧=-⎪⎪⎨⎪=-⎪⎩ ∴直线BA 2的解析式为y=5162x =-- 当y=0时,51062x --= 解得35x =- ∴305P ⎛⎫- ⎪⎝⎭, 【点睛】本题主要考查了利用平移以及轴对称变换进行作图以及最短路线问题,凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点. 28.见解析【解析】【分析】由平行四边形的性质得出AD ∥BC ,得出∠EAG =∠FBG ,由AAS 证明△AGE ≌△BGF ,得出AE =BF ,由AD ∥BC ,可证四边形AFBE 是平行四边形,由EF ⊥AB ,即可得出结论.【详解】证明:四边形ABCD 是平行四边形,// ,AE BF ∴,EAG FBG ∴∠=∠EF 是AB 的垂直平分线,,AG BG ∴=在AGE ∆和BGF ∆中,EAG FBG AG BGAGE BGF ∠=∠⎧⎪=⎨⎪∠=∠⎩()AGE BGF ASA ∴∆≅∆AE BF ∴=又//AE BF∴四边形AFBE 是平行四边形 EF 是AB 的垂直平分线AF BF ∴=AFBE ∴是菱形【点睛】本题考查了平行四边形的性质、菱形的判定方法、全等三角形的判定与性质、线段垂直平分线的性质;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键. 29.此时B 处距离D 处26km 远.【解析】【分析】在Rt △OBD 中,求出OB ,OD ,再利用勾股定理即可解决问题;【详解】在Rt △AOC 中,∵OA =OC ,AC =km ,∴OA =OC =18(km),∵AB =0.2×40=8(km),CD =0.2×30=6(km), ∴OB =10(km),OD =24(km),在Rt △OBD 中,BD26(km).答:此时B 处距离D 处26km 远.【点睛】本题考查勾股定理,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.30.(1)见解析;(2)6【解析】【分析】(1)由平行线的性质和角平分线的概念可得BE =DE ,易证四边形DEFC 是平行四边形,可得DE =CF ,等量代换即可得出结论;(2)易证四边形BEDF 是平行四边形,再由BE =DE 证得四边形BEDF 是菱形,由等腰三角形“三线合一”可得BD⊥EF,根据勾股定理求得BD,根据三角形中位线定理求得EF,根据菱形的面积公式即可得出答案.【详解】(1)证明:∵DE∥BC,∴∠DBC=∠BDE,∵BD平分∠ABC,∴∠EBD=∠DBC,∴∠BDE=∠EBD,∴BE=DE,∵E、F是AB、BC的中点,∴EF∥AC,∵DE∥BC,∴四边形DEFC是平行四边形,∴DE=CF,∴BE=CF;(2)∵AB=BC=5,BD平分∠ABC,∴BD⊥AC,CD=12AC=3.在Rt△BDC中,BD∵E、F是AB、BC的中点,∴EF=12AC=3.∵F是BC中点,∴BF=CF,∴DE=BF,DE∥BF,∴四边形BEDF是平行四边形,又∵BE=DE,∴四边形BEDF是菱形,∴S菱形BEDF=12 BD·EF=12×4×3=6.【点睛】本题主要考查了等腰三角形的判定和性质,平行四边形的判定和性质,菱形的判定和性质,三角形中位线定理,根据三角形中位线定理和平行四边形的判定证出平行四边形是解决(1)的关键,证出四边形BEDF是菱形是解决(2)的关键.。

浙江省金华市八年级下学期期中数学试卷

浙江省金华市八年级下学期期中数学试卷

浙江省金华市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共11题;共22分)1. (2分) (2015八下·绍兴期中) 下列运算中,结果正确的是()A . =±6B . 3 ﹣ =3C .D .2. (2分)下列根式是最简二次根式的是()A .B .C .D .3. (2分)若三角形三边长为a、b、c,且满足等式,则此三角形是().A . 锐角三角形B . 钝角三角形C . 等腰直角三角形D . 直角三角形4. (2分)如图,在锐角△ABC中,∠A=60°,∠ACB=45°,以BC为弦作⊙O,交AC于点D,OD与BC交于点E,若AB与⊙O相切,则下列结论:①∠BOD=90°;②DO∥AB;③CD=AD;④△BDE∽△BCD;⑤正确的有()A . ①②B . ①④⑤C . ①②④⑤D . ①②③④⑤5. (2分)(2016·青海) 如图,正方形ABCD的边长为2,其面积标记为S1 ,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2 ,…,按照此规律继续下去,则S9的值为()A . () 6B . ()7C . () 6D . ()76. (2分)已知O为四边形ABCD对角线的交点,下列条件能使四边形ABCD成为矩形的是()A . OA=OC,OB=ODB . AC=BDC . AC⊥BDD . ∠ABC=∠BCD=∠CDA=90°7. (2分) (2019八上·惠安期中) 对于命题“若,则”,下面四组关于,的值中,能说明这个命题是假命题的是A . ,B . ,C . ,D . ,.8. (2分)下列说法中错误的是()A . 矩形的对角线互相平分且相等B . 对角线互相垂直的四边形是菱形C . 等腰梯形的两条对角线相等D . 等腰三角形底边的中点到两腰的距离相等9. (2分)下列变量间的关系不是函数关系的是()A . 长方形的宽一定,其长与面积B . 正方形的周长与面积C . 圆柱的底面半径与体积D . 圆的周长与半径10. (2分) (2019八下·合肥期中) 如图,在中,,、是斜边上两点,且,将绕点顺时针旋转后,得到,连结,下列结论:① ;②;③ ;④ .其中正确是().A . ②④B . ①④C . ②③D . ①③11. (2分) (2017八下·路北期中) 在△ABC中,AB=15,AC=13,高AD=12,则△ABC中BC边的长为()A . 9B . 5C . 14D . 4或14二、认真填一填,把答案写在横线上 (共7题;共7分)12. (1分) (2015七上·句容期末) 某商场在“五一”期间举行促销活动,根据顾客按商品标价一次性购物总额,规定相应的优惠方法:①如果不超过500元,则不予优惠;②如果超过500元,但不超过800元,则按购物总额给予8折优惠;③如果超过800元,则其中800元给予8折优惠,超过800元的部分给予6折优惠.促销期间,小红和她母亲分别看中一件商品,若各自单独付款,则应分别付款480元和520元;若合并付款,则她们总共只需付款________元.13. (1分)(2018·昆山模拟) 函数y= 中自变量x的取值范围是________.14. (1分) (2017九上·红山期末) 如图,在⊙O中,弦AB的长为8cm,圆心O到AB的距离为3cm,则⊙O 的半径是________ cm.15. (1分) (2020八下·温州月考) 如上图,四边形ABCD中,∠A=90°,AB=4,AD=3,点M、N分别线段BC、AB上的动点,(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF长度的最大值为________。

浙江省金华市永康市第三中学2023-2024学年八年级下学期期中数学试题

浙江省金华市永康市第三中学2023-2024学年八年级下学期期中数学试题

浙江省金华市永康市第三中学2023-2024学年八年级下学期期中数学试题一、单选题1x 的取值范围是( )A .3x ≤B .3x <C .3x >D .3x ≥ 2.若正方形的周长为40,则其对角线长为( )A.100 B .C .D .103.下列既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.百货商场试销一批新款衬衫,一周内销售情况如表所示,商场经理想要了解哪种型号最畅销,那么他最关注的统计量是( )A .平均数B .中位数C .方差D .众数5.一个多边形的内角和与外角和相等,这个多边形是( )A .三角形B .四边形C .五边形D .六边形 6.若关于x 的一元二次方程260ax bx ++=的一个根为2x =-,则代数式636a b -+的值为( )A .9B .3-C .0D .3 7.若反比例函数32m y x -=的图象在二、四象限,则m 的值可以是( ) A .1- B .2 C .1 D .08.用反证法证明“在直角三角形中,至少有一个锐角不大于45°”,应先假设这个直角三角形中( )A .有一个锐角小于45°B .每一个锐角都小于45°C .有一个锐角大于45°D .每一个锐角都大于45°9.如图,在矩形ABCD 中,AB AD AB >,保持矩形ABCD 四条边长度不变,使其变形成平行四边形11ABC D ,且点1D 恰好在BC 上,此时1ABD V 的面积是矩形ABCD 面积的13,则AD 的长度为( )A .B .C .D .10.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,点P 为边AD 上一点,过P 分别作PE AC ⊥,PF BD ⊥,垂足为点E ,F ,过A 作AH BD ⊥,垂足为点H ,若知道APE V 与DPF V 的周长和,则一定能求出( )A .BOC V 的周长B .ADH V 的周长C .ABC V 的周长D .四边形APFH 的周长二、填空题11.当2a =12.已知y 与x 成反比例,且当2x =时,6y =,则当4y =时,x 的值为.13.如图,要测量B ,C 两地的距离,小明想出一个方法:在池塘外取点A ,得到线段AB 、AC ,并取AB 、AC 的中点D 、E ,连结DE .小明测得DE 的长为a 米,则B 、C 两地的距离为米.14.如图,点P 是正比例函数y x =与反比例函数k y x=在第一象限内的交点,PA OP ⊥交x 轴于点A ,POA V 的面积为4,则k 的值是.15.如图,在菱形纸片ABCD 中,AB =4,∠A =60°,将菱形纸片翻折,使点A 落在CD 边的中点E 处,折痕为FG ,点F 、G 分别在边AB 、AD 上,则GE =.16.三折伞是我们生活中常用的一种伞,它的骨架是一个“移动副”和多个“转动副”组成的连杆机构,如图1是三折伞一条骨架的结构图,当“移动副”(标号1)沿着伞柄移动时,折伞的每条骨架都可以绕“转动副”(标号2—9)转动;图2是三折伞一条骨架的示意图,其中四边形CDEF 和四边形DGMN 都是平行四边形,AC =BC =14cm ,DE =2cm ,DN =1cm .已知关闭折伞后,点A 、E 、H 三点重合,点B 与点M 重合.(1)BN =cm ;(2)当∠BAC =60°时,点H 到伞柄AB 距离为cm .三、解答题1701029(1)|11)----18.解方程:(x ﹣3)(x +3)=2x .19.如图1,放在墙角的立柜的上下底面是等腰直角三角形,如图2所示,若腰长AC 为1m ,现要将这个立柜搬过宽为0.8m 的通道,你觉得能通过吗?请说明理由.20.如图,平行四边形ABCD 中,AE ⊥BD 于点E ,CF ⊥BD 于点F ,连结AF 、CE .(1)求证:四边形AECF 是平行四边形;(2)若AB =6,AD =∠ABD =30°,求四边形AECF 的面积.21.某校举办了一次趣味数学竞赛,满分100分,学生得分均为整数,达到成绩60分及以上为合格,达到90分及以上为优秀,这次竞赛中,甲、乙两组学生成绩如下(单位:分) 甲组:30,60,60,60,60,60,70,90,90,100乙组:50,60,60,60,70,70,70,70,80,90(1)以上成绩统计分析表中=a ______分,b =______分,c =______分(2)小亮同学说:“这次竞赛我得了70分,在我们小组中属中游略偏上!”观察上面表格判断,小亮可能是甲、乙哪个组的学生?并说明理由.(3)如果你是该校数学竞赛的教练员,现在需要你选一组同学代表学校参加复赛,你会选择哪一组?并说明理由22.设函数122,(0,2)k k y y k k x x+==≠≠-. (1)若函数1y 的图象经过点()2,1,求12,y y 的函数表达式.(2)若函数1y 与2y 的图象关于y 轴对称,求12,y y 的函数表达式. (3)当14x ≤≤,函数1y 的最大值为m ,函数2y 的最小值为4m -,求m 与k 的值. 23.根据以下提供的素材,完成任务.如何制定商店的销售定价方案根据以下商店提供的信息,请你设计一个合适的商品定价方案.素材一:商品成本:100元/件,每天进货120件,并且全部卖出;商品有,A B 两种包装,目前的售价和日销量如下表:素材二:为了增加盈利,该商店准备降低A 包装商品的售价,同时提高B 包装商品的售价.通过市场调研发现,在一定范围内,A 包装商品售价每降低1元可多卖出2件,B 包装商品售价每提高1元就少卖出2件.商店发现若按照当前的总销量销售A B ,两种包装商品,最大总利润.....为1264元. 素材三:销售一段时间后,商店发现若减少A B ,两种包装商品的总销量,A B ,两种包装商品的销售总利润反而有所增长.为进一步增加盈利,商店决定将A B ,两种包装商品的总销量减少10件.【问题解决】任务一:探究商品销量设每件A 包装商品售价降低x 元(x 为整数),用含x 的代数式表示降价后A 包装商品每日的总销售量为________件.任务二:探究商品售价在每日A B ,两种包装商品的总销量为120件的前提下,为使总利润达到最大,试求出此时A B ,两种包装商品的售价.任务三:确定定价方案请设计一种A B ,两种包装商品的定价方案,使一天的销售总利润超过..1430元.(直接写出方案即可)24.如图1,四边形ABCD 为正方形,点A 在y 轴上,点B 在x 轴上,且2OA OB =,反比例函数27y x=在第一象限的图象经过正方形的顶点C .(1)求点C 的坐标;(2)如图2,将正方形ABCD 沿x 轴向右平移得到正方形A B C D '''',点A '恰好落在反比例函数的图象上,求此时点D ¢的坐标;(3)在(2)的条件下,点P 为y 轴上一动点,平面内是否存在点Q ,使以点O 、A '、P 、Q 为顶点的四边形为菱形,若存在,请直接写出点Q 的坐标,若不存在,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省金华市八年级(下)期中数学试卷
一、仔细选一选(本题共10小题,每题3分,共30分)
1.(3分)在下列代数式中,不是二次根式的是()
A.B.C.D.
2.(3分)下列方程是一元二次方程的是()
A.ax2+bx+c=0B.3x2﹣2x=3(x2﹣2)
C.(x﹣2)2﹣2=0D.x3﹣2x﹣4=0
3.(3分)下面四个图案分别是步行标志、禁止行人通行标志、禁止驶入标志和直行标志,其中是中心对称图形的是()
A.B.C.D.
4.(3分)矩形具有而平行四边形不一定具有的性质是()
A.对角相等B.对边相等
C.对角线相等D.对角线互相平分
5.(3分)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:
甲乙丙丁
平均数(环)9.149.159.149.15
方差 6.6 6.8 6.7 6.6
根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁
6.(3分)抢微信红包成为节日期间人们最喜欢的活动之一.对某单位50名员工在春节期间所抢的红包金额进行统计,并绘制成了统计图.根据如图提供的信息,红包金额的众数和中位数分别是()
A.20,20B.30,20C.30,30D.20,30
7.(3分)如图,在四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD 是平行四边形的是()
A.AB=DC,AD=BC B.AB∥DC,AD∥BC
C.AB∥DC,AD=BC D.OA=OC,OB=OD
8.(3分)若关于x的一元二次方程kx2﹣2kx+4=0有两个相等的实数根,则k的值为()A.0或4B.4或8C.0D.4
9.(3分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()
A.32x+2×20x=32×20﹣570
B.(32﹣2x)(20﹣x)=570
C.(32﹣x)(20﹣x)=32×20﹣570
D.32x+2×20x﹣2x2=570
10.(3分)如图,在四边形ABCD中,AD=BC,E,F,G分别是AB,CD,AC的中点,若∠DAC=20°,∠ACB=84°,则∠FEG等于()
A.32°B.38°C.64°D.30°
二、认真填一填(共6题,每题4分,共24分)
11.(4分)函数的自变量x的取值范围是.
12.(4分)若方程x2+x﹣13=0的两根分别为a、b,则ab(a+b)=.
13.(4分)已知一组数据:3,3,4,5,5,则它的方差为.
14.(4分)已知△ABC中,AB=AC,求证:∠B<90°,若用反证法证这个结论,应首先假设.
15.(4分)平行四边形的一个内角平分线将该平行四边形的一边分为2cm和3cm两部分,则该平行四边形的周长为.
16.(4分)如图,在矩形ABCD中,点E,F分别是BC,DC上的一个动点,以EF为对称轴折叠△CEF,使点C的对称点G落在AD上,若AB=5,BC=13.则CF的取值范围为.
三、全面解一解(8个小题,共66分,各小题都必须写出解答过程)
17.(6分)计算下列各题:
(1)3;
(2)(2)(2)
18.(6分)如图,在▱ABCD中,点E、F分别是AD、BC的中点,求证:AF=CE.
19.(6分)学校准备从甲乙两位选手中选择一位选手代表学校参加所在地区的汉字听写大赛,学校对两位选手从表达能力、阅读理解、综合素质和汉字听写四个方面做了测试,他们各自的成绩(百分制)如表:
选手表达能力阅读理解综合素质汉字听写
甲85788573
乙73808283
(1)由表中成绩已算得甲的平均成绩为80.25,请计算乙的平均成绩,从他们的这一成绩看,应选派谁;
(2)如果表达能力、阅读理解、综合素质和汉字听写分别赋予它们2、1、3和4的权,请分别计算两名选手的平均成绩,从他们的这一成绩看,应选派谁.
20.(8分)解方程:
(1)x(x+2)=5(x+2);
(2)2m2+3m﹣1=0
21.(8分)如图,AD是等腰△ABC底边BC上的高.点O是AC中点,延长DO到E,使OE=OD,连接AE,CE.
(1)求证:四边形ADCE的是矩形;
(2)若AB=17,BC=16,求四边形ADCE的面积.
22.(10分)阅读下表:解答下列问题:
线段AB上的点数n
(包括A、B两点)
图例线段总条数N
33=2+1
46=3+2+1
510=4+3+2+1
615=5+4+3+2+1
(1)根据表中规律猜测线段总条数N与线段上点数n(包括线段的两个端点)的关系,用含n的代数式表示N,则N=.
(2)2018年“俄罗斯世界杯足球赛”,第一轮小组赛共有32支球队分成8组(每组4个队),每组组内分别进行单循环赛(即每个队与本小组的其它队各比赛一场),求第轮共要进行儿场比赛?
(3)2018年“中国足球短级联赛”,不分小组,所有球队直接进行双循环赛(即每两个队之间按主客场共要进行两场比赛),共要进行240场比赛,求共有儿支球队参加比赛?23.(10分)“转化”是数学中的一种重要思想,即把陌生的问题转化成熟悉的问题,把复杂的问题转化成简单的问题,把抽象的问题转化为具体的问题.
(1)请你根据已经学过的知识求出下面星形图(1)中∠A+∠B+∠C+∠D+∠E的度数;(2)若对图(1)中星形截去一个角,如图(2),请你求出∠A+∠B+∠C+∠D+∠E+∠F的度数;
(3)若再对图(2)中的角进一步截去,你能由题(2)中所得的方法或规律,猜想图3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度数吗?只要写出结论,不需要写出解题过程)
24.(12分)如图,矩形ABCD中,AB=12cm,BC=6cm,动点P从点A出发,按折线ADCBA 方向以4cm/s的速度运动,动点Q从点A出发,按折线ABCDA方向以2cm/s的速度运动,点E在线段DC上,且CE=2cm,若P、Q两点同时从点A出发,到第一次相遇时停止运动.
(1)求经过几秒钟P、Q两点停止运动?
(2)求点B、E、P、Q构成平行四边形时,P、Q两点运动的时间;
(3)写出△EPQ的面积S(cm2)与运动时间为t(s)之间的函数表达式.
浙江省金华市八年级(下)期中数学试卷
参考答案
一、仔细选一选(本题共10小题,每题3分,共30分)
1.D;2.C;3.C;4.C;5.D;6.C;7.C;8.D;9.B;10.A;
二、认真填一填(共6题,每题4分,共24分)
11.x≤2;12.13;13.;14.∠B≥90°;15.14cm或16cm;16.;
三、全面解一解(8个小题,共66分,各小题都必须写出解答过程)
17.;18.;19.;20.;21.;22.;23.;
24.;。

相关文档
最新文档