武汉市2019-2020学年七年级上学期期末数学试题(I)卷

合集下载

湖北省武汉市七年级上学期期中考试数学试题(含答案)

湖北省武汉市七年级上学期期中考试数学试题(含答案)

七年级上学期数学期中考试试卷一、单选题1.-2020 的相反数是()A. -2020B. 2020C.D.2.单项式的系数和次数分别是()A. 1,9B. 0,9C. ,9D. ,243.2020年6月23日,我国成功发射北斗系统第55颗导航卫星,暨北斗三号最后一颗全球组网卫星,该卫星驻守在我们上方36000公里的天疆,数36000用科学记数法表示为( )A. 360×102B. 36×103C. 3.6×104D. 0.36×1054.下列运算结果错误的是()A. B. C. D.5.按括号内的要求用四舍五入法取近似数,其中正确的是()A. (精确到个位)B. (精确到十分位)C. (精确到0.1)D. (精确到0.0001)6.下列运算中正确的是()A. B. C. D.7.已知,且,那么等于()A. 8B. -2C. 8或-2D. -8或-28.某药厂计划对售价为元的药品进行降价销售,现在有三种方案.方案一:第一次降价10%,第二次降价30%;方案二;第一次降价20%,第二次降价15%﹔方案三:第一、二次降价均为20%三种方案哪种降价最多()A. 方案一B. 方案二C. 方案三D. 不能确定9.如图,都是由棱长为1的正方体叠成的图形.例如:第①个图形由1个正方体叠成,第②个图形由4个正方体叠成,第③个图形由10个正方体叠成…,低此规律,第10个图形由个正方体叠成,则的值为()A. 220B. 165C. 120D. 5510.把两张形状大小完全相同的小长方形卡片(如图1)不重复地放在一个底面为长方形(长为,宽为)的盒子底部(如图2),盒子底面未被卡片覆盖的部分用阴影表示.则图2中两块阴影部分周长的和是()A. B. C. D.二、填空题11.若零上8℃记作+8℃,则零下5℃记作________℃.12.在有理数中,绝对值最小的数是________.13.两船从同一个港口同时出发反向而行,甲船顺水航行了小时,乙船逆水航行了小时,两船在静水中的速度都是,水流速度是则两船一共航行了________ .(用含的式子表示). 14.一个两位数M的个位上的数是、十位上的数是,把这个两位数的十位上的数与个位上的数交换位置,所得的新数记为,则________.(用含的式子表示)15.如图,从左边第一个格子开始向右,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.5则________,第2019个格子填入的整数为________16.如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:,…,我们把第一个数记为,第二个数记为,第三个数记为,…,第个数记为,则 1 2三、解答题17.计算(1)(2)(3)(4)18.先化简,再求值(1),其中(2),其中19.食品厂从生产的袋装食品中抽出样品袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负来表示,记录如下表;(1).这批样品的平均质量比标准质量是超过还是不足?平均每袋超过或不足多少克?(2).若每袋标准质量为450克,求抽样检测的样品总质量是多少?20.一辆货车从龙信广场出发负责送货,向西走了2千米到达光华小区,继续向西走了3.5千米到达实验初中,然后向东走了6.5千米到达商和广场,最后返回龙信广场.(1).以龙信广场为原点,向东为正方向,1个单位长度表示1千米,请你在数轴上标出光华小区、实验初中,商和广场的位置.(光华小区点表示,实验初中用点表示,商和广场用点表示)(2).光华小区与商和广场相距多远?(3).若货车每千米耗油升,那么这辆货车此次送货共耗油多少升?21.已知是有理数.(1).当时,先判断的正、负符号,再求的值;(2).当时,直接写出的值.22.一种笔记本的售价为2.2元/本,如果买100本以上,超过100本部分的售价为2元/本.(1).小强和小明分别买了50本和200本,他们俩分别花了多少钱?(2).如果小红买这种笔记本花了380元,她买了多少本?(3).如果小红买这种笔记本花了n元,她又买了多少本?23.如图是某年某月的月历,用如图所示的“凹”字型在月历中任意圈出5个数,设“凹“字型框中的五个数分别(1).若,则 1 2 ,若,则 3 (用含的式子表示);(2).在移动“凹”字型框过程中,小胖说被框住的5个数字之和可能为106,大胖说被框住的5个数字之和可能为90,你同意他们的说法吗?请说明理由;(3).若另一个“凹”字型框框住的五个数分别为,且,则符合条件的的值为 124.(问题背景)在数轴上,点表示数在原点的左边,点表示数在原点的右边,如图1所示,则有:① ;②线段的长度(1)(问题解决)点、点,点在数轴上的位置如图2所示,三点对应数分别为①线段的长度为________②若点为线段的中点,则点表示的数是________(用含的式子表示);③化简(2)(关联运用)①已知:点、点、点、点在数轴上的位置如图3所示,点对应数为,点对应数为,若定长线段沿数轴正方向以每秒个单位长度匀速运动,经过原点需要秒,完全经过线段需要秒,求的值;②已知,当式子取最小值时,相应的的取值范围是________,式子的最小值是________.(用含的式子表示)答案解析部分一、单选题1.【答案】B【解析】【解答】解:-2020 的相反数是:2020.故答案为:B.【分析】根据相反数的定义:只有符号不同的两个数互为相反数,即可得出结论.2.【答案】C【解析】【解答】解:系数为:;次数为2+3+4=9。

考点05 实际问题与一元一次方程——配套问题(原卷版)

考点05 实际问题与一元一次方程——配套问题(原卷版)

考点05 实际问题与一元一次方程配套问题1.宜宾某机械厂加工车间有34名工人,平均每名工人每天加工小齿轮20个或大齿轮15个.已知3个小齿轮和2个大齿轮配成一套,问分别安排多少名工人加工大、小齿轮,才能使每天生产的齿轮刚好配套?若设加工小齿轮的工人有x 名,则可列方程为( )A .2015(34)x x =-B .220315(34)x x ⨯=⨯-C .320215(34)x x ⨯=⨯-D .320(34)215x x ⨯-=⨯ 2.(黑龙江省牡丹江市2019-2020学年七年级上学期期末数学试题)某车间有44名工人,每人每天可以生产600个螺钉或800个螺母,1个螺钉需要配2个螺母,要求每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .800(44)600x x -=B .2800(44)600x x ⨯-=C .800(44)2600x x -=⨯D .800(22)600x x -= 3.(四川省成都市锦江区七中育才学校2019-2020学年七年级上学期期末数学试题)成都市某电影院共有4个大厅和5个小厅.其中1个大厅、2个小厅,可同时容纳1680人观影;2个大厅、1个小厅,可同时容纳2280人观影.设1个小厅可同时容纳x 人观影,由题意得下列方程正确是( )A .2(1680)2280x x +-=B .2(16802)2280x x +-=C .2(2280)1680x x +-=D .1(2280)16802x x +-= 4.(山东省济宁市嘉祥县2019-2020学年七年级上学期期末数学试题)某个工厂有技术工12人,平均每天每人可加工甲种零件24个或乙种零件15个,2个甲种零件和3个乙种零件可以配成一套,设安排x 个技术工生产甲种零件,为使每天生产的甲乙零件刚好配套,则下面列出方程中正确的有( )个 ①()15122423x x -= ②32415(12)2x x ⨯=- ③()32421512x x ⨯=⨯- ④()224315121x x ⨯+⨯-=A .3B .2C .1D .05.(山东省青岛市市北区2019-2020学年七年级上学期期末数学试题)某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个,若3个甲种零件和2个乙种零件配成一套,应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的甲种零件和乙种零件刚好配套?设应分配x 人生产甲种零件,则根据题意可得的方程为( )A .1262(23)x x =-B .312223(62)x x ⨯=⨯-C .212323(62)x x ⨯=⨯-D .323(62)125x x ⨯-= 6.(云南省昆明市呈贡区2019-2020学年七年级上学期期末数学试题)某车间有27名工人,每人每天可以生产22个螺母或16个螺栓,1个螺栓配2个螺母,为使每天生产的螺栓和螺母刚好配套,设分配x 名工人生产螺栓,则下面所列方程正确的是( )A .1622(27)x x =-B .21622(27)x x ⨯=-C .2216(27)x x =-D .22216(27)x x ⨯=-7.(山东省菏泽市曹县2019-2020学年七年级上学期期末数学试题)有一些苹果和苹果箱,若每箱装25千克苹果,则剩余40千克苹果;若每箱装30千克苹果,则余下20个苹果箱;设这些苹果箱有x 个,则可列方程为( )A .()25403020x x +=-B .()25403020x x -=+C .25403020x x +=-D .25403020x x -=+8.(浙江省宁波市海曙区2019-2020学年七年级上学期期末数学试题)某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( )A .()121826x x =-B .()181226x x =-C .()2181226x x ⨯=-D .()2121826x x ⨯=-9.(江西省新余市2019-2020学年七年级上学期期末数学试题)一套仪器由两个A 部件和三个B 部件构成.用1立方米钢材可做40个A 部件或240个B 部件.现要用5立方米钢材制作这种仪器,应用多少钢材做A 部件,多少钢材做B 部件,才能恰好配成这种仪器?若设应用x 立方米钢材做A 部件,则可列方程为( ) A .2403240(5)x x ⨯=⨯-B .3402240(5)x x ⨯=⨯-C .40(5)24032x x -=D .40(5)24023x x -= 10.(湖北省武汉市江汉区2019~2020学年七年级上学期期末数学试题)某车间30名工人生产螺母和螺钉,每人每天平均生产螺钉1500个或螺母4500个,一个螺钉要配两个螺母,已知每天生产的产品刚好配套,若设安排x 名工人生产螺钉,则可列方程为( )A .4500(30-x )=2×1500xB .2×4500(30-x )= 1500xC .4500 x =2×1500(30-x )D .4500 x +2×1500x =3011.机械厂加工车间又85名工人,平均每人每天加工大齿轮16个或小齿轮10个,已知2个大齿轮与3个小齿轮配成一套,为了使每天加工的大小齿轮刚好配套,设安排x 名工人生产大齿轮,则下面所列方程正确的是( )A .()21631085x x ⨯=⨯-B .()31621085x x ⨯=⨯- C .() 161085x x =-D .() 31021685x x ⨯=⨯- 12.(湖北省孝感市云梦县2019-2020学年七年级上学期期末数学试题)某车间有22名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母20个,现有x 名工人生产螺栓,其他工人生产螺母,恰好每天生产的螺栓和螺母按照1:2配套,下列方程正确的是( )A .12x =20(22﹣x )B .2×12x =20(22﹣x )C .2×20x =12(22﹣x )D .12x =2×20(22﹣x )13.(浙江省杭州市西湖区2019-2020学年七年级上学期期末数学试题)某眼镜厂车间有28名工人,每个工人每天生产镜架60个或者镜片90片,为使每天生产的镜架和镜片刚好配套,设安排x 名工人生产片,则可列方程( )A .60(28)90x x --B .6090(28)x x --C .260(28)90x x ⨯-=D .60(28)290x x -=⨯ 14.某校社团活动课中,手工制作社的同学用一种彩色硬纸板制作某种长方体小礼品的包装盒,每张硬纸板可制作盒身12个,或制作盒底18个,1个盒身与2个盒底配成一套.现有28张这种彩色硬纸板,要使盒身和盒底刚好配套,若设需要x 张做盒身,则下列所列方程正确的是( )A .()182812x x -=B .()1828212x x -=⨯C .()181412x x -=D .()2182812x x ⨯-=15.(湖北省武汉市江岸区2020-2021学年七年级上学期新起点数学试题)甲、乙两人每天生产某种产品的数量比是9:5,经过生产线升级他们每天都多生产27件,那么现在他们每天生产品的数量之比为9:7,则乙现在每天生产产品的件数为( ).A .42B .48C .54D .6316.已知用6米铜管分别做2张桌子或3张椅子的框架,如有500米铜管可生产出几套桌椅( ) A .150套 B .125套 C .100套 D .60套17.(河南省南阳市卧龙区2019--2020学年七年级下学期期中数学试题)图中标有相同字母的物体的质量相同,若A 的质量为20克,当天平处于平衡状态时,B 的质量为( )A .5克B .10克C .15克D .20克18.(山西省2019-2020学年七年级第七次大联考数学试题)抗疫期间,一车间生产瓶装酒精并装箱,已知封瓶和装箱的生产线共26条,在所有的生产线都保证匀速工作的条件下,酒精封瓶每小时可封650瓶,装箱每小时可装75箱(每箱10瓶).某天检测8:00~9:00生产线的工作情况,发现有100瓶未装箱,问封瓶和装箱各有多少条生产线?若设封瓶生产线有x条,则可列方程为_________.19.(山西省2018-2019学年七年级下学期阶段四质量评估试题数学试题)某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母14个或螺栓20个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则所列方程是____________.20.(山东省德州市平原县2019-2020学年七年级上学期期末数学试题)某车间有工人660名,生产一种由一个螺栓和两个螺母的配套产品,每人每天平均生产螺栓14个或螺母20个,如果你是这个车间的车间主任,你应如何分配生产螺栓和螺母的人数,才能使生产出来的螺栓和螺母刚好配套,若设x人生产螺栓,则可列方程为_______________.21.(黑龙江省哈尔滨市德强中学2020-2021学年七年级上学期9月月考数学试题)有两桶水,甲桶装有180千克,乙桶装有150千克,要使两桶水的重量相同,则甲桶应向乙桶倒水_________千克22.(黑龙江省哈尔滨市松雷中学2020-2021学年七年级上学期9月月考数学试题)家具厂制作一张桌子需要一个桌面和3条桌腿,1立方米木材可制作20个桌面,或者制作360条桌腿,现有7立方米木材,应该用多少立方米木材生产桌面,才能使所有木材生产出的桌面与桌腿正好配套?23.(北京101中学2020-2021学年七年级上学期9月月考数学试题)有大小两筐苹果,大筐苹果与小筐苹果单价比是5∶4,其重量比是2∶3,把两筐苹果混合在一起成100千克的混合苹果,单价为每千克2.2元,大小两筐苹果原单价各是多少?24.(黑龙江省哈尔滨市第69中学2020-2021学年七年级上学期九月月考数学试题)某车间每天能制作甲种零件500个,或者制作乙种零件250个,甲乙两种零件各一个配成一套产品,现要在30天内制作最多的成套产品,则甲种零件制作多少天?25.(内蒙古巴彦淖尔市杭锦后旗2019-2020学年七年级上学期期末数学试题)某车间每天能生产甲种零件120个,或者乙种零件100个.甲、乙两种零件分别取3个、2个才能配成一套,要在30天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?26.某车间有27个工人,生产甲、乙两种零件,已知每人每天平均能生产甲种零件22个或乙种零件16个,应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的甲种零件和乙种零件刚好配套?(每2个甲种零件和1个乙种零件配成一套)27.(四川省宜宾市宜宾县观音片区2018-2019学年七年级下学期期中数学试题)工厂某车间有48名工人,平均每人每天加工大齿轮10个或小齿轮15个,已知1个大齿轮与3个小齿轮配成一套,那么怎么安排工人,才能使每天加工的大小齿轮刚好配套?28.(黑龙江省哈尔滨市宾县2019-2020学年七年级上学期期末数学试题)方程应用题(1)某车间有55名工人,每人每天可以生产1200个螺钉或2000个螺母.一个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?(2)某校七年级社会实践小组去商场调查商品销售情况,了解该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?29.机械厂加工车间有90名工人,平均每人每天加工大齿轮8个或小齿轮14个,已知1个大齿轮与2个小齿轮配成一套,问需分别安排多少名工人加工大、小齿轮,才能使每天加工的大小齿轮刚好配套?30.(安徽省合肥市第四十八中学2019-2020学年七年级上学期12月月考数学试题)某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,恰好每天生产的螺栓和螺母按1:2配套,求多少人生产螺栓,多少生产螺母?31.(湖北省武汉市青山区2019-2020学年七年级上学期期末数学试题)某车间有60名工人,平均每人每天可以加工大齿轮3个或小齿轮4个,已知1个大齿轮和4个小齿轮配为一套,问如何安排工人使生产的产品刚好配套?32.(河南省安阳市殷都区2019-2020学年七年级上学期期末数学试题)某车间有22名工人,每人每天可以生产1200个螺钉或2000螺母,一个螺钉需要配两个螺母,为了使每天生产的螺钉和螺母刚好配套,应安排多少名工人生产螺钉?33.(浙江省温州市苍南县2019-2020学年七年级上学期期末数学试题)为拓宽销售渠道,某水果商店计划将146个柚子和400个橙子装入大、小两种礼箱进行出售,其中每件小礼箱装2个柚子和4个橙子;每件大礼箱装3个柚子和9个橙子.要求每件礼箱都装满,柚子恰好全部装完,橙子有剩余,设小礼箱的数量为x件.(1)大礼箱的数量为________件(用含x的代数式表示).(2)若橙子剩余12个,则需要大、小两种礼箱共多少件?(3)由于橙子有剩余,则小礼箱至少需要________件.34.劳作课上,王老师组织七年级5班的学生用硬纸制作圆柱形笔筒.七年级5班共有学生55人,其中男生人数比女生人数少3人,每名学生每小时能剪筒身30个或剪筒底90个.(1)七年级5班有男生,女生各多少人;(2)原计划女生负责剪筒身,男生负责剪筒底,要求一个筒身配两个筒底,那么每小时剪出的筒身与筒底能配套吗?如果不配套,男生应向女生支援多少人,才能使每小时剪出的筒身与筒底配套.35.(湖北省恩施土家族苗族自治州咸丰县2019-2020学年七年级上学期期末数学试题)某糕点厂中秋节前要制作一批盒装月饼,每盒中装2块大月饼和4块小月饼.制作1块大月饼要用0.05kg面粉,1块小月饼要用0.02kg面粉.现共有面粉4500kg,问制作两种月饼应各用多少面粉,才能生产最多的盒装月饼?(用一元一次方程解答)36.(重庆市合川区2019-2020学年七年级上学期期末数学试题)用硬纸制作圆柱形茶叶筒,每张硬纸可制筒身15个或筒底36个(硬纸恰好无剩余),一个筒身和两个筒底配成一个茶叶筒.现有110张硬纸,用多少张硬纸制作筒身、多少张硬纸制作筒底可以正好制成整套茶叶筒而无剩余硬纸?37.(山东省滨州市滨城区2019-2020学年七年级上学期期末数学试题)某车间有33名工人,每人每天可以生产300个螺钉或500个螺母.已知1个螺钉需要配2个螺母,怎样安排工人才能使每天生产的螺钉,螺母刚好配套?能配成多少套?38.(内蒙古自治区呼伦贝尔市莫旗2019-2020学年七年级上学期期末数学试题)某车间每天能制作甲种零件500只,或者制作乙种零件250只,甲、乙两种零件各一只配成一套产品,现在要在30天内制作最多的成套产品,则甲、乙两种零件各应制作多少天?39.(河南省三门峡市2019-2020学年七年级上学期期末数学试题)某车间有62个工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个.已知每3个甲种零件和2个乙种零件配成一套,问应分配多少人生产甲种零件,多少人生产乙种零件,才能使每天生产的这两种零件刚好配套?40.(山东省日照市田家炳实验中学2019-2020学年七年级上学期12月月考数学试题)某车间有技术工人40人,平均每天每人可加工甲种部件16个或乙种部件12个. 1个甲种部件和3个乙种部件配成一套,问加工甲、乙部件各安排多少人,才能使每天加工的部件刚好配套?41.(天津市部分中学2019-2020学年七年级上学期期末数学试题)工业园区某机械厂的一个车间主要负责生产螺丝和螺母,该车间有工人44人,其中女生人数比男生人数的2倍少10人,每个工人平均每天可以生产螺丝50个或者螺母120个(1)该车间有男生、女生各多少人?(2)已知一个螺丝与两个螺母配套,为了使每天生产的螺丝螺母恰好配套,应该分配多少工人负责生产螺丝,多少工人负责生产螺母?42.(重庆市渝北区2019-2020学年七年级上学期期末数学试题)某工厂接受了20 天内生产1200 台GH 型电子产品的总任务。

武汉市武昌区七年级上期末数学试题(附答案)-精华版

武汉市武昌区七年级上期末数学试题(附答案)-精华版

第一学期期末学业水平测试七年级数学试卷一、选择题(共10小题,每小题3分,共30分) 1.四个有理数-2、1、0-1,其中最小的是( ) A .1B .0C .-1D .-22.21的相反数是( ) A .2 B .21C .21 D .-23.全面贯彻“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进煤燃电厂脱硫改造15 000 000千万是《政府工作报告》中确定的中点任务之一,将数据15 000 000用科学记数法表示为( ) A .15×106B .1.5×107C .1.5×108D .0.15×1084.如图,左面的平面图形绕轴旋转一周,可以得到的立体图形是( )5.多项式x 3+x 2+x +1的次数是( )A .3B .4C .5D .6 6.若x =-1是关于x 的方程2x +a =1的解,则a 的值为( ) A .-1B .1C .3D .-37.下列各式中运算正确的是( ) A .4m -m =3B .a 2b -ab 2=0C .2a 3-3a 3=a3D .xy -2xy =-xy8.一件夹克衫先按成本价提高50%标价,再将标价打8折出售,结果获利28元.设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是( ) A .08(1+0.5)x =x +28 B .08(1+0.5)x =x -28 C .08(1+0.5x )=x -28D .08(1+0.5x )=x +289.在数轴上表示有理数a 、b 、c 的点如图所示,若ac <0,b +a <0,则( )A .b +c <0B .|b |<|c |C .|a |>|b |D .abc <010.如图,点C 、D 为线段AB 上两点,AC +BD =a ,且AD +BC =57AB ,则CD 等于( ) A .a 52B .a 32C .a 35D .a 75二、填空题(本大题共6个小题,每小题3分,共18分)11.某市2016年元旦的最低气温为-2℃,最高气温为8℃,这一天的最高气温比最低气温高__________℃ 12.38°15′=__________°13.若单项式-x 6y 3与2x 2n y 3是同类项,则常数n 的值是__________14.已知∠α和∠β互为补角,且∠β比∠α小30°,则∠β等于__________° 15.延长线段AB 到点C ,使BC =2AB ,取AC 中点D ,BD =1,则AC =__________16.已知整数a 1、a 2、a 3、a 4、……满足下列条件:a 1=-1,a 2=-|a 1+2|,a 3=-|a 2+3|,a 4=-|a 3+4|,……,a n +1=-|a n +n +1|(n 为正整数)依此类推,则a 2017的值为__________ 三、解答题(共8题,共72分)17.(本题8分)计算:(1) (-8)+10+2+(-1) (2) (-2)2×3+(-3)3÷918.(本题8分)解方程:(1) 5x -6=3x -4 (2)46321-+=+x x19.(本题8分)先化简,再求值:2x 2-5x +4-(2x 2-6x ),其中x =-320.(本题8分)某村种植了小麦、水稻、玉米三种农作物,小麦种植面积是a hm 2,水稻种植面积是小麦种植面积的4倍,玉米种植面积比小麦种植面积的2倍少3 hm 2(1) 该村三种农作物种植面积一共是多少hm 2? (2) 水稻种植面积比玉米种植面积大多少hm 2?21.(本题8分)如图,OD 平分∠AOB ,OE 平分∠BOC ,∠COD =20°,∠AOB =140°,求∠DOE 的度数22.(本题8分)A 、B 两种型号的机器生产同一种产品,已知7台A 型机器一天生产的产品装满8箱后还剩2个,5台B 型机器一天生产的产品装满6箱后还剩8个.每台A 型机器比每台B 型机器一天少生产2个产品,求每箱装多少个产品?23.(本题10分)已知数轴上,点A和点B分别位于原点O两侧,点A对应的数为a,点B对应的数为b,且|a-b|=14(1) 若b=-6,则a的值为__________(2) 若OA=3OB,求a的值(3) 点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值24.(本题12分)已知O为直线AB上一点,射线OD、OC、OE位于直线AB上方,OD在OE的左侧,∠AOC=120°,∠DOE=80°(1) 如图1,当OD平分∠AOC时,求∠EOB的度数(2) 点F在射线OB上①若射线OF绕点O逆时针旋转n°(0<n<180且n≠60),∠FOA=3∠AOD,请判断∠FOE和∠EOC的数量关系并说明理由②若射线OF绕点O顺时针旋转n°(0<n<180),∠FOA=2∠AOD,OH平分∠EOC.当∠FOH=∠AOC时,则n =___________武昌区2016—2017学年度第一学期期末学业水平测试七年级数学试卷参考答案一、选择题。

金考卷:人教版湖北省2019-2020学年七年级数学上学期期末原创卷(含解析版答案)

金考卷:人教版湖北省2019-2020学年七年级数学上学期期末原创卷(含解析版答案)

湖北省2019-2020学年上学期期末原创卷七年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:人教版七上全册。

第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.比-1小2的数是 A .3B .1C .–2D .–32.下列各组代数式中,属于同类项的是A .3x 和3yB .2m n 和2m p C .212a b 和212abD .3p q -和32p q3.下列方程的解为0x =的是 A .11+=-x B .23=x x C .22x =D .1452++=x x 4.如图,是一个正方体纸盒展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,则A 、B 、C 表示的数依次是A .35,π,2-- B .3π,5,2- C .35,,π2-D .35π2-,,5.下列语句中,正确的个数是①一个数与它的相反数的商为–1;②两个有理数之和大于其中任意一个加数;③若两数之和为正数,则这两个数一定都是正数;④若0m n <<,则mn n m <-. A .0B .1C .2D .36.已知关于x 的方程()232kx k x -=+的解是正整数,则正整数k 的值为 A .3或5B .5C .1或3D .37.如图,已知10AB =cm ,M 是AB 中点,N 在AB 的延长线上,若12NB MB =,则MN 的长为A .7.5cmB .10 cmC .5 cmD .6 cm8.已知关于x ,y 的多项式22232(1)x y x mx ---+的值与x 无关,则m 的值为 A .0B .3-C .5-D .19.如图,∠AOB =∠COD ,若∠AOD =110°,∠BOC =70°,则以下结论正确的有①∠AOC =∠BOD =90°;②∠AOB =20°;③∠AOB =∠AOD –∠AOC ;④∠AOB =211∠BOD . A .1个B .2个C .3个D .4个10.某商贩在一次买卖中,以每件135元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,在这次买卖中,该商贩 A .不赔不赚B .赚9元C .赔18元D .赚18元第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)11.已知|m |=5,|n |=2,|m -n |=n -m ,则m +n 的值是__________. 12.一个角的余角比它的补角的29多1°,则这个角的度数为__________度.13.钟面上的时刻是8时30分,此时时针和分针所成的角度是__________. 14.已知代数式53x -的值与17的值与互为倒数,则x =__________. 15.已知点P 是数轴上的一个点,把点P 向左移动4个单位后,再向右移动2个单位,这时表示的数是-5,那么点P 表示的数是__________. 16.观察算式:111111315356399143++++++⋅⋅⋅,计算该算式前20项的和为__________. 三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分8分)解方程:(1)7+2x =12-2x ;(2)x -3=-12x -4. 18.(本小题满分8分)(1)先化简,再求值:已知A =2a 2–a ,B =–5a +1,求当a =12时,3A –2B +1的值. (2)已知x =3是方程4x –a (2–x )=2(x –a )的解,求3a 2–2a –1的值.19.(本小题满分8分)先化简,再求值:(1)22222()3(1)2(1)a b ab a b ab +---+,其中1,2a b =-=;(2)已知:A =234a ab -,B =22a ab +.①求A -2B ;②若1a -+2(2)b +=0,求A -2B 的值.20.(本小题满分8分)一条东西走向的商业街上,依次有书店(记为A )、冷饮店(记为B )、鞋店(记为C ),冷饮店位于鞋店西边50 m 处,鞋店位于书店东边60 m处,王平先去书店,然后沿着这条街向东走了30 m 至D 处,接着向西走50 m 到达E 处.(1)以A 为原点、向东为正方向画数轴,在数轴上表示出上述A ,B ,C ,D ,E 的位置;(2)若在这条街上建一家超市,使超市与鞋店C 分居E 点两侧,且到E 点的距离相等,问超市在冷饮店的什么方向?距离多远?21.(本小题满分8分)如图,已知直线AB 与CD 相交于点O ,OP 是∠BOC 的平分线,∠AOE =90°,∠DOF =90°.(1)图中除直角外,请写出两对相等的角并说明理由. (2)如果∠AOD =40°,求∠BOF 的度数.22.(本小题满分10分)已知数轴上,点O为原点,点A 表示的数为9,动点B ,C 在数轴上移动,且总保持BC =2(点C 在点B 右侧),设点B 表示的数为m . (1)如图1,当B ,C 在线段OA 上移动时, ①若B 为OA 中点,则AC =__________;②若B ,C 移动到某一位置时,恰好满足AC =OB,求此时m 的值;(2)当线段BC 沿射线AO 方向移动时,若存在AC -OB =13AB ,求满足条件的m 值.23.(本小题满分10分)如图,点O 是直线AB 上的一点,∠COD 是直角,OE 平分∠BOC .(1)如图1,若∠AOC =40︒,求∠DOE 的度数;(2)如图2,将∠COD 绕顶点O 旋转,且保持射线OC 在直线AB 上方,在整个旋转过程中,当∠AOC 的度数是多少时,∠COE =2∠DOB .24.(本小题满分10分)现有A 、B 两家粮食种植基地往甲、乙两个粮食配送中心运送粮食,A 地可运出粮食50吨,B 地可运出粮食40吨,其中甲地需要粮食30吨,乙地需要粮食60吨,每吨粮食运费如下:从A 基地运往甲、乙两中心的运费分别为每吨300元和200元,从B 基地运往甲、乙两中心的运费分别为每吨200元和400元.设A 地运送到甲中心粮食为x 吨.(1)请根据题意填写下表(填写表中所有空格):(2)若某次运送总运费共花去29000元,请指出当时的调运方案;(3)按照题(2)的调运方案,从A 基地往甲中心运送粮食,在运输途中的E 地接到F 地商家的一个电话,该商家需要5吨.已知A 基地与E 地之间的运费为每吨320元,甲中心与F 地之间的运费为每吨240元.现A 基地有两种方案运送到甲中心和F 地商家:方案一:从E 地直接运送到F 地商家,运到后把剩下的粮食运到甲中心;方案二:先把粮食运到甲中心,再运5吨到F 地商家.若方案一比方案二的总运费多12300元,则从E 地到F 地商家的运费是每吨多少元?2019-2020学年上学期期末原创卷七年级数学·全解全析1.【答案】D【解析】比–1小2的数是就是–1与2的差,即–1–2=–3.故选D . 2.【答案】D【解析】A .3x 和3y 所含字母不同,不是同类项; B .2m n 和2m p 所含字母不同,不是同类项;C .212a b 和212ab 所含字母的指数不同,不是同类项; D .3p q -和32p q ,所含字母及字母的指数相同,是同类项,故选D .3.【答案】B【解析】A .11+=-x ,解得x =–2,故错误;B .23=x x ,解得x =0,正确; C .22x =,解得x =1,故错误;D .1452++=x x ,x +1+8=10x ,解得x =1,故错误,故选B . 4.【答案】A【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,“A ”与“5”是相对面,“B ”与“π”是相对面,“C ”与“32-”是相对面, ∵相对面上的两数互为相反数,∴A 、B 、C 表示的数依次是–5,–π,32.故选A .5.【答案】B【解析】①当这个数为零时,一个数与它的相反数的商无意义,故①错误; ②当有个加数是负数时,两个有理数之和小于其中的任一个加数,故②错误; ③若两数之和为正数,则这两个数绝对值大的数是正数,故③错误; ④若m <0<n ,则n –m >0>mn ,故④正确.故选B . 6.【答案】A【解析】()232kx k x -=+,移项得:()223kx k x -+=,()23k x -=,32x k =-, ∵方程的解是正整数,k 也是正整数,而3的因数只有1和3,∴213k -=或,解得k =3或5.故选A . 7.【答案】A【解析】∵AB =10 cm ,M 为AB 的中点,∴AM =MB =12AB =5 cm , 又∵NB =12MB ,∴NB =2.5 cm ,则MN =MB +BN =5+2.5=7.5(cm ),故选A . 8.【答案】C【解析】原式=22232+2+2x y x mx -+=()2522m x y +-+,∵该多项式的值与x 无关,∴5+m =0,解得:m =–5,故选C . 9.【答案】C【解析】如图,∵∠AOB =∠COD ,∠AOD =110°,∠BOC =70°,∴∠AOD =∠BOC +2∠COD =70°+2∠COD =110°,则∠AOB =∠COD =20°.∵∠AOB =∠COD ,∴∠BOC +∠AOB =∠BOC +∠COD =90°,即∠AOC =∠BOD =90°,故①正确; ∠AOB =∠COD =20°.故②正确;由①知,∠AOC =∠BOD =90°,∴∠AOB =∠AOD –∠BOD =∠AOD –∠AOC ,故③正确; ∵∠AOB =20°,∠BOD =90°,∴∠AOB =29∠BOD ,故④错误. 综上所述,正确的结论有3个.故选C . 10.【答案】C【解析】设盈利上衣成本x 元,亏本上衣成本y 元, 由题意得135–x =25%x ,y –135=25%y , 解方程组,得x =108元,y =180元,135+135–108–180=–18,亏本18元,故选C .11.【答案】–7或–3【解析】∵|m |=5,|n |=2,∴m =±5,n =±2. ∵|m –n |=n –m ,∴n ≥m ,∴m =–5,n =±2.∴m +n =–7或–3.故答案为:–7或–3. 12.【答案】63【解析】设此角的度数为x °,则它的补角为(180–x )°,它的余角为(90–x )°, 根据题目关系列方程:29(180–x )+1=90–x ,解得:x =63.故答案为:63. 13.【答案】75°【解析】根据题意得,8点30分,钟表的时针在8点与9点的中间,分针在6点处,钟表的时针与分针所夹的角度为:2.5×30°=75°,故答案为:75°. 14.【答案】2【解析】∵代数式53x -的值与17的值与互为倒数,∴1(53)17x -⨯=,解得:2x =,故答案为:2.15.【答案】–3【解析】设点P 表示的数为x .根据题意得:x –4+2=–5.解得:x =–3.故答案为:–3. 16.【答案】2041【解析】原式=1111133557(21)(21)n n ++++⨯⨯⨯-+=11111111111(1)(()()2323525722121n n ⨯-+⨯-+⨯-++⨯--+ =11111111(12335572121n n ⨯-+-+-++--+ =11(1)221n ⨯-+ =21n n +, 当20n =时,原式=2020=220141⨯+,故答案为:2041.17.【解析】(1)移项,得:2x +2x =12-7,合并同类项,得:4x =5,系数化为1,得:x =54.(4分)(2)移项得:x +12x =-4+3,合并得:32x =-1, 解得:x =-23.(8分)18.【解析】(1)将A =2a 2–a ,B =–5a +1代入3A –2B +1得:3A –2B +1=3(2a 2–a )–2(–5a +1)+1=6a 2–3a +10a –2+1=6a 2+7a –1, 将a =12代入得:原式=6×1()22+7×12–1=32+72–1=4.(4分)(2)将x =3代入方程得:4×3–a (2–3)=2(3–a ), 解得:a =-2,将a =-2代入得:3a 2–2a –1=3×(-2)2–2×(-2)–1=15.(8分) 19.【解析】(1)原式=222222233221a b ab a b ab a b +-+--=-+,当a =-1,b =2时,原式=2(1)211--⨯+=-.(3分)(2)①A -2B =22222(34)2(2)34248a ab a ab a ab a ab a ab --+=---=-,(5分) ②由题意得:10,20a b -=+=, 解得:1a =,2b =-,原式=2181(2)-⨯⨯-=1+16=17.(8分)20.【解析】(1)以A 为原点,向东为正方向,画数轴如图所示,图中的A ,B ,C ,D ,E 即为所求作.(4分) (2)鞋店C 到E 的距离为:60-(-20)=80 m , 超市在数轴上所表示的数为:-20-80=-100 m , 超市到冷饮店的距离为10-(-100)=110 m , 答:超市在冷饮店的西边110 m 的地方.(8分) 21.【解析】(1)∵OP 是∠BOC 的平分线,∴∠BOP =∠COP , ∠AOD =∠BOC .(4分) (2)∠DOF =90°, ∴∠AOD +∠BOF =90°,∴∠BOF=90°-∠AOD=90°-40°=50°.(8分)22.【解析】(1)①2.5.(3分)∵B为OA中点,OA=9,∴AB=4.5,又∵BC=2,∴AC=AB–BC=4.5–2=2.5.②由题意可知:点C表示的数为m+2,则AC=9–(m+2),OB=m–0,∵AC=OB,∴m–0=9–(m+2),解得:m=3.5.(6分)(2)由题意可知,①当点B位于原点右侧时,AC=9–(m+2),OB=m,AB=9–m,由AC-OB=13 AB,得9–(m+2)–m=13(9–m),解得m=125.(8分)②当点B位于原点左侧时,AC=9–(m+2),OB=–m,AB=9–m,由AC-OB=13 AB,得9–(m+2)–(–m)=13(9–m),解得m=-12.综上,若AC-OB=13AB,则满足条件的m值是125或-12.(10分)23.【解析】(1)∵∠AOC=40°,∴∠BOC=140°,又∵OE平分∠BOC,∴∠COE=12×140°=70°,(2分)∵∠COD=90°,∴∠DOE=90°–70°=20°.(4分)(2)设∠AOC=α,则∠BOC=180°–α,∵OE平分∠BOC,∴∠COE=12×(180°–α)=90°–12α,分两种情况:当OD在直线AB上方时,如图,∠BOD=90°–α,∵∠COE=2∠DOB,∴90°–12α=2(90°–α),解得α=60°.(7分)当OD在直线AB下方时,如图,∠BOD=90°–(180°–α)=α–90°,∵∠COE=2∠DOB,∴90°–12α=2(α–90°),解得α=108°.综上所述,当∠AOC的度数是60°或108°时,∠COE=2∠DOB.(10分)24.【解析】(1)50x-,30x-,10x+.(3分)设A地运送到甲地为x吨,∴A地运送到乙地为:(50)x-吨,∴B地运送到甲地为:(30)x-吨,∴B 地运送带乙地为:40(30)(10)x x --=+吨,故答案为:50x -,30x -,10x +. (2)根据题意,得:300200(50)200(30)400(10)29000x x x x +-+-++=,(5分) 解得:30x =,∴方案为:A 粮食基地运往甲地30吨,A 粮食基地运往乙地20吨,B 粮食基地运往甲地0吨,B 粮食基地运往乙地40吨.(7分)(3)设从E 地到F 地商家的运费是每吨x 元,根据题意得30320302524030300524012300x ⨯++⨯=⨯+⨯+,(8分)∴306900x =, 解得:230=x (元).∴从E 地到F 地商家的运费是每吨230元.(10分)。

2019-2020学年湖北省武汉市东湖高新区七年级(上)期末数学试卷(含解析)

2019-2020学年湖北省武汉市东湖高新区七年级(上)期末数学试卷(含解析)

2019-2020学年湖北省武汉市东湖高新区七年级(上)期末数学试卷(考试时间:120分钟满分:120分)一、选择题(共10小题,每小题3分,共30分)1.武汉某日的最高气温5℃,温差为7℃,则当日最低气温是()A.2℃B.﹣12℃C.﹣2℃D.12℃2.第七届军运会中国队以133金64银42的好成绩位列第一.军运会期间,武汉市210000军运会志愿者深入到4000多个服务点,参与文明礼仪清洁家园,文明交通等各种活动中数210000用科学记数法表示为()A.21×104B.21×105C.2.1×105D.2.1×1063.方程3x﹣32=﹣2x﹣7的根为()A.x=25 B.x=5 C.x=﹣25 D.x=﹣54.如图,把三角形剪去一个角,所得四边形的周长比原三角形的周长小,能正确解释这一现象的数学知识是()A.四边形周长小于三角形周长B.两点确定一条直线C.两点之间,线段最短D.经过一点有无数条直线5.多项式x2+x+18是()A.二次二项式B.二次三项式C.三次二项式D.三次三项式6.下列等式变形中不正确的是()A.若a+c=b+c,则a=bB.若a=b,则=C.若ac=bc,则a=bD.若=,则a=b7.某商店为了迎接“双十二“批购活动,以每件99元的价格卖出两件衣服,其中一件盈利10%,一件亏损10%,这家商店()A.盈利了B.亏损了C.不盈不亏D.无法确定8.一串数字的排列规律是:第一个数是2,从第二个数起每一个数与前一个数的倒数之和为1,则第2020个数是()A.2 B.﹣2 C.﹣1 D.9.已知点A,B,C在数轴上示的数分别为a,b,c,点C为AB的中点,b<0<a且a+b>0则下列结论中,其中正确的个数有()①a﹣b>0②|a|>|b|>|c|③b﹣c<0④a+b=2cA.1个B.2个C.3个D.4个10.如图是一个正方体的表面展开图,相对面上所标的两个数互为倒数,那么b+c a=()A.﹣B.C.﹣D.二、填空题(每小题3分,共18分)11.﹣(﹣6)的相反数是.12.已知∠α=53°17',则∠α的补角的度数为.13.已知﹣4<x<3,则正整数x所有可能的值为.14.已知方程(m+2)x|m|﹣1+2m﹣4=0为一元一次方程,则这个方程的根为.15.已知5x a+2c y4与﹣3x3y b是同类项,则2a+3b+4c的值是.16.已知点A、B、C都在直线l上,BC=AB,D、E分别为求AC、BC中点,直线l上所有线段的长度之和为19,则AC=.三、解答题(共72分)17.(8分)计算:(1)﹣(﹣10)+(﹣7)﹣(+3)+(+2)(2)(﹣1)2020×(﹣2)3+8+18.(8分)解方程(1)3(3x﹣4)=20﹣7x (2)+=19.(8分)化简下式,求值:4a2b﹣2(a2b﹣3ab2)+(﹣4ab2﹣2a2b).其中a=﹣3.b=﹣2.20.(8分)如图.已知直线AB、CD相交于点O,射线OE和射线OD分别平分∠AOF和∠BOF且∠AOC=30°,求∠EOF.21.(8分)12月4日为全国法制宣传日,当天某初中组织4名学生参加法制知识竞赛,共设20道选择题,各题分值相同,每题必答,如表记录了其中2名参赛学生的得分情况.参赛者答对题数答错题数得分A 20 0 100B 17 3 79(1)参赛学生C得72分,他答对了几道题?答错了几道题?(2)参赛学生D说他可以得88分,你认为可能吗?为什么?22.(10分)元旦期间某商店进行促销活动,活动方式有如下两种:方式一:每满200元减50元;方式二:若标价不超过400元时,打8折:若标价超过400元,则不超过400元的的部分打8折,超出400元的部分打6折.设某一商品的标价为x元(1)当x=560元,按方式二应该付多少钱,(2)当200<x<600时,x取何值两种方式的优惠相同?23.(10分)点A,B在数轴上对应的数分别是a,b,其中a,b满足(a﹣4)2+|b+6|=0.(1)求a,b的值;(2)数轴上有一点C使得AC+BC=AB,求点C所对应的数;(3)点D为A,B中点,O为原点,数轴上有一动点P,求PA+PB+PD﹣PO的最小值及点P所对应的数的取值范围.24.(12分)如图,OC是∠AOB的角平分线,OD⊥OB,OE是∠BOD的角平分线,∠AOE=85°.(1)求∠COE;(2)∠COE绕O点以每秒5°的速度逆时针方向旋转t秒(0<t<13),t为何值时∠AOC=∠DOE;(3)射线OC绕O点以每秒10°的速度逆时针旋转,射线OE绕O点以每秒5°的速度顺时针旋转,若射线OC、OE同时开始旋转m秒(0<m<24.5)后得到∠AOC=∠EOB,求m的值.1.【解答】解:5﹣7=﹣2(℃),∴当日最低气温是﹣2℃.故选:C.2.【解答】解;210000=2.1×105,故选:C.3.【解答】解:方程移项合并得:5x=25,解得:x=5,故选:B.4.【解答】解:如图,把三角形剪去一个角,所得四边形的周长比原三角形的周长小,能正确解释这一现象的数学知识是:两点之间,线段最短.故选:C.5.【解答】解:多项式x2+x+18是二次三项式;故选:B.6.【解答】解:(C)当c=0时,此时a不一定与b相等,故C错误故选:C.7.【解答】解:设两件衣服每件的进价分别为a元,b元,根据题意得:99﹣a=10%a,10%b+99=b,∴这家商店的总盈利为99﹣90+99﹣110=﹣2,故选:B.8.【解答】解:∵第一个数是2,第二个数是,第四个数是2,∴每三个数按照3,,﹣1循环,∴第2020个数和第1个数一致,即:2.故选:A.9.【解答】解:∵b<0<a且a+b>0∴①a﹣b>0,正确;②|a|>|b|,但是|b|不一定大于|c|;③b﹣c<0,正确;④a+b=2c,故原说法正确.∴正确的有①③④共3个.故选:C.10.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“a”与“”是相对面,“c”与“﹣2”是相对面,∴a=4,b=﹣1,c=﹣,故选:A.11.【解答】解:﹣(﹣6)=6,∴6的相反数是﹣6.故答案为:﹣6.12.【解答】解:∵∠α=53°17′,∴∠α的补角=180°﹣53°17′=126°43′,故答案为:126°43′.13.【解答】解:∵﹣4<x<3,∴正整数x所有可能的值为1,2,故答案为1,5.14.【解答】解:∵关于x的方程(m+2)x|m|﹣1+2m﹣4=0是一元一次方程,∴|m|﹣1=1,m+2≠8,即方程为4x=0,故答案为:x=0.15.【解答】解:∵5x a+2c y4与﹣3x6y b,∴a+2c=3,b=4,∴2a+3b+4c=(3a+4c)+3b=6+12=18.故答案为:1816.【解答】解:如图1,点C在点B的右侧,设BC=x,则AB=3x,∵D、E分别为求AC、BC中点,∵直线l上所有线段的长度之和为19,∴x=1,如图2,点C在线段AB上,∴AC=2x,∴AD=CD=AC=x,BE=CE=BC=x,∵直线l上所有线段的长度之和为19,∴x=,综上所述,AC=4或,故答案为:4或.17.【解答】解:(1)﹣(﹣10)+(﹣7)﹣(+3)+(+2)=3﹣3+2(2)(﹣6)2020×(﹣2)3+2+=﹣8+9=118.【解答】解:(1)去括号得:9x﹣12=20﹣7x,移项合并得:16x=32,(2)去分母得:4(8﹣x)+3(5x﹣1)=6(3x+5),移项合并得:﹣7x=1,解得:x=﹣.19.【解答】解:原式=4a2b﹣2a2b+6ab2﹣4ab2﹣2a2b=2ab2,当a=﹣3,b=﹣2时,原式=﹣24.20.【解答】解:∵射线OF和射线OD分别平分∠AOF和∠BOF,∴∠EOF=∠AOF,∠DOF=∠BOF,即∠EOD=90°,∴∠AOE=180°﹣∠AOC﹣∠EOD=180°﹣30°﹣90°=60°,∵∠EOF=∠AOE=60°.21.【解答】解:根据表格得出答对一题得5分,再算出错一题扣2分,(1)设参赛学生C答对了x道题,答错了(20﹣x)道题,由题意,得,解得:x=16,答:参赛学生C答对了16道题,答错了8道题;(2)假设他得88分可能,设答对了y道题,答错了(20﹣y)道题,由题意,得,5y﹣2(20﹣y)=88,∵y为整数,∴参赛学生D说他可以得88分,是不可能的.22.【解答】解:(1)400×0.8+(560﹣400)×0.6=416(元).答:按方式二应该付416元钱,(2)当200<x<400时,0.2x=x﹣50,当400≤x<600时,解得x=450.故当200<x<600时,x取250或450时,两种方式的优惠相同.23.【解答】解:(1)∵(a﹣4)2+|b+4|=0,∴a=4,b=﹣6;(2)设点C对应的数是c,∵AC+BC=AB,∴x=﹣8.5或x=6.5,(6)∵点D为A,B中点,设P点表示的数是p,当﹣6≤p≤4时,|p﹣4|+|p+6|有最小值为10,∴当﹣6≤p≤﹣6时,PA+PB+PD﹣PO有最小值9.24.【解答】解:(1)∵OD⊥OB,OE是∠BOD的角平分线∴∠BOD=90°,∠BOE=∠DOE=∠BOD=45°∴∠AOB=∠AOE+∠BOE=130°∴∠AOC=∠BOC=∠AOB=65°(2)由原图可知:∠COD=∠DOE﹣∠COE=25°①当0<t<5时,如下图所示∵∠AOD=∠AOB﹣∠BOD=40°,∠COE=20°∴∠AOD+∠COD≠∠COE+∠COD②当5<t<9时,如下图所示∵∠AOD=∠AOB﹣∠BOD=40°,∠COE=20°∴∠AOD﹣∠COD≠∠COE﹣∠COD③当9<t<13时,如下图所示OC和OE旋转的角度均为2t∵∠AOC=∠DOE解得:t=11(3)OE与OB重合时运动的时间为45°÷5°=9s;OC与OA重合时运动时间为65°÷10°=6.5s;OC为OA的反向延长线时运动时间为(180°+65°)÷10°=24.5s;①当0<m<2.5时,如下图所示OC旋转的角度均为10m,OE旋转的角度均为5m∵∠AOC=∠EOB解得:m=;②当6.5<m<9时,如下图所示∴∠AOC=10m°﹣65°,∠BOE=45°﹣5m°∴10m﹣65=(45﹣5m)③当9<m<24.4时,如下图所示OC旋转的角度均为10m,OE旋转的角度均为5m∵∠AOC=∠EOB解得:m=,不符合前提条件,故舍去;综上所述:m=或.。

湖北省黄冈市2019-2020学年七年级(上)期末数学试卷

湖北省黄冈市2019-2020学年七年级(上)期末数学试卷

湖北省黄冈市2019-2020学年七年级(上)期末数学试卷一、选择题(本大题共8小题,共24.0分)1.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A. 1枚B. 2枚C. 3枚D. 任意枚2.港珠澳大桥于2018年10月24日上午9时正式通车,它是中国境内一座连接香港珠海和澳门的桥隧工程,于2009年12月15日动工建设,2017年7月7日,大桥主体工程全线贯通,2018年2月6日,大桥主体完成验收,港珠澳大桥桥隧全长55千米,工程项目总投资额1269亿元,用科学记数法表示,1269亿元为()A. 1269×108B. 1.269×1010C. 1.269×1011D. 1.269×10123.下列运算中,正确的是()A. 2a3+3a2=5a5B. 3a+2b=5abC. 3ab−3ba=0D. 5a2−4a2=14.如图,是一个正方体的平面展开图,在正方体中写有“心”字的那一面的对面的字是()A. 祝B. 你C. 事D. 成5.已知单项式−a x+3b2与2ab y是同类项,则x3−y2的值是()A. −12B. −10C. −4D. 126.如图,甲从A点出发向北偏东60°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是()A. 105°B. 115°C. 125°D. 135°7.某店把一本书按标价的9折出售,仍可获利20%.若该书的进价为21元,则标价为()A. 26元B. 27元C. 28元D. 29元8.某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米.一列火车以每小时120千米的速度迎面开来,测得火车与队首学生相遇,到车尾与队末学生相遇共经过60秒,如果队伍长500米,那么火车长()A. 1500米B. 1575米C. 2000米D. 2075米二、填空题(本大题共8小题,共24.0分)9.−2的倒数是______.3x2y2的系数为m,次数为n,则mn的值为______.10.已知单项式−3411.63°30′的余角为_________.12.如果点M表示的数是−3,那么数轴上与点M的距离为4的点表示的数是______.13.已知关于x的一元一次方程(a+3)x|a|−2+6=0,则a的值为______.14.一个三位数,它的百位上的数比十位上的数的2倍大1,个位上的数比十位上的数的3倍小1,如果把这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,求原来的三位数是______ .15.已知代数式3x2−2x+6的值等于9,则8−3x2+2x的值为______16.如图,数轴上线段AB=2,CD=4,点A在数轴上表示的数是−10,点C在数轴上表示的数是16,若线段AB以6个单位长度/秒的速度向右匀速运动,同时线段CD以2个单位长度/秒的速度向左匀速运动.当B点运动到线段CD上时,P是线段AB上一点,且有关系式BD−APPC=3成立,则线段PD的长为______.三、计算题(本大题共1小题,共8.0分)17.按要求完成下面的问题:(1)已知a2+a=0,求a2+a+2016的值;(2)已知a−b=−3,求3(a−b)−a+b+5的值;(3)已知a2+2ab=−2,ab−b2=−4,求2a2+5ab−b2的值.四、解答题(本大题共8小题,共64.0分)18.计算:(1)−(−8)÷4+(−12+34)×(−8)(2)−12018−13×[(−5)×(−35)2+0.8]19.解方程:(1)2(x+1)+3=1−(x−1);(2)1−2x5=2−3−x2.20.有20筐苹果,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值(单位:千克)−3−2−1.501 2.5筐数142328(1)在这20筐苹果中,最重的一筐比最轻的一筐重多少千克?(2)求这20筐苹果的总质量.21.如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=25°,求∠AOB的度数.22.某工厂计划生产一种新型豆浆机,每台豆浆机需3个甲种零件和5个乙种零件正好配套,已知车间每天能生产甲种零件450个或乙种零件300个,现要在21天中使所生产的零件全部配套,那么应该安排多少天生产甲种零件,安排多少天生产乙种零件?AB,D为AC的中点,若BD=6cm,求AB的长.23.已知线段AB,延长AB到C,使BC=1424.某百货商场元月一日搞促销活动,购物不超过200元不给优惠;购物超过200元,而不足400元的优惠总价的10%;购物超过400元的,其中不超过400元的部分按9折优惠,超过400元部分按8折优惠.某人两次购物分别用了128元和424元.问:(1)此人两次购物其物品如果不打折,一共值多少钱?(2)在这次活动中他节省了多少钱?(3)若此人将两次购物合为一次购物是否更省钱?为什么?25.如图,点A,B是数轴上的两点,O为原点,点B表示的数是1,点A在点B的左侧,AB=5.(1)求点A表示的数;(2)数轴上的一点C在点B的右侧,设点C表示的数是x,若点C到A,B两点的距离的和是15,求x的值;(3)动点P从A点出发,以每秒2个单位的速度向右运动,同时动点Q从B点出发,以每秒1个单位的速度向右运动,设运动时间为t秒,是否存在这样的t值,使PQ=2PB,若存在,请求出t的值,若不存在,请说明理由.-------- 答案与解析 --------1.答案:B解析:本题考查了直线的性质,熟记两点确定一条直线是解题的关键.根据直线的性质,两点确定一条直线解答.解:∵两点确定一条直线,∴至少需要2枚钉子.故选B.2.答案:C解析:解:将1269亿用科学记数法表示为1.269×1011.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.答案:C解析:解:A.2a3与3a2不是同类项,不能合并,此选项错误;B.3a与2b不是同类项,不能合并,此选项错误;C.3ab−3ba=0,此选项正确;D.5a2−4a2=a2,此选项错误;故选:C.根据同类项的定义和合并同类项的法则逐一判断即可得.本题考查了同类项与合并同类项法则,能熟记同类项的定义及合并同类项的法则是解此题的关键.4.答案:D解析:由平面图形的折叠及立体图形的表面展开图的特点解题.注意正方体的空间图形,从相对面入手,分析及解答问题.解:正方体的平面展开图中,相对的面一定相隔一个正方形,所以在正方体中写有“心”字的那一面的对面的字是成.故选:D.5.答案:A解析:本题考查同类项,解题的关键是熟练运用同类项的定义,本题属于基础题型.根据同类项的定义即可求出答案.解:由题意可知:x+3=1,y=2,∴x=−2,y=2,∴原式=−8−4=−12,故选:A.6.答案:D解析:本题考查了方向角,同时也考查了角的和差运算.可先求解∠BAF的大小,由于∠BAC=∠BAF+∠FAE+∠CAE,进而可得∠BAC的大小.解:如图,由题意可得,∠DAB=60°,∴∠BAF=90°−60°=30°,而∠CAE=15°,∠FAE=90°,∴∠BAC=∠BAF+∠FAE+∠CAE=30°+90°+15°=135°,故选D.7.答案:C解析:本题主要考查了一元一次方程的应用,设该书标价是x元,根据利润=售价−进价,且一本新书按标价的九折出售,仍可获利20%,若该书的进价为21元,可列方程求解.解:设该书标价是x元,0.9x−21=20%×21解得,x=28,∴该书标价是28元,故选C.8.答案:B解析:本题主要考查列一元一次方程解相遇类型的行程问题,解题时要充分理解题意寻找等量关系列方程.解:设火车的长为x米,∵学生沿着与笔直的铁路线并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来∴火车相对于学生一分钟能跑多少米:120000+450060=2075米,一分钟火车能跑2075米而火车头与队伍头相遇到火车尾与队伍尾离开共60s ,也就是一分钟, ∴500+x =120000+450060,解得x =1575,∴火车的长度应该是2075m −500m =1575m ,故选B .9.答案:−32解析:解:(−23)×(−32)=1,所以−23的倒数是−32.故答案为:−32.根据倒数的定义即可解答.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数. 10.答案:−3解析:解:∵单项式−34x 2y 2的系数为m =−34,次数为n =4,∴mn 的值为:−34×4=−3.故答案为:−3.直接利用单项式的次数与系数的定义分别得出m ,n 的值,即可得出答案.此题主要考查了单项式,正确把握单项式次数与系数的定义是解题关键. 11.答案:26°30’解析:此题考查了余角,角的计算,掌握余角的定义是关键,计算90°−63°30′,即可得到答案. 解:63°30′的余角为:90°−63°30′=26°30’,故答案为26°30’.12.答案:1或−7解析:解:当与点M的距离为4的点在M的左侧时,该点表示的数为−3−4=−7,当与点M的距离为4的点在M的右侧时,该点表示的数为4+(−3)=1,故答案为:1或−7.分两种情况讨论:点在M的左侧,点在M的右侧,可得结果.本题考查了数轴上两点间的距离,数轴上两点间的距离=右边点表示的数−左边点表示的数.13.答案:3解析:解:根据题意得:a+3≠0,解得:a≠−3,|a|−2=1,解得:a=3或a=−3,即a=3,故答案为:3.根据一元一次方程的定义,列出关于a的不等式和等式,解之即可.本题考查了一元一次方程的定义和绝对值,正确掌握一元一次方程的定义和绝对值的定义是解题的关键.14.答案:738解析:此题考查一元一次方程的实际运用,掌握数的计数方法,找出题目蕴含的数量关系是解决问题的关键.设十位上的数字为x,则百位上的数字为2x+1,个位上的数字为3x−1,根据这个三位数的百位上的数字和个位上的数字对调,那么得到的三位数比原来的三位数大99,列出方程解答即可.解:设十位上的数字为x,则百位上的数字为2x+1,个位上的数字为3x−1,由题意得100(3x−1)+10x+(2x+1)=100(2x+1)+10x+(3x−1)+99解得:x=3,则2x+1=7,3x−1=8,所以原来的三位数为738.故答案为738.15.答案:5解析:解:根据题意得:3x2−2x+6=9,即3x2−2x=3,则原式=8−(3x2−2x)=8−3=5,故答案为:5由题意确定出3x2−2x的值,原式变形后代入计算即可求出值.此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.答案:5或3.5解析:解:设线段AB未运动时点P所表示的数为x,B点运动时间为t,则此时C点表示的数为16−2t,D点表示的数为20−2t,A点表示的数为−10+6t,B点表示的数为−8+6t,P点表示的数为x+6t,∴BD=20−2t−(−8+6t)=28−8t,AP=x+6t−(−10+6t)=10+x,PC=|16−2t−(x+6t)|=|16−8t−x|,PD=20−2t−(x+6t)=20−8t−x=20−(8t+x),=3,∵BD−APPC∴BD−AP=3PC,∴28−8t−(10+x)=3|16−8t−x|,即:18−8t−x=3|16−8t−x|,①当C点在P点右侧时,18−8t−x=3(16−8t−x)=48−24t−3x,∴x+8t=15,∴PD=20−(8t+x)=20−15=5;②当C点在P点左侧时,18−8t−x=−3(16−8t−x)=−48+24t+3x,∴x+8t=332,∴PD=20−(8t+x)=20−332=3.5;∴PD的长有2种可能,即5或3.5.故答案为:5或3.5.随着点B的运动,分别讨论当点B和点C重合、点C在点A和B之间及点A与点C重合时的情况,根据题意列出方程求解即可.本题考查两点间的距离,并综合了数轴、一元一次方程和线段长短的比较,难度较大,注意对第三问进行分情况讨论,不要漏解.17.答案:解:(1)∵a2+a=0,∴原式=0+2016=2016;(2)∵a−b=−3,∴原式=3(a−b)−(a−b)+5=2(a−b)+5=−6+5=−1;(3)∵a2+2ab=−2①,ab−b2=−4②,∴①×2+②得:2a2+4ab+ab−b2=−8,则2a2+5ab−b2=−8.解析:(1)把已知等式代入计算即可求出值;(2)原式变形后,将已知等式代入计算即可求出值;(3)原式变形后,将已知等式代入计算即可求出值.此题考查了整式的加减,以及代数式求值,熟练掌握运算法则是解本题的关键.18.答案:解:(1)原式=2+4−6=0;(2)原式=−1−13×(−95+45)=−1−13×(−1)=−1+13=−23.解析:(1)原式先计算乘除运算,再计算加减运算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.答案:解:(1)去括号,得2x+2+3=1−x+1,移项、合并同类项,得3x=−3,方程两边同时除以3,得x=−1;(2)去分母,得2(1−2x)=20−5(3−x),去括号,得2−4x=20−15+5x,移项、合并同类项,得−9x=3,.方程两边同时除以−9,得x=−13解析:此题考查了解一元一次方程的解法,熟练掌握解一元一次方程的法则是解本题的关键.(1)方程去括号,移项,合并同类项,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.20.答案:解:(1)2.5−(−3)=5.5(千克),答:20筐苹果中,最重的一筐比最轻的一筐重5.5千克;(2)20×25+(−3)+(−8)+(−3)+0+2+20=508(千克)答:这20筐苹果的总质量时508千克.解析:(1)根据有理数的减法,可得答案;(2)根据有理数的加法,可得答案;本题考查了正数和负数,利用有理数的运算是解题关键.21.答案:解:设∠AOC=x,则∠COB=2∠AOC=2x.∵OD平分∠AOB,∴∠AOD=∠BOD=1.5x.∴∠COD=∠AOD−∠AOC=1.5x−x=0.5x.∵∠COD=25°,∴0.5x=25°,∴x=50°,∴∠AOB=3×50°=150°.解析:先设∠AOC=x,则∠COB=2∠AOC=2x,再根据角平分线定义得出∠AOD=∠BOD=1.5x,进而根据∠COD=25°列出方程,解方程求出x的值,即可得出答案.此题主要考查了角平分线定义,根据题意得出∠COD=0.5x是解题关键.22.答案:解:设应该安排x天生产甲种零件,则安排(21−x)天生产乙种零件,根据题意可得:450x÷3=300(21−x)÷5,解得:x=6,则21−6=15(天),答:应该安排6天生产甲种零件,则安排15天生产乙种零件.解析:根据题意表示出甲乙两种零件的个数,再利用每台豆浆机需3个甲种零件和5个乙种零件正好配套得出等式,求出答案.此题主要考查了一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.23.答案:解:∵BC=14AB,∴AC=54AB,∵D为AC的中点,∴CD=12AC=12×54AB=58AB,∴BD=CD−BC=58AB−14AB=38AB=6,解得AB=16cm.答:AB的长是16cm.解析:本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.先根据BC=14AB可知AC=54AB,再由D为AC的中点可用AB表示出CD的长,再根据BD=CD−BC=6即可求出AB的长.24.答案:解:(1)因为:200×0.9=180128<180,所以:消费的128元没有优惠。

2019-2020学年七年级上学期期末考试数学试卷(附解析)

2019-2020学年七年级上学期期末考试数学试卷(附解析)

2019-2020学年七年级上学期期末考试数学试卷一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.﹣7的倒数是()A.B.7C.D.﹣72.下列说法不正确的是()A.近似数1.8与1.80表示的意义不同B.0.0200精确到万分位C.2.0万精确到万位D.1.0×104精确到千位3.下列各图中,可以是一个正方体的平面展开图的是()A.B.C.D.4.绝对值大于2且小于5的所有的整数的和是()A.7B.﹣7C.0D.55.已知x=0是关于x的方程5x﹣4m=8的解,则m的值是()A.B.﹣C.2D.﹣26.用一副三角板拼成的图形如图所示,其中B、C、D三点在同一条直线上.则图中∠ACE的大小为()A.45°B.60°C.75°D.105°7.如图,已知点C是线段AD的中点,AB=10cm,BD=4cm,则BC的长为()A.5cm B.6cm C.7cm D.8cm8.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是()A.350元B.400元C.450元D.500元9.如果有4个不同的正整数a、b、c、d满足(2019﹣a)(2019﹣b)(2019﹣c)(2019﹣d)=9,那么a+b+c+d的值为()A.0B.9C.8048D.807610.观察下列一组图形,其中图形①中共有2颗星,图形②中共有6颗星,图形③中共有11颗星,图形④中共有17颗星,…,按此规律,图形⑦中星星的颗数是()A.24B.32C.41D.51二、填空题(每题3分,共24分)11.一天早晨的气温是﹣7℃,中午的气温3℃,则中午的气温比早晨的气温高℃.12.单项式﹣的次数是.13.如图,点A位于点O的方向上.14.一个角的余角是54°38′,则这个角的补角是.15.若方程:(m﹣1)x|m|﹣2=0是一元一次方程,则m的值为.16.长方形的长是3a,它的周长是10a﹣2b,则宽是.17.在学校的一次劳动中,在甲处劳动的有27人,在乙处劳动的有19人,后因劳动任务需要,需要另外调20人来支援,使在甲处的人数是在乙处人数的2倍,问应调往乙处人.18.按下面的程序计算:若输入x=100,则输出结果是501;若输入x=25,则输出结果是631;若开始输入的数x为正整数,最后输出结果为781,则开始输入的数x的所有可能的值为.三、解答题(共66分)19.(10分)计算(1)(2).20.(10分)解方程:(1)2x﹣9=5x+3(2).21.(6分)先化简,再求值:2xy2﹣[6x﹣4(2x﹣1)﹣2xy2]+9,其中(x﹣3)2+|y+|=0 22.(6分)从甲地到乙地,公共汽车原需行驶7个小时,开通高速公路后,车速平均每小时增加了20千米,只需5个小时即可到达,求甲、乙两地的路程.23.(10分)如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.24.(12分)如图①,∠AOB=90°,∠AOC为∠AOB外的一个角,且∠AOC=30°,射线OM 平分∠BOC,ON平分∠AOC.(1)求∠MON的度数;(2)如果(1)中∠AOB=α,∠AOC=β.(α,β为锐角),其它条件不变,求出∠MON的度数;(3)其实线段的计算与角的计算存在着紧密的联系,如图②线段AB=m,延长线段AB到C,使得BC=n,点M,N分别为AC,BC的中点,求MN的长(直接写出结果).25.(12分)某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的倍多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价﹣进价)(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍;甲商品按原价销售,乙商品打折销售,第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙商品是按原价打几折销售?参考答案与试题解析一、选择题(下列各题的备选答案中,只有一个是正确的,每小题3分,共30分)1.【分析】此题根据倒数的含义解答,乘积为1的两个数互为倒数,所以﹣7的倒数为1÷(﹣7).【解答】解:﹣7的倒数为:1÷(﹣7)=﹣.故选:C.【点评】此题考查的知识点是倒数.解答此题的关键是要知道乘积为1的两个数互为倒数,所以﹣7的倒数为1÷(﹣7).2.【分析】分别分析各数的有效数字与精确数位,再作答.一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.精确到了某一位,即应看这个数字最后一位实际在哪一位.【解答】解:根据近似数有效数字的确定方法和意义可知A、B、D正确,而近似数2.0万精确到千位,故C错误.故选:C.【点评】本题考查了有效数字和近似数的确定.精确到哪一位,即对下一位的数字进行四舍五入.从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字;注意后面的单位不算入有效数字.3.【分析】正方体的展开图有“1+4+1”型,“2+3+1”型、“3+3”型三种类型,其中“1”可以左右移动.注意“一”、“7”、“田”、“凹”字型的都不是正方体的展开图.【解答】解:A、属于“田”字型,不是正方体的展开图,故选项错误;B、属于“7”字型,不是正方体的展开图,故选项错误;C、属于“1+4+1”字型,是正方体的展开图,故选项正确;D、属于“凹”字型,不是正方体的展开图,故选项错误.故选:C.【点评】考查了几何体的展开图,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.4.【分析】绝对值大于2且小于5的整数绝对值有3,4.因为±3的绝对值是3,±4的绝对值是4,又因为互为相反数的两个数的和是0,所以,绝对值大于2而小于5的整数的和是0.【解答】解:因为绝对值大于2而小于5的整数为±3,±4,故其和为﹣3+3+(﹣4)+4=0.故选:C.【点评】考查了有理数的加法和绝对值,注意掌握互为相反数的两个数的绝对值相等,互为相反数的两个数的和是0.5.【分析】已知x=0是方程5x﹣4m=8的解,代入可求出m的值.【解答】解:把x=0代入5x﹣4m=8得,0﹣4m=8,解得:m=﹣2.故选:D.【点评】本题是知道一个字母的值求另一个字母的值,解决此题常用代入的方法.6.【分析】利用平角的定义计算∠ACE的度数.【解答】解:∵B、C、D三点在同一条直线上.∴∠ACE=180°﹣60°﹣45°=75°.故选:C.【点评】本题考查了角的计算:利用互余或互补计算角的度数.7.【分析】先求出AD,然后可得出CD,继而根据BC=BD+CD即可得出答案.【解答】解:∵AB=10cm,BD=4cm,∴AD=AB﹣BD=10﹣4=6(cm),∵点C是AD中点,∴CD=AD=3cm,则BC=CD+BD=7cm,故选:C.【点评】本题考查了两点之间的距离,关键是掌握中点的性质.8.【分析】设该服装标价为x元,根据售价﹣进价=利润列出方程,解出即可.【解答】解:设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.故选:B.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.9.【分析】根据a、b、c、d是四个不同的正整数可知四个括号内的值分别是:±1,±3,据此可得出结论.【解答】解:∵a、b、c、d是四个不同的正整数,∴四个括号内的值分别是:±1,±3,∴2019+1=2020,2019﹣1=2018,2019+3=2022,2019﹣3=2016,∴a+b+c+d=2020+2018+2022+2016=8076.故选:D.【点评】本题考查的是有理数的混合运算,根据题意得出四个括号中的数是解答此题的关键.10.【分析】设图形n中星星的颗数是a n(n为正整数),列出部分图形中星星的个数,根据数据的变化找出变化规律“+n﹣1”,依此规律即可得出结论.【解答】解:设图形n中星星的颗数是a n(n为正整数),∵a1=2=1+1,a2=6=(1+2)+3,a3=11=(1+2+3)+5,a4=17=(1+2+3+4)+7,∴a n=1+2+…+n+(2n﹣1)=+(2n﹣1)=+n﹣1,∴a7=×72+×7﹣1=41.故选:C.【点评】本题考查了规律型中的图形的变化类,根据图形中数的变化找出变化规律是解题的关键.二、填空题(每题3分,共24分)11.【分析】根据有理数减法的运算方法,用这天中午的气温减去早晨的气温,求出中午的气温比早晨的气温高多少即可.【解答】解:3﹣(﹣7)=10(℃)∴中午的气温比早晨的气温高10℃.故答案为:10.【点评】此题主要考查了有理数的减法,要熟练掌握.12.【分析】直接利用一个单项式中所有字母的指数的和叫做单项式的次数,进而得出答案.【解答】解:单项式﹣的次数是:3+2+1=6.故答案为:6.【点评】此题主要考查了单项式,正确把握单项式的次数确定方法是解题关键.13.【分析】根据方位角的概念直接解答即可.【解答】解:点A位于点O的北偏西30°方向上.【点评】规律总结:方向角一般是指以观测者的位置为中心,将正北或正南方向作为起始方向旋转到目标的方向线所成的角(一般指锐角),通常表达成北(南)偏东(西)多少度.14.【分析】根据余角是两个角的和为90°,这两个角互为余角,两个角的和为180°,这两个角互为补角,可得答案.【解答】解:∵一个角的余角是54°38′∴这个角为:90°﹣54°38′=35°22′,∴这个角的补角为:180°﹣35°22′=144°38′.故答案为:144°38′.【点评】本题考查余角和补角,通过它们的定义来解答即可.15.【分析】根据一元二次方程的定义解答即可.【解答】解:∵(m﹣1)x|m|﹣2=0是一元一次方程,∴,∴m=﹣1;故答案为:﹣1.【点评】本题考查了一元一次方程的概念,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.16.【分析】根据长方形的周长=2(长+宽),表示出宽即可.【解答】解:根据题意得:(10a﹣2b)﹣3a=5a﹣b﹣3a=2a﹣b,故答案为:2a﹣b【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.17.【分析】设调往甲处的人数为x,则调往乙处的人数为(20﹣x),根据甲处的人数是在乙处人数的2倍列方程求解.【解答】解:设应调往甲处x人,依题意得:27+x=2(19+20﹣x),解得:x=17,∴20﹣x=3,答:应调往甲处17人,调往乙处3人.故答案是:3.【点评】考查了一元一次方程的应用.根据题目给出的条件,找出合适的等量关系,列出方程,再求解.18.【分析】根据输出的结果确定出x的所有可能值即可.【解答】解:若5x+1=781,解得:x=156;若5x+1=156,解得:x=31;若5x+1=31,解得:x=6;若5x+1=6,解得:x=1,故答案为:1或6或31或156【点评】此题考查了代数式求值,弄清程序中的运算过程是解本题的关键.三、解答题(共66分)19.【分析】(1)先把除法运算转化为乘法运算,然后利用乘法的分配律进行计算;(2)先算乘方和乘法运算,然后加减运算.【解答】解:(1)原式=(﹣+)×(﹣36)=×(﹣36)﹣×(﹣36)+×(﹣36)=﹣8+9﹣2=1﹣2=﹣1;(2)原式=﹣1+6+2+1=8.【点评】本题考查了有理数的混合运算:先算乘方,再算乘除,然后进行加减运算;有括号先算括号.20.【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)方程移项合并得:﹣3x=12,解得:x=﹣4;(2)去分母得:2(x﹣1)﹣3(3﹣x)=6,去括号得:2x﹣2﹣9+3x=6,移项合并得:5x=17,解得:x=3.4.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.21.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=2xy2﹣6x+4(2x﹣1)+2xy2+9=2xy2﹣6x+8x﹣4+2xy2+9=4xy2+2x+5,∵(x﹣3)2+|y+|=0,∴x=3,y=﹣,则原式=4×3×(﹣)2+2×3+5=3+6+5=14.【点评】此题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解本题的关键.22.【分析】设甲乙两地的路程是x千米,则公共汽车原来的车速是km/h,开通高速公路后的车速是(+20)km/h,根据两地的路程这个相等关系列方程得(+20)×5=x,借这个方程即可求出甲乙两地的路程.【解答】解:设:甲乙两地的路程是x千米.根据题意列方程得:(+20)×5=x,解得:x=350.答:甲乙两地的路程是350千米.【点评】本题主要考查了列一元一次方程解应用题,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.23.【分析】先根据角平分线定义求出∠COB的度数,再求出∠BOD的度数,求出∠BOE的度数,即可得出答案.【解答】解:∵∠AOB=90°,OC平分∠AOB,∴∠COB=∠AOB=45°,∵∠COD=90°,∴∠BOD=45°,∵∠BOD=3∠DOE,∴∠DOE=15°,∴∠BOE=30°,∴∠COE=∠COB+∠BOE=45°+30°=75°.【点评】本题考查了角平分线定义和角的有关计算,能求出∠DOE的度数是解此题的关键.24.【分析】(1)根据角的平分线的特点,可以得知所分两角相等,等于原角的一半,根据角与角之间的数量关系即可得出结论;(2)根据角的平分线的特点,可以得知所分两角相等,等于原角的一半,根据角与角之间的数量关系即可得出结论;(3)根据(2)的原理,可直接得出结论.【解答】解:(1)∵∠BOC=∠AOB+∠AOC=90°+30°=120°,射线OM平分∠BOC,∴∠COM=∠BOC=×120°=60°,∵ON平分∠AOC,∴∠CON=∠AOC=×30°=15°,∴∠MON=∠COM﹣∠CON=60°﹣15°=45°.(2)∵∠BOC=∠AOB+∠AOC=α+β,∵射线OM平分∠BOC,∴∠COM=∠BOC=(α+β),∵ON平分∠AOC,∴∠CON=∠AOC=β,∴∠MON=∠COM﹣∠CON=(α+β)﹣β=α.(3)MN=m.【点评】本题考查的是角的计算,解题的关键是明白角平分线的特点,根据此特点结合角与角间的数量关系即可得出结论.25.【分析】(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据单价×数量=总价,即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=单件利润×销售数量,列式计算即可求出结论;(3)设第二次乙种商品是按原价打y折销售,根据总利润=单件利润×销售数量,即可得出关于y的一元一次方程,解之即可得出结论.【解答】解:(1)设第一次购进甲种商品x件,则购进乙种商品(x+15)件,根据题意得:22x+30(x+15)=6000,解得:x=150,∴x+15=90.答:该超市第一次购进甲种商品150件、乙种商品90件.(2)(29﹣22)×150+(40﹣30)×90=1950(元).答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润1950元.(3)设第二次乙种商品是按原价打y折销售,根据题意得:(29﹣22)×150+(40×﹣30)×90×3=1950+180,解得:y=8.5.答:第二次乙商品是按原价打8.5折销售.【点评】本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据总利润=单件利润×销售数量列式计算;(3)找准等量关系,正确列出一元一次方程.。

考点08 实际问题与一元一次方程——比赛积分问题(解析版)

考点08 实际问题与一元一次方程——比赛积分问题(解析版)

考点08 实际问题与一元一次方程比赛积分问题1.(河南省南阳市卧龙区2019–2020学年九年级期末数学试题)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛.根据题意,下面所列方程正确的是( ) A .221x = B .1(1)212x x -= C .21212x = D .(1)21x x -=【答案】B【解析】设有x 个队,每个队都要赛(x –1)场,但两队之间只有一场比赛,由题意得:1(1)212x x -=,故选B .2.(山西省(太原临汾地区)2019–2020学年七年级上学期阶段三质量评估数学试题)在开展校园足球对抗赛中,规定每队胜一场得3分,平一场得1分,负一场得0分,七年级(2)班一共比赛10场,且保持了不败战绩,一共得了24分,求七年级(2)班一共胜了几场,若设七年级(2)班一共胜了x 场,可列方程为( )A .31024x x +-=B .()31024x x -+=C .31024x x ++=D .()31024x x ++=【答案】A【解析】【分析】根据分数可得等量关系为:胜场的得分+平场的得分=24分,把相关数值代入求解即可. 【详解】解:设设七年级(2)班一共胜了x 场,则平了(10–x )场, 列方程得,3x +(10–x )=24, 故选:A .【点睛】此题考查了一元一次方程的应用,读懂题意,得到总得分的等量关系是解决本题的关键. 3.(安徽省蚌埠市局属初中2019–2020学年八年级下学期期末数学试题)有x 支球队参加篮球比赛,每两队之间都比赛一场,共比赛了21场,则下列方程中符合题意的是( ) A .x (x –1)=21 B .x (x –1)=42 C .x (x +1)=21D .x (x +1)=42【答案】B【解析】【分析】设这次有x队参加比赛,由于赛制为单循环形式(每两队之间都赛一场),则此次比赛的总场数为:12x(x–1)场.根据题意可知:此次比赛的总场数=21场,依此等量关系列出方程即可.【详解】设这次有x队参加比赛,则此次比赛的总场数为12x(x−1)场,根据题意列出方程得:12x(x−1)=21,整理,得:x(x−1)=42,故答案为x(x−1)=42.故选B.【点睛】本题考查由实际问题抽象出一元二次方程,准确找到等量关系是解题的关键.4.在2019年女排世界杯比赛中,中国队以11场全胜积32分的成绩成为女排世界杯五冠王、女排世界杯比赛积分规则如表所示,若中国队以大比分3:2取胜的场次有x场,则根据以上信息所列方程正确的是()A.3x+2x=32B.3(11–x)+3(11–x)+2x=32C.3(11–x)+2x=32D.3x+2(11–x)=32【答案】C【解析】【分析】设中国队以大比分3:2取胜的场次有x场,则中国队以小比分3:1或3:0取胜的场次有(11–x)场,根据总积分=3×小比分获胜的场次数+2×大比分获胜场次数,即可得出关于x的一元一次方程.【详解】解:设中国队以大比分3:2取胜的场次有x场,则中国队以小比分3:1或3:0取胜的场次有(11–x)场,依题意,得:2x+3(11–x)=32.故选C.【点睛】本题考查了一元一次方程的应用,正确理解题意、找准相等关系是解题的关键.5.(江苏省海安市八校2019–2020学年七年级下学期6月阶段性测试数学试题)篮球比赛规定:胜一场得3分,负一场得1分.某篮球队进行了6场比赛,得了14分,该队获胜的场数是()A .2B .3C .4D .5【答案】C【解析】【分析】可设该队获胜x 场,则负了(6–x )场,根据总分=3×获胜场数+1×负了的场数,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】设该队获胜x 场,则负了(6–x )场,根据题意,得: 3x +(6–x )=14, 解得x =4.经检验x =4符合题意. 故该队获胜4场. 故选C .【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 6.(黑龙江省哈尔滨市德强中学2020–2021学年七年级上学期9月月考数学试题)某球队参加比赛,开局11场保持不败,积23分,按比赛规则,胜一场得3分,平一场得1分,则该队获胜的场数为( ) A .4 B .5C .6D .7【答案】C【解析】【分析】设该队获胜的场数为x 场,则平局了()11x -场,根据总得分=获胜场数⨯3+平局场数⨯1,即可列出关于x 的一元一次方程,求解即可得出答案. 【详解】解:设该队获胜的场数为x 场,则根据比赛规则可得,()31123x x +-=,解得6x = 故选C .【点睛】本题考查了一元一次方程的应用,读懂题意,找到等量关系式是解题的关键.7.(河北省定州市宝塔初级中学2019–2020学年七年级下学期期末数学试题)篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是( ) A .2 B .3C .4D .5【答案】B【解析】【分析】解答此题可设该队获胜x 场,则负了(6–x )场,根据总分=3×获胜场数+1×负了的场数,即可得出关于x 的一元一次方程,解之即可得出结论. 【详解】设该队获胜x 场,则负了(6-x )场. 根据题意得3x +(6-x )=12,解得x =3.经检验x =3符合题意. 故该队获胜3场. 故选B .【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键8.(湖北省黄石市新建中学2019–2020学年七年级下学期期中数学试题)一张试卷有25道选择题,做对一题得4分,做错一题得–1分,某同学做完了25道题,共得70分,那么他做对的题数是( ) A .17道 B .18道C .19道D .20道【答案】C【解析】【分析】设作对了x 道,则错了(25–x )道,根据题意列出方程进行求解. 【详解】设作对了x 道,则错了(25–x )道,依题意得4x –(25–x )=70, 解得x =19 故选C .【点睛】此题主要考查一元一次方程的应用,解题的关键是根据题意找到等量关系.9.(黑龙江省哈尔滨市松雷中学2020–2021学年七年级上学期9月月考数学试题)足球比赛的记分办法为:胜一场得3分,平一场得1分,负一场得0分.一个队打了14场比赛,负5场,共得19分,那么这个队胜了 A .3场 B .4场C .5场D .6场【答案】C【解析】【分析】设共胜了x 场,本题的等量关系为:胜的场数×3+平的场数×1+负的场数×0=总得分,解方程即可得出答案.【详解】设共胜了x 场,则平了(14–5–x )场, 由题意得:3x +(14–5–x )=19, 解得:x =5,即这个队胜了5场. 故选C .【点睛】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是要掌握胜的场数×3+平的场数×1+负的场数×0=总得分,难度一般.10.(湖南省湘西州古丈县2019–2020学年七年级下学期期末数学试题)在某足球比赛的前9场比赛中,A 队保持连续不败,共积25分,按比赛规则,胜一场得3分,平一场得1分,设A 队胜了x 场,由题意可列方程为_____. 【答案】3925x x +-=【解析】【分析】设A 队胜了x 场,从而可得A 队平了(9)x -场,再根据“胜一场得3分,平一场得1分”和“共积25分”即可列出方程.【详解】设A 队胜了x 场,则A 队平了(9)x -场, 由题意得:3925x x +-=, 故答案为:3925x x +-=.【点睛】本题考查了列一元一次方程,理解题意,正确求出A 队平了(9)x -场是解题关键.11.某学校8个班级进行足球友谊赛,比赛采用单循环赛制(参加比赛的队,每两队之间进行一场比赛),胜一场得3分,平一场得1分,负一场得0分,某班共得15分,并以不败成绩获得冠军,那么该班共胜______场比赛. 【答案】4【解析】8个班进行友谊赛,也就是说每个班级要和其余7个班级比赛,根据总比赛场数为7,设赢了x 场,则3x +(7-x )=15,解得x =4,故答案为:4.12.(河北省张家口市怀安县2020–2021学年七年级入学调研室考试数学试题)王亮参加了一场知识竞赛,共得了82分.这次竞赛一共50道题,答对一道记2分,答错一道或不答均扣1分.王亮答对了_______道题. 【答案】44【解析】【分析】设王亮答对了x 道题,则不答或答错(50–x )道题,根据总分=2×答对题目数–1×答错或不答题目数,即可得出关于x 的一元一次方程,解之即可得出结论; 【详解】解:设王亮答对了x 道题,则不答或答错(50–x )道题, 根据题意得:2x –(50–x )=82, 解得:x =44.答:王亮在竞赛中答对了44道题 故答案为:44【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 13.(湖北省天门、仙桃、潜江、江汉油田2020年中考数学试题)篮球联赛中,每玚比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了_________场. 【答案】9【解析】【分析】设该对胜x 场,则负14–x 场,然后根据题意列一元一次方程解答即可. 【详解】解:设该对胜x 场由题意得:2x +(14–x )=23,解得x =9.故答案为9.【点睛】本题考查了一元一次方程的应用,弄清题意、设出未知数、找准等量关系、列出方程是解答本题的关键.14.(内蒙古巴彦淖尔市杭锦后旗2019–2020学年七年级上学期期末数学试题)足球比赛的记分规则为:胜一场得3分,平一场得1分,负一场记0分,一个队比赛了20场,平了5场,共得32分,那么该队胜___________场.【答案】9【解析】【分析】设该队胜x场,根据记分规则和得分总数,可列方程3x+5=32求解.【详解】解:设该队胜x场,依题意得:3x+5=32解得:x=9故答案为:9.【点睛】根据题目给出的条件,找出合适的等量关系列出方程,再求解.15.一名篮球运动员在一次比赛中20投12中得24分,投中的两分球的个数是投中三分球个数的4倍,则投中的三分球、两分球、罚球分别是几个?【答案】三分球2个,两分球8个,罚球2个【解析】【分析】设运动员三分球投中x球,则两分球投中4x球,罚球投中(12–x–4x)球,根据24分列出方程,求出方程的解即可得到结果.【详解】解:设运动员三分球投中x球,则两分球投中4x球,罚球投中(12–x–4x)球,,根据题意得:3x+2×4x+14–x–4x=24,整理得:2x+8x+14–5x=24,移项合并得:x=2,所以4x=8,12–x–4x=2,则该运动员三分球投中2球,两分球投中8球;罚球投中2球.【点睛】此题考查了一元一次方程的应用,弄清题意是解本题的关键.16.(新疆维吾尔自治区昌吉回族自治州教育共同体2019–2020学年七年级上学期期末数学试题)一次足球比赛共赛15场,胜一场积2分,平一场积1分,负一场积0分,某中学足球队所胜场数是所负场数的2倍,结果共得19分,则这个足球队共平几场?【答案】3【解析】【分析】设这个足球负了x场,则胜了2x场,平了(15–x–2x)场,根据胜的场数的得分+平的场数的得分=19,列方程求出其解即可.【详解】解:设这个足球队负了x场,则胜了2x场,平了(15–x–2x)场,根据题意得:2×2x+1×(15–x–2x)=19,解得,x=4,15–x–2x=15–4–8=3,答:这个足球队共平3场.【点睛】本题考查了一元一次方程的应用.根据题目给出的条件,找出合适的等量关系是解决问题的关键. 17.(湖北省咸宁市嘉鱼县2019–2020学年七年级上学期期末数学试题)下表是某年篮球世界杯小组赛C 组积分表:排名国家比赛场数胜场负场总积分1美国550102土耳其53283乌克兰52374多米尼加52375新西兰52376芬兰51m n(1)由表中信息可知,胜一场积几分?你是怎样判断的?(2)m=;n=;(3)若删掉美国队那一行,你还能求出胜一场、负一场的积分吗?怎样求?(4)能否出现某队的胜场积分与负场积分相同的情况,为什么?【答案】(1)胜一场积2分,理由见解析;(2)m=4,n=6;(3)胜一场积2分,负一场积1分;(4)不可能,理由见解析【解析】【分析】(1)由美国5场全胜积10分,即可得到答案;(2)由比赛场数减去胜场,然后计算m、n的值;(3)由题意,设胜一场积x分,然后列出方程组,即可求出胜一场、负一场的积分;(4)由题意,列出方程,解方程即可得到答案.【详解】解:(1)根据题意,则因为美国5场全胜积10分,所以1052÷=,所以胜一场积2分;(2)由题意,514m=-=;设负一场得x分,则3228x⨯+=;所以1x=;所以12416n=⨯+⨯=;故答案为:6;4;(3)设胜一场积x分,由土耳其队积分可知负一场积分832x-,根据乌克兰队积分可列方程:8323()72xx-+=,解得:2x=,此时831 2x-=;即胜一场积2分,负一场积1分;(4)设某球队胜y场,则21(5)y y=⨯-,解得:53y=;所以不可能出现某队的胜场积分与负场积分相同的情况.【点睛】本题考查了一元一次方程的应用,根据数量关系列出一元一次方程是解题的关键.18.(湖北省武汉市汉阳区2019–2020学年七年级上学期期末数学试题)下面表格是某次篮球联赛部分球队不完整的积分表:请根据表格提供的信息:(1)求出a 的值;(2)请直接写出m =______,n =______. 【答案】(1)18a =;(2)8m =,6n =.【解析】【分析】(1)由钢铁队的负场数及积分可得负一场的分值,由前进队的胜负场数及积分可得胜一场的分值,由此可求出卫星队的积分;(2)由远大队的总场数可得14m n =-,结合(1)中所求的胜一场及负一场的分值和远大队的积分可列出关于n 的一元一次方程,求解即可.【详解】解:(1)由钢铁队的负场数及积分可得负一场的分值为14141÷=(分),由前进队的胜负场数及积分可得胜一场的分值为(2441)102-⨯÷=(分),4210118a =⨯+⨯=, 所以a 的值为18;(2)由远大队的总场数可得14m n =-,根据题意得:2(14)122n n -+⨯= 解得6n =1468m =-=所以8m =,6n =.【点睛】本题考查了一元一次方程的实际应用,正确理解题意,从表格中获取信息是解题的关键. 19.(北京市海淀区2019–2020学年七年级上学期期末数学试题)2019年9月29日,中国女排以十一连胜的战绩夺得女排世界杯冠军,成为世界三大赛的“十冠王”2019年女排世界杯的参赛队伍为12支,比赛采取单循环方式,五局三胜,积分规则如下:比赛中以30-或者31-取胜的球队积3分,负队积0分;而在比赛中以32-取胜的球队积2分,负队积1分.前四名队伍积分榜部分信息如下表所示,(1)中国队11场胜场中只有一场以32-取胜,请将中国队的总积分填在表格中.(2)巴西队积3分取胜的场次比积2分取胜的场次多5场,且负场积分为1分,总积分见下表,求巴西队胜场的场数.【答案】(1)32;(2)7【解析】【分析】(1)根据比赛中以30-或者31-取胜的球队积3分,在比赛中以32-取胜的球队积2分,结合表格和已知条件即可得出(2)设巴西队积3分取胜的场数为x 场,则积2分取胜的场数为()5x -场,根据巴西队的总积分为21分,列出方程解方程即可得出答案【详解】解:(1)解:因为比赛中以30-或者31-取胜的球队积3分,在比赛中以32-取胜的球队积2分,中国队11场胜场中只有一场以32-取胜, 所以中国队的总积分=1031232⨯+⨯= 故答案为:32(2)设巴西队积3分取胜的场数为x 场,则积2分取胜的场数为()5x -场 依题意可列方程()325121x x +-+= 3210121x x +-+=530x =6x =则积2分取胜的场数为51x -=,所以取胜的场数为617+= 答:巴西队取胜的场数为7场.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.20.(青海省西宁市2019–2020学年七年级上学期期末数学试题)某次篮球联赛中,两队的积分如下表所示:请回答下列问题:(1)负一场_________积分; (2)求胜一场积多少分?(3)某队的胜场总积分比负场总积分的3倍多3分,求该队胜了多少场? 【答案】(1)1;(2)胜1场得2分;(3)该队胜了9场. 【解析】【分析】(1)根据“钢铁”队的负场场次和积分即可得;(2)设胜一场积x 分,根据“前进”队的胜场场次、负场场次与积分建立方程求解即可;(3)设该队胜了a 场,则该队负了(14)a -场,再结合(1)、(2)的结论建立方程求解即可.【详解】(1)由“钢铁”队得:14141÷=故答案为:1;(2)设胜一场积x 分由题意得:104124x +⨯=解得:2x =答:胜一场积2分;(3)设该队胜a 场,则该队负(14)a -场由题意得:23(14)3a a =-+解得:9a =答:该队胜了9场.【点睛】本题考查了一元一次方程的实际应用,依据题意正确建立方程是解题关键.21.(四川省成都市金牛区2019–2020学年七年级上学期期末数学试题)2019年11月,我区组织了一次职工篮球联赛,比赛分初赛阶段和决赛阶段,在初赛阶段中,每队有10场比赛,每场比赛都要分出胜负,每队胜一场得2分,输一场得1分,积分超过15分才能获得决赛资格.(1)若乙队初赛获得4场胜利,问乙队是否有资格参加决赛?请说明理由.(2)已知甲队在初赛阶段的积分为18分,求甲队初赛阶段胜、负各多少场;【答案】(1)没有,理由见解析;(2)胜8场,负2场【解析】【分析】(1)根据得分标准进行计算,再比较大小即可;(2)设甲队胜了x 场,则负了(10-x )场,根据每队胜一场得2分,负一场得1分,利用甲队在初赛阶段的积分为18分,进而得出方程求出答案.【详解】解:(1)没有资格参加决赛,理由如下:乙队积分为:4×2+(10-4)×1=14<15,所以没有资格参加决赛;(2)设甲队初赛阶段胜x 场,则负了(10-x )场,由题意得:2x +1×(10-x )=18,解得:x =8,所以10-x =10-8=2,答:甲队初赛阶段胜8场,负2场.【点睛】本题考查一元一次方程的应用,明确得分标准,正确找出等量关系是解题的关键.22.(天津市河东区2019–2020学年七年级上学期期末数学试题)某校七年级组织知识竞赛,共设20道选择题,各题分值相同,每题必答,如表记录了5个参赛学生的得分情况,问:(1)答对一题得分,若错一题得分;(2)有一同学说:同学甲得了70分,同学乙得了50分,你认为谁的成绩是准确的?为什么?【答案】(1)5,–1;(2)同学甲的成绩是准确的,同学乙的成绩不准确,理由见解析【解析】【分析】(1)根据A参赛者答对20道题,答错0道题,得分100分,即可求得答对一题得5分,再;根据B参赛者答对19道题,答错1道题,得分94分,即可求得答案;(2)设同学甲答对了x道,则答错了(20–x)道,由题意建立方程求解即可.【详解】(1)因为答对20道题,答错0道题,得分100分,所以答对一题得5分,因为答对19道题,答错1道题,得分94分,所以答错一题得–1分;故答案为:5,–1;(2)同学甲的成绩是准确的,同学乙的成绩不准确.设同学甲答对了x道,则答错了(20–x)道,由题意得:5x–(20–x)=70,解得:x=15,设同学乙答对了y道,则答错了(20–y)道,由题意得:5y–(20–y)=50,解得:y=70 6因为x,y是做对题目个数,所以x,y是自然数.因此,同学甲的成绩是准确的,同学乙的成绩不准确.【点睛】本题考查了一元一次方程解实际应用题的运用,解答时关键是:答对的得分+加上答错的得分=总得分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

武汉市2019-2020学年七年级上学期期末数学试题(I)卷
姓名:________ 班级:________ 成绩:________
一、单选题
1 . 下列各等式的变形中,等式的性质运用正确的是()
B.由,得
A.由,得
C.由,得D.由,得
2 . 六边形一共有对角线的条数为()
A.6B.7C.8D.9
3 . 下列说法正确的是()
A.如果,那么
B.和的值相等
C.与是同类项D.和互为相反数
4 . 2019年河北省高考人数为55.96万人,则55.96万人用科学记数法表示为()人
A.B.C.D.
5 . 如图,中,,,BD、CD分别平分∠ABC,∠ACB,过点D作直线平行于BC,分别交AB、AC于E、F,则的周长为()
A.12B.13C.14D.15
6 . 某班分两组志愿者去社区服务,第一组20人,第二组26人.现第一组发现人手不够,需第二组支援.问
从第二组调多少人去第一组才能使第一组的人数是第二组的2倍?设抽调x人,则可列方程()
A.20=2(26﹣x)B.20+x=2×26C.2(20+x)=26﹣x D.20+x=2(26﹣x)
7 . 的相反数是()
A.B.C.-5D.5
8 . -的倒数是()
A.B.C.D.-
9 . 下列说法正确的是()
A.调查某班学生的身高情况,适采用抽样训查
B.对端午节期间市场上粽子质量情况的调查适合采用全面调查
C.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的率是1
D.“若互为相反数,则”,这一事件是必然事件
10 . 下面几何体的截面图可能是圆的是()
A.正方体B.棱柱C.圆锥D.三棱锥
二、填空题
11 . 单项式的系数是_____,多项式的次数是_____.
12 . 若|-x|=4,则x=____;若|x-3|=0,则x=____;若|x-3|=1,则x=____.
13 . 若三个互不相等的有理数既可表示为1,a+b,a的形式,又可表示为0,,b的形式,则12a2﹣5ab=_____.
14 . 平方等于81的数是__________;
15 . 计算:=.
16 . 如图,直线L:y=x+1交y轴于点A1,在x轴正方向上取点B1,使OB1=OA1;过点B1作A2B1⊥x轴,交L于点A2,在x轴正方向上取点B2,使B1B2=B1A2;过点B2作A3B2⊥x轴,交L于点A3,在x轴正方向上取点B3,使B2B3=B2A3;…记△OA1B1面积为S1,△B1A2B2面积为S2,△B2A3B3面积为S3,…则S2019等于
_____.
17 . 观察下列数据:﹣2,,﹣,,﹣,…,它们是按一定规律排列的,依照此规律,第11个数据是.
18 . 如果是方程的解,那么的值是_____.
19 . 若化简(x+1)(2x+m)的结果中x的一次项系数是-5,则数m的值为_____.
三、解答题
20 . 滴滴公布了新的滴滴快车计价规则,车费由“总里程费+总时长费”两部分构成,不同时段收费标准不同,具体收费标准如下表,如果车费不足起步价,则按起步价收费.
时间段里程费(元/千米)时长费(元/分钟)起步价(元)
06:00-10:00 1.800.8014.00
10:00-17:00 1.450.4013.00
17:00-21:00 1.500.8014.00
21:00-6:000.800.8014.00(1)小明早上7:10乘坐滴滴快车上学,行车里程6千米,行车时间10分钟,则应付车费多少元?
(2)小云17:10放学回家,行车里程2千米,行车时间12分钟,则应付车费多少元?
(3)下晚自习后小明乘坐滴滴快车回家,20:45在学校上车,由于堵车,平均速度是千米/小时,15分钟后走另外一条路回家,平均速度是千米/小时,10分钟后到家,则他应付车费多少元?
21 . 如图所示是由若干个相同的小立方块堆成的几何体从上面看到的形状图,小正方形中的数字表示在该位
置上小立方块的个数,请你画出从正面、左面看到的这个几何体的形状图.
22 . 甲乙两队进行拔河比赛,标志物先向甲队方向移动0.5m,后向乙队方向移动了0.8m,相持一会后又向乙队方向移动0.5m,随后向甲队方向移动了1.5m在一片欢呼声中,标志物再向甲队方向移动1.2m.若规定只要标志物向某队方向移动2m,则该队即可获胜,那么现在甲队获胜了吗?用计算说明理由.
23 . (1)计算:
(2)计算:[(x+y)2-(x-y)2]÷(2xy)
24 . 滴滴快车是一种便捷的出行工具,其计价规则如图:
(注:滴滴快车车费由里程费、时长费、远途费三部分构成,其中里程费按行车的具体时段标准和实际里程计算:时长费按具体时段标准和行车的实际时间计算,远途费的收取方式:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.3元)
(1)小红早上7:00从家出发乘坐滴滴快车到学校,行驶里程2公里,用时8分钟,需付车费元,傍晚17:00放学乘坐滴滴快车到妈妈单位,行驶里程5公里,用时20分钟,需付车费元;
(2)某人06:10出发,乘坐滴滴快车到某地,行驶里程20公里,用时40分钟,需付车费多少元?
(3)某人普通时段乘坐演滴快车到某地,用时30分钟,共花车费39.8元,求他行驶的里程?
25 . 开展阳光体育运动,掌握运动技能,增强身体素质.某校初二年级五月开展了周末一小时兴趣锻炼活动,项目包括:篮球技能、排球技能、足球技能、立定跳远、50米跑,每个同学只选一项参与.王老师为了解学生对各种项目的参与情况,随机调查了部分学生参与哪一类项目(被调查的学生没有不参与的),并将调查结果制成了如下的两个统计图(不完整)请你根据图中所提供的信息,完成下列问题:
(1)求本次调查的学生人数;
(2)请将两个统计图补充完整,并求出足球项目在扇形统计图中所占圆心角的度数;
(3)若该中学初二年级有名学生,请估计该校初二学生参与球类项目的人数.
26 . 先化简再求值:
(1)3(x2-2x-1)-4(3x-2)+2(x-1),其中x=﹣3;
(2)2a2﹣[(ab﹣4a2)+8ab]﹣ab,其中a=1,b=.
27 . 列方程解应用题:
2019年年底某高铁即将开通,以前小红回老家只能坐绿皮车,车速才60km/h,但某高铁开通之后,车速可以达到240km/h.这样就能早到4.5小时.请问提速后小红回老家需要多长时间?
28 . 光在反射时,光束的路径可用图(1)来表示,叫做入射光线,叫做反射光线,从入射点引出的一条垂直于镜面的射线叫做法线,与的夹角叫入射角,与的夹角叫反射角.根据科学实验可得:.则图(1)中与的数量关系是:____________理由:___________;
生活中我们可以运用“激光”和两块相交的平面镜进行测距.如图(2)当一束“激光”射入到平面镜上、被反射到平面镜上,又被平面镜反射后得到反射光线.
(1)若反射光线沿着入射光线的方向反射回去,即,且,则______,______;
(2)猜想:当______时,任何射到平面镜上的光线经过平面镜和的两次反射后,入射光线与反射光线总是平行的.请你根据所学过的知识及新知说明.。

相关文档
最新文档