模拟电子技术-第1章
模拟电子技术第1章PPT课件

多数载流子——自由电子 施主离子
少数载流子—— 空穴
7
8
2. P型半导体
在本征半导体中掺入三价杂质元素,如硼、镓等。
硅原子
+4
空穴
+4
硼原子
+4
8
电子空穴对
空穴
+4 +4
P型半导体
- - --
+3 +4
- - --
- - --
+4 +4
受主离子
多数载流子—— 空穴 少数载流子——自由电子 9
杂质半导体的示意图
(1) 稳定电压UZ ——
在规定的稳压管反向工作电流IZ下UZ,所对应的Iz反min 向工作电u压。
(2) 动态电阻rZ ——
△I
rZ =U /I
rZ愈小,反映稳压管的击穿特性△愈U 陡。
I zmax
(3) 最小稳定工作 电流IZmin——
保证稳压管击穿所对应的电流,若IZ<IZmin则不能稳压。
(4) 最大稳定工作电流IZmax——
17
EW
R
18
(2) 扩散电容CD
当外加正向电压
不同时,PN结两 + 侧堆积的少子的 数量及浓度梯度 也不同,这就相 当电容的充放电 过程。
P区 耗 尽 层 N 区 -
P 区中电子 浓度分布
N 区中空穴 浓度分布
极间电容(结电容)
Ln
Lp
x
电容效应在交流信号作用下才会明显表现出来
18
19
1.2 半导体二极管
30
31
四、稳压二极管
稳压二极管是应用在反向击穿区的特殊二极管
பைடு நூலகம்
第1章—02-半导体二极管-sw

六、发光二极管 发光二极管
将电能转换成光能的特殊半导体器件。 1.定义:将电能转换成光能的特殊半导体器件。 定义: 2.类型 类型 普通发光二极管 红外发光二极管 …… 直流驱动电路 交流驱动电路
3.常用驱动电路: 常用驱动电路:
4.工作原理: 管子加正向电压时 在正向电流激发下, 4.工作原理:当管子加正向电压时,在正向电流激发下, 工作原理 管子发光,属电致发光。 管子发光,属电致发光。 注意:发光二极管在加正向电压时才发光。 注意:发光二极管在加正向电压时才发光。
模拟电子技术基础 第1章 常用半导体器件
电子系 2010年9月 Electronic Department Sep. 2010
第一章 常用半导体器件
1.1、半导体的基础知识 1.1、 1.2、半导体二极管 1.2、 1.3、 1.3、晶体三极管 1.4、 1.4、场效应管
1.2 半导体二极管
一、二极管的组成 二、二极管的伏安特性及电流方程 三、二极管的等效电路 四、二极管的主要参数 五、稳压二极管 六、发光二极管 七、光电二极管 八、其他二极管 九、二极管的应用
ui=0时直流电源作用 时直流电源作用
∆u D U T 根据电流方程,rd = ≈ ∆iD ID
小信号作用 Q越高,rd越小。 越高, 越小。 越高 静态电流
四、二极管的主要参数
• • • • 最大整流电流I 最大整流电流 F:最大平均值 最大反向工作电压U 最大反向工作电压 R:最大瞬时值 反向电流 IR:即IS 最高工作频率f 最高工作频率 M:因PN结有电容效应 结有电容效应 结电容为扩散电容( 与势垒电容( 之和。 结电容为扩散电容(Cd)与势垒电容(Cb)之和。
uL
+
模电课件-第1章-精选文档

直(交)流→交(直)流。
(5)信号发生电路:产生正弦、三角、矩形波等。 (6)直流电源:将交流电转换成不同输出电压和电流的 直流电。
33 MHz
目录
Analog Electronics
1
导言
33 MHz
2 运算放大器 3 二极管及其基本电路 4 晶体三极管及放大电路基础 5 场效应管放大电路 6 模拟集成电路 7 反馈放大电路 8 信号的运算和滤波 9 波形的发生与变换电路 10 直流稳压电源
信号的 信号的 信号的
信号的
提取
传感器 接收器
预处理
隔离、滤波 放大、阻抗 变换
加工
运算、转 换、比较
执行
功率放大 A/D转换
33 MHz
图1.2.1电子信息系统示意图
Analog Electronics
1.2.3
电子信息系统中的模拟电路
信号的 预处理 信号的 加工 信号的 执行
信号的 提取
(1)放大电路:用于信号的电压、电流或功率放大。 (2)滤波电路:用于信号的提取、变换或抗干扰。
Analog Electronics
模拟电子技术基本教程 Fundamentals of Analog Electronics 华成英 主编
33 MHz
Analog Electronics 1. 电子技术的发展简史
电子技术诞生的历史虽短,但深入的领域却是最深最广, 它不仅是现代化社会的重要标志,而且成为人类探索宇宙宏观 世界和微观世界的物质技术基础。 1904年第一只电子器件发明以来,世界电子技术经历了 电子管、晶体管和集成电路等重要发展阶段。
《模拟电子技术》(第3版)课件与教案 第1章

第1章 半导体二极管及其应用试确定图(a )、(b )所示电路中二极管D 是处于正偏还是反偏状态,并计算A 、B 、C 、D 各点的电位。
设二极管的正向导通压降V D(on) =。
解:如图E1.1所示,断开二极管,利用电位计算的方法,计算二极管开始工作前的外加电压,将电路中的二极管用恒压降模型等效,有(a )V D1'=(12-0)V =12V >0.7V ,D 1正偏导通,)7.02.22.28.17.012(A +⨯+-=VV B =V A -V D(on))V =6. 215V(b )V D2'=(0-12)V =-12V <0.7V ,D 2反偏截止,有V C =12V ,V D =0V二极管电路如图所示,设二极管的正向导通压降V D(on) =,试确定各电路中二极管D 的工作状态,并计算电路的输出电压V O 。
解:如图E1.2所示,将电路中连接的二极管开路,计算二极管的端电压,有 (a )V D1'=[-9-(-12)]V =3V >0.7V ,D 1正偏导通V O1(b )V D2'=[-3-(-29)]V =1.5V >0.7V ,D 2正偏导通V O2图E1.2(c)V D3'=9V>0.7V,V D4'=[9-(-6)]V=15V>0.7V,V D4'>V D3',D4首先导通。
D4导通后,V D3''=(0.7-6)V=-5.3V<,D3反偏截止,V O3。
二极管电路如图所示,设二极管是理想的,输入信号v i=10sinωt V,试画出输出信号v O的波形。
图E1.3解:如图E1.3所示电路,二极管的工作状态取决于电路中的输入信号v i的变化。
(a)当v i<0时,D1反偏截止,v O1=0;当v i>0时,D1正偏导通,v O1=v i。
(b)当v i<0时,D2反偏截止,v O2=v i;当v i>0时,D2正偏导通,v O2=0。
(c)当v i<0时,D3正偏导通,v O3=v i;当v i>0时,D3反偏截止,v O3=0。
模拟电子技术第1章 数字电路基础

于其进位规则为“逢十六进一”,故称为十六进制,常用大写字母“H”表示。十六进制按
权展开式为:
n1
(N)16 =
ai 16i
im
式中,ai 为十六进制数的任意一个数码;n 表示整数部分数位,m 表示小数部分数位;下标
16(或 H)表示十六进制数。例如
(5D.6A)H =5×161+13×160+6×16-1+10×16-2
(2)二进制数与十六进制数的相互转换 由表 1-1 可知制数与十六进制数之间
进行转换时通常采用分组等值法。 具体操作以小数点为基准,向左或者向右将二进制数按 4 位一组进行分组(当不足 4 位时,
按整数部分从高位、小数部分从低位的原则予以补 0 处理),然后用对应十六进制数代替各组的 二进制数,即可得等值的十六进制数。反之,将十六进制数的每个数码用相应的 4 位二进制数代 替,并去除高、低位无效的 0,所得结果即为等值二进制数。
1.2.2 编码
利用二进制数表示图形、文字、符号和数字等信息的过程称为编码(Encode),编码的结果 称为代码(Code)。例如,发送邮件时收/发信人的 E-mail、因特网上计算机主机的 IP 地址等, 就是生活中常见的编码实例。
进制数。例如:
(110.01)B =1×22+1×21+0×20+0×2-1+1×2-2
【十六进制】十六进制(Hexadecimal System)是数字电路中另一种常用数制,包含 0~9、A、B、
C、D、E、F 十六个数码,其中 A、B、C、D、E、F 依次表示十进制数 10~15,所以基数为 16。由
(3)十进制数转换为二进制数 十进制数转换为二进制数需要将整数部分和小数部分分别进行转换。通常整数部分采用除 2 反序取余法进行转换,小数部分采用乘 2 顺序取整法进行转换。 具体操作:将给定的十进制整数部分依次除以 2,按反序的原则取余数即为等值二进制数; 十进制小数部分依次乘以 2,按顺序的原则取整数即为等值二进制数。当小数部分不能精确转换 为二进制小数时,可根据精度要求,保留几位小数。 此外,利用二进制数作桥梁,可以方便地将十进制数转换为十六进制数。
模拟电子技术基础-第一章课后习题详解

习题1.1选择合适答案填入空内。
(1)在本征半导体中加入元素可形成N型半导体,加入元素可形成P型半导体。
A. 五价B. 四价C. 三价(2)当温度升高时,二极管的反向饱和电流将。
A. 增大B. 不变C. 减小(3)工作在放大区的某三极管,如果当I B从12μA增大到22μA时,I C从1mA变为2mA,那么它的β约为。
A. 83B. 91C. 100(4)当场效应管的漏极直流电流I D从2mA变为4mA时,它的低频跨导g m将。
A.增大B.不变C.减小解:(1)A ,C (2)A (3)C (4)A1.2 能否将1.5V的干电池以正向接法接到二极管两端?为什么?解:不能。
因为二极管的正向电流与其端电压成指数关系,当端电压为1.5V时,管子会因电流过大而烧坏。
1.3 电路如图P1.3所示,已知u i=10sinωt(v),试画出u i与u O的波形。
设二极管正向导通电压可忽略不计。
图P1.3解图P1.3解:u i和u o的波形如解图P1.3所示。
1.4 电路如图P1.4所示,已知u i=5sinωt(V),二极管导通电压U D=0.7V。
试画出u i与u O的波形,并标出幅值。
图P1.4解图P1.4解:波形如解图P1.4所示。
1.5 电路如图P1.5(a)所示,其输入电压u I1和u I2的波形如图(b)所示,二极管导通电压U D=0.7V。
试画出输出电压u O的波形,并标出幅值。
图P1.5解:u O的波形如解图P1.5所示。
解图P1.51.6 电路如图P1.6所示,二极管导通电压U D=0.7V,常温下U T≈26mV,电容C对交流信号可视为短路;u i为正弦波,有效值为10mV。
试问二极管中流过的交流电流有效值解:二极管的直流电流I D=(V-U D)/R=2.6mA其动态电阻r D≈U T/I D=10Ω故动态电流有效值I d=U i/r D≈1mA 图P1.61.7现有两只稳压管,它们的稳定电压分别为6V和8V,正向导通电压为0.7V。
精品文档-模拟电子技术(江晓安)(第三版)-第1章

第一章 半导体器件
图 1 – 5 P型半导体的共价键结构
第一章 半导体器件
1.2PN 结
1.2.1 异型半导体接触现象 在P型和N型半导体的交界面两侧, 由于电子和空穴的
浓度相差悬殊, 因而将产生扩散运动。 电子由N区向P区扩 散; 空穴由P区向N区扩散。 由于它们均是带电粒子(离 子), 因而电子由N区向P区扩散的同时, 在交界面N区剩下 不能移动(不参与导电)的带正电的杂质离子; 空穴由P区向 N区扩散的同时, 在交界面P区剩下不能移动(不参与导电) 的带负电的杂质离子, 于是形成了空间电荷区。 在P区和N 区的交界处形成了电场(称为自建场)。 在此电场 作用下, 载流子将作漂移运, 其运动方向正好与扩散运动方 向相反, 阻止扩散运动。 电荷扩散得越多, 电场越强, 因而 漂移运动越强, 对扩散的阻力越大。 当达到平衡时, 扩散运 动的作用与漂移运动的作用相等, 通过界面的载流子总数为 0, 即PN结的电流为0。 此时在PN区交界处形成一个缺 少载流子的高阻区, 我们称为阻挡层(又称为耗尽层)。 上述 过程如图1-6(a)、 (b)所示。
所谓“齐纳”击穿, 是指当PN结两边掺入高浓度的杂 质时, 其阻挡层宽度很小, 即使外加反向电压不太高(一般为 几伏), 在PN结内就可形成很强的电场(可达2×106 V/cm), 将共价键的价电子直接拉出来, 产生电子-空穴对, 使反向电 流急剧增加, 出现击穿现象。
第一章 半导体器件
对硅材料的PN结, 击穿电压UB大于7V时通常是 雪崩击穿, 小于4V时通常是齐纳击穿;UB在4V和7V之间 时两种击穿均有。由于击穿破坏了PN结的单向导电特性, 因而一般使用时应避免出现击穿现象。
CT
dQ dU
S W
第一章 半导体器件
模拟电子技术第一章 习题与答案

第一章习题与答案1.什么是PN结的偏置?PN结正向偏置与反向偏置时各有什么特点?答:二极管(PN结)阳极接电源正极,阴极接电源负极,这种情况称二极管正向偏置,简称正偏,此时二极管处于导通状态,流过二极管电流称作正向电流。
二极管阳极接电源负极,阴极接正极,二极管处于反向偏置,简称反偏,此时二极管处于截止状态,流过二极管电流称为反向饱和电流。
把二极管正向偏置导通、反向偏置截止的这种特性称之为单向导电性。
2.锗二极管与硅二极管的死区电压、正向压降、反向饱和电流各为多少?答:锗管死区电压约为0.1V,硅管死区电压约为0.5V。
硅二极管的正向压降约0.6~0.8 V;锗二极管约0.2~0.3V。
硅管的反向电流比锗管小,硅管约为1uA,锗管可达几百uA。
3.为什么二极管可以当作一个开关来使用?答:二极管在正向电压作用下电阻很小,处于导通状态,相当于一只接通的开关;在反向电压作用下,电阻很大,处于截止状态,如同一只断开的开关。
4.普通二极管与稳压管有何异同?普通二极管有稳压性能吗?答:普通二极管的主要特性是单向导电性,也就是在正向电压的作用下,导通电阻很小;而在反向电压作用下导通电阻极大或无穷大。
稳压二极管的稳压原理:稳压二极管的特点就是加反向电压击穿后,其两端的电压基本保持不变。
而普通二极管反向击穿后就损坏了。
这样,当把稳压管接入电路以后,若由于电源电压发生波动,或其它原因造成电路中各点电压变动时,负载两端的电压将基本保持不变。
因此,普通二极管在未击穿的条件下具有稳压性能。
5.选用二极管时主要考虑哪些参数?这些参数的含义是什么?答:正向电流IF:在额定功率下,允许通过二极管的电流值。
正向电压降VF:二极管通过额定正向电流时,在两极间所产生的电压降。
最大整流电流(平均值)IOM:在半波整流连续工作的情况下,允许的最大半波电流的平均值。
反向击穿电压VB:二极管反向电流急剧增大到出现击穿现象时的反向电压值。
正向反向峰值电压VRM:二极管正常工作时所允许的反向电压峰值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、本征半导体中载流子的浓度
本征激发 复合 动态平衡
在一定温度下本征半导体中载流子的浓度是一定的, 并且自由电子与空穴的浓度相等。 本征半导体中载流子的浓度公式:
3 2 E GO 2 KT
ni pi K1T e
T=300 K室温下,本征硅的电子和空穴浓度:
n = p =1.43×1010/cm3
+4
本征半导体两端外加一电场,则自由电子将产生定
向运动,形成电子电流;同时价电子将一定的方向依次 填补空穴,即空穴移动,形成空穴电流。它们二者运动
方向相反,其电流是两个电流之和。
运载电荷的粒子称为载流子。半导体中存在两种载 流子,即自由电子和空穴均参与导电,这是半导体导电 的最大特点,也是与导体导电的本质区别。
(或锗)半导体中产生很多自由 电子。在常温下,热激发产生
+4
+4
+4 自由电子
电子--空穴对。这样,n>>p,
所以称为自由电子为多数载流 子,而空穴称为少数载流子。
+4
+5 +4
+4 施主原子
+4
+4
+4
N 型半导体
由于杂质原子可以提供电子,称之为施主原子。这种半 导体主要靠自由电子导电,称为电子型半导体,因电子带负 电,所以称为N型半导体(Negative)。
有些结面积大的二极管可达几百皮法。 在信号频率较高时,须考虑结电容的作用。
1.2 半导体二极管
将PN结用管壳封装起来,并加上电极引线,就构成半 导体二极管,简称二极管。由P区引出的电极为阳极,由N 区引出的电极为阴极,常见的外形如图示。
1.2.1
二极管的结构及分类
一、按内部结构分类
1. 点接触型二极管
扩散运动使空间电荷区增大,扩散电流逐渐减小; 随着内电场的增强,漂移运动逐渐增加; 当扩散电流与漂移电流相等时,PN 结总的电流等 于零,空间电荷区的宽度达到稳定。 即扩散运动与漂移 运动达到动态平衡。
二、PN 结的单向导电性
1. PN结 外加正向电压时处于导通状态 又称正向偏置,简称正偏。
PN结处于导通 状态,呈现正 向电阻很小。
2.两种载流子
若 T ,将有少数价电 子克服共价键的束缚成为自 由电子,在原来的共价键中 留下一个空位——空穴。 自由电子和空穴使本征 半导体具有导电能力,但很 微弱。 空穴可看成带正电的载 流子。自由电子与空穴数 目相等,是成对出现的。
T
+4 空穴
+4
+4 自由电子
+4
+4
+4
+4
+4 本征半导体中的 自由电子和空穴
二、P型半导体
在本征半导体硅(或锗)中掺入微量的3价元素(如 硼),由于硼原子最外层只有三个价电子,与硅原子的价电 子组成共价键时,则硼原子的周围少一个价电子,即出现一 个“空位”(空穴),如图示。
+4 +4 空穴 +4
空穴为多数载流子,电子 为少数载流子。空穴浓度 多于电子浓度,即 p >> n。 3价杂质原子为受主原子。 这种半导体主要靠空穴导电, 称之为空穴型半导体,因空 穴带正电,所以称为P型半 导体(positive)。
(b) P 型半导体
杂质半导体的的简化表示法
1.1.3
PN结
在一块半导体单晶上一侧掺杂成为 P 型半导体,另 一侧掺杂成为 N 型半导体,两个区域的交界处就形成了 一个特殊的薄层,称为 PN 结。
一、PN 结的形成 P
PN结
N
PN 结中载流子的运动
1. 扩散运动 电子和空穴 浓度差形成多数 载流子的扩散运 动。 2. 扩散运动 形成空间电荷区 —— PN 结,耗 尽层。
+4
+3 +4 受主 原子
+4
+4
+4
P型半导体
+4
说明:
1. 掺入杂质的浓度决定多数载流子浓度;温度决 定少数载流子的浓度。 2. 杂质半导体载流子的数目要远远高于本征半导 体,因而其导电能力大大改善。 3. 杂质半导体总体上保持电中性。 4. 杂质半导体的表示方法如下图所示。
(a)N 型半导体
本征锗的电子和空穴浓度:
n = p =2.38×1013/cm3
小结:
1. 半导体中两种载流子
带负电的自由电子 带正电的空穴
2. 本征半导体中,自由电子和空穴总是成对出现, 称为 电子 - 空穴对。
3. 本征半导体中自由电子和空穴的浓度用 ni 和 pi 表示,显然 ni = pi 。 4. 由于物质的运动,自由电子和空穴不断的产生又 不断的复合。在一定的温度下,产生与复合运动 会达到平衡,载流子的浓度就一定了。 5. 载流子的浓度与温度密切相关,它随着温度的升 高,基本按指数规律增加。
当PN上的电压发生变化时,PN 结中储存的电荷量 将随之发生变化,使PN结具有电容效应。 势垒电容 电容效应包括两部分 扩散电容 1. 势垒电容Cb 是由 PN 结的空间电荷区变化形成的。
P
空间 电荷区 空间 电荷区
五、PN结的电容效应
N I
P
N
I
+
V
U
R
V
U
R
+
(a) PN 结加正向电压
(b) PN 结加反向电压
选用童诗白、华成英主编的《模拟电子技 术基础》(第四版),该教材是成熟的一本经典 教材,优秀教材。
*参考书:(1)康华光主编的《电子技术基础》模
拟电子技术部分。 (2)华成英编的《模拟电子技术基础》 (第四版)习题解答。
5. 内容:
(1)常用半导器件; (2)基本放大电路; (3)多级放大电路; (4)集成运算放大电路; (5)放大电路的频率响应; (6)放大电路中的反馈; (7)信号的运算和处理; (8)波形的发生和信号的转换; (9)功率放大电路; (10)直流电源。
随着电子技术的发展,电子器件在飞速发展。 •47年 •58年 贝尔实验室制成第一只晶体管 集成电路
•69年
•75年
大规模集成电路
超大规模集成电路 第二代(晶体管) 第三代(
它由第一代(电子管)
集成电路)
成电路)。
第四代(大规模集成)
第五代( 超大规模集
而半导体二极管和三极管是最常用的半导体器件,它 们的核心是PN结,要了解PN结首先要了解半导体的特性。
6.课程教学目标
学生初步具有一看、二算、三选、四干的能力。
所谓会看,就是能看懂典型的电子设备的原 理图,了解各部分的组成及其工作原理; 会算,就是对各环节的工作性能会进行定性或 定量分析、估算;
会选和会干,就是遇到本专业的一般性任务, 能大致选定方案,选用有关的元、器件,并且通过 安装调试把它基本上研制出来。至于会选和会干, 将在课程设计、实验课和实训等实践教学环节中培 养。
空间电荷区的正负离子数目发生变化,如同电容的 放电和充电过程。
势垒电容的大小可用下式表示:
dQ S S :结面积; Cb dU l l :耗尽层宽度。
由于 PN 结 宽度 l 随外加 电压 u 而变化,因此势垒电容 Cb不是一个常数。其 Cb = f (u) 曲线如图示。
:半导体材料的介电比系数;
P
耗尽层 空间电荷区
P
N
N
3. 空间电荷区产生内电场 空间电荷区正负离子之间电位差 Uho —— 电位壁垒; —— 内电场;内电场阻止多子的扩散 —— 阻挡层。 4. 漂移运动 内电场有利 于少子运动—漂 移。 少子的运动 与多子运动方向 相反
阻挡层 空间电荷区
P
N
内电场
Uho
5. 扩散与漂移的动态平衡
1.1.2 杂质半导体
N 型半导体 P 型半导体
杂质半导体有两种
一、N型半导体(Negative)
在本征硅或锗中掺入微量的5价元素(如磷),由于 磷原子最外层有5个价电子,与硅(锗)原子的价电子组 成共价键时,则磷原子还多出一个电子,它不受周围原 子核的束缚,易脱离磷原子核对它的束缚而成为自由电
子,如图所示。这样,在硅
结论: PN结具有单向导电性,即正偏时导通,反偏时 截止。
三、PN 结的电流方程 PN结所加端电压u 与流过的电流i 的关系为
qu kT
i IS ( e
1 )
1 )
IS :反向饱和电流 UT :温度的电压当量 在常温(300 K)下, UT 26 mV
i IS ( e
u
UT
公式推导过程略
特点:PN结的面积 小,允许通过电流小, 用于小电流整流或作 开关; 结电容小,用于高频 检波。
二极管的结构示意图
点接触型
2. 面接触型二极管
特点:PN结面积大, 允许通过的电流大(可 达上千安),用于低频 整流;结电容大,主 要用于低频电路,不能 用于高频电路
Hale Waihona Puke QOx x = 0 处为 P 与 耗 尽层的交界处
综上所述:
PN 结总的结电容 Cj 包括势垒电容 Cb 和扩散电容Cd 两部分。Cj= Cb +Cd 一般来说,当二极管正向偏置时,扩散电容起主要 作用,即可以认为 Cj Cd; 当反向偏置时,势垒电容起主要作用,可以认为 Cj Cb。
Cb 和 Cd 值都很小,通常为几个皮法 ~ 几十皮法,
纯净的具有晶体结构的半导体
二、本征半导体 1.晶体结构
完全纯净的、不含其他杂质且具有晶体结构的半导 体称为本征半导体 。
+4
+4
+4
价 电 子
将硅或锗材料提纯 便形成单晶体,它 的原子结构为共价 键结构。