模拟电子技术学习指导与习题解答全解
模拟电子技术第五版基础习题与解答

模拟电子技术第五版基础习题与解答在电子技术领域,模拟电子技术是一门至关重要的基础学科。
对于学习者来说,通过做习题来巩固知识、加深理解是必不可少的环节。
《模拟电子技术第五版》中的基础习题涵盖了丰富的知识点,能够有效地检验我们对这门学科的掌握程度。
接下来,让我们一起探讨其中的一些典型习题及其解答方法。
我们先来看一道关于二极管的习题。
题目是这样的:已知一个二极管在电路中的工作电流为 10 mA,其导通压降为 07 V,求该二极管在电路中消耗的功率。
解答这道题,我们首先要明确功率的计算公式,即功率等于电压乘以电流。
在这个例子中,电压就是二极管的导通压降 07 V,电流为 10 mA(换算为 001 A)。
那么,二极管消耗的功率 P = 07 V × 001 A =0007 W = 7 mW。
再来看一道三极管的习题。
假设一个三极管的放大倍数为 50,基极电流为20 μA,求集电极电流的值。
对于三极管,集电极电流等于放大倍数乘以基极电流。
所以,集电极电流=50 × 20 μA =1000 μA = 1 mA。
下面这道题涉及到放大器的分析。
一个共射极放大器,输入电阻为1 kΩ,输出电阻为5 kΩ,电压放大倍数为-100。
若输入电压为 1 mV,求输出电压。
首先,根据电压放大倍数的定义,输出电压等于电压放大倍数乘以输入电压。
所以,输出电压=-100 × 1 mV =-100 mV。
接下来是一道关于反馈电路的习题。
在一个反馈电路中,反馈系数为 01,输入信号为 5 V,求反馈信号的大小。
反馈信号等于反馈系数乘以输入信号,即 01 × 5 V = 05 V。
在模拟电子技术中,运算放大器的相关习题也非常常见。
比如这样一道题:一个理想运算放大器组成的反相比例放大器,反馈电阻为 10kΩ,输入电阻为1 kΩ,输入电压为 2 V,求输出电压。
根据反相比例放大器的公式,输出电压等于(反馈电阻/输入电阻)×输入电压。
模拟电子技术基础学习指导与习题解答(谢红主编)

第一章思考题与习题解答1-1 名词解释半导体、载流子、空穴、自由电子、本征半导体、杂质半导体、N型半导体、P型半导体、PN结。
解半导体——导电能力介乎于导体与绝缘体之间的一种物质。
例如硅(Si)和锗(Ge),这两种半导体材料经常用来做晶体管。
载流子——运载电流的粒子。
在导体中的载流子就是自由电子;半导体中的载流子有两种,就是自由电子与空穴,它们都能参加导电。
空穴——硅和锗均为共价键结构,属于四价元素。
最外层的四个电子与相邻原子最外层电子组成四个共价键,每一个共价键上均有两个价电子运动。
当环境温度升高(加热或光照)时,价电子获得能量摆脱原子核与共价键对它的束缚进入自由空间成为自由电子,在原来的位置上就出现一个空位,称为空穴。
空穴带正电,具有吸引相邻电子的能力,参加导电时只能沿着共价键作依次递补式的运动。
自由电子——位于自由空间,带负电,参加导电时,在自由空间作自由飞翔式的运动,这种载流子称为自由电子。
本征半导体——不掺任何杂质的半导体,也就是指纯净的半导体,称为本征半导体。
杂质半导体——掺入杂质的半导体称为杂质半导体。
N型半导体——在本征硅(或锗)中掺入微量五价元素(如磷P),就形成含有大量电子的N型杂质半导体,又称电子型杂质半导体,简称N型半导体。
P型半导体——在本征硅(或锗)中掺入微量的三价元素(如硼B),就形成含大量空穴的P型杂质半导体,又称空穴型杂质半导体,简称P型半导体。
PN结——将一块P型半导体与一块N型半导体放在一起,通过一定的工艺将它们有机地结合起来,在其交界面上形成一个结,称为PN结。
1-3 选择填空(只填a、b…以下类同)(1)在PN结不加外部电压时,扩散电流漂移电流。
(a.大于,b.小于,c.等于)(2)当PN结外加正向电压时,扩散电流漂移电流。
(a1.大于,b1.小于,c1.等于)此时耗尽层。
(a2.变宽,b2.变窄,c2.不变)(3)当PN结外加反向电压时,扩散电流漂移电流。
模拟电子技术基础学习指导与习题解答(谢红主编)第五章 思考题与习题解答

第五章 思考题与习题解答5-1 什么是功率放大电路?对功率放大电路有哪些特殊要求?解 以输出功率为主的放大电路称功率放大电路。
对功率放大电路有四点要求:①输出功率要足够大,输出电阻越小越好。
所谓足够大的功率是指能带动负载作功的功率。
输出电阻越小,带负载能力越强。
②效率高。
也就是说,在电源电压一定的情况下,输出功率要大,而管耗要小。
③非线性失真小。
④有过载保护措施。
这是一种防止过载时由于大电流导致烧管的安全措施。
一般是设计保护电路。
5-2 什么是交越失真?它是怎么产生的?用什么方法消除它?解 交越失真是指在正弦波形的正、负半周交界处出现台阶现象的失真情况。
其原因是晶体管存在死区电压,它的特性为非线性特性,因此交越失真属于非线性失真。
克服的办法是加小偏置,使在无信号输入时,小偏置电压等于晶体管的死区电压(或开启电压),一旦有信号加入,晶体管立刻进入线性工作区,这样就不会出现交越失真了。
5-3 功率放大电路按工作状态不同可分为哪三种?它们各有什么优缺点?解 功率放大电路按工作状态不同可分为甲类、乙类、甲乙类三种。
甲类的最大优点是在信号周期内不失真。
缺点是效率低,在不加信号时也消耗能量,而且静态管耗最大,严重抑制了效率的提高。
乙类的优点是效率高。
静态时管耗为零。
缺点是有削半波失真,只能输出半个周期。
甲乙类是介乎于甲类和乙类两种工作状态之间的一种,其效率比较高,失真情况介乎于以上二者之间,是一种经常采用的工作状态。
※※5-4 甲乙二人在讨论功率放大电路的供电问题时,甲认为从能量守恒的概念出发,当输出功率大时,电源给出的电流理应增加;乙则认为只要输出幅度不失真,电流应在静态值附近上下波动,不管输出幅度大小,其平均值应不变。
你同意哪一种观点?解 对于甲类功放,乙说得对。
因为此时V CQ1cm I I I ==。
而对于乙类功放,甲说得对。
因为此时V cm 2πI I =。
两种功放均符合能量守恒。
※※5-5 甲乙二人在讨论功率放大管的发热问题时,甲认为当输出功率最大时管子最热,因为电流消耗大;乙则认为此时最冷,因损耗在管子中的功率已经都转换成输出功率。
模拟电子技术基础学习指导与习题解答(谢红主编)第三章思考题与习题解答

模拟电⼦技术基础学习指导与习题解答(谢红主编)第三章思考题与习题解答第三章思考题与习题解答3-1 选择填空(只填a 、b 、c 、d)(1)直接耦合放⼤电路能放⼤,阻容耦合放⼤电路能放⼤。
(a.直流信号,b.交流信号,c.交、直流信号)(2)阻容耦合与直接耦合的多级放⼤电路之间的主要不同点是。
(a.所放⼤的信号不同,b.交流通路不同,c.直流通路不同)(3)因为阻容耦合电路 (a1.各级Q 点互相独⽴,b1.Q 点互相影响,c1.各级Au 互不影响,d1.Au 互相影响),所以这类电路 (a2.温漂⼩,b2.能放⼤直流信号,c2.放⼤倍数稳定),但是 (a3.温漂⼤,b3.不能放⼤直流信号,c3.放⼤倍数不稳定)。
⽬的复习概念。
解 (1)a 、b 、c ,b 。
(2)a 、c 。
(3)a1,a2,b3。
3-2 如图题3-2所⽰两级阻容耦合放⼤电路中,三极管的β均为100,be1 5.3k Ωr =,be26k Ωr =,S 20k ΩR =,b 1.5M ΩR =,e17.5k ΩR =,b2130k ΩR =,b2291k ΩR =,e2 5.1k ΩR =,c212k ΩR =,1310µF C C ==,230µF C =,e 50µF C =,C C V =12 V 。
图题3-2(a)放⼤电路;(b)等效电路(答案)(1)求i r 和o r ;(2)分别求出当L R =∞和L 3.6k ΩR =时的S u A 。
⽬的练习画两级放⼤电路的微变等效电路,并利⽤等效电路求电路的交流参数。
分析第⼀级是共集电路,第⼆级是分压供偏式⼯作点稳定的典型电路,1V 、2V 均为NPN 管。
解 (1)求交流参数之前先画出两级放⼤电路的微变等效电路如图题3-2(b)所⽰。
注意图中各级电流⽅向及电压极性均为实际。
第⼀级中b1I 的⽅向受输⼊信号i U 极性的控制,⽽与1V 的导电类型(NPN 还是PNP)⽆关,i U 上正下负,因此b1I 向⾥流,输出电压o1U 与i U 极性相同;第⼆级中b 2I 的⽅向受o1U 极性的控制,o1U 上正下负,因此b 2I 向⾥流,也与2V 的导电类型⽆关,或者根据c1I 的⽅向(由1c 流向1e )也能确定b 2I 的⽅向是向⾥流。
模拟电子技术基础(学习指导及习题详解)

(4)图1-1(d)中,二极管VD1、VD2开路时,VD1端电压UD1=12V,VD2端电压UD2=-5V+12V=7V,UD1>UD2,故VD1优先导通,则A、B两端电压UAB=-0.7V,若以B点为参考点,A点电位UA=-0.7V,C点电位UC=-5V,VD2阳极电位低于阴极电位,将VD2钳制在截止状态。
UO1010UI21012UI12633
当-10V≤UI≤12V时,VD1 、VD2都截止,输出电压UO=UI;
当UI>12V时,VD1导通,VD2截止,输出电压
UO12UI12212UI41263。 电路的电压传输特性(UO~UI)如图1-4(b)所示。
5.电路如图1-5(a)所示,R=1kΩ,UREF=3V。(1)UI=0V、4V、6V时,求相应的输出电压值;(2)当ui=6sinωt(V)时,绘出相应的输出电压uo的波形。
UABUD12V0.7V12V12.7V
(2)在图1-1(a)中先假设二极管VD断开,求得二极管两端电压为
UD6
62
24V0.7V22
二极管工作在导通状态,导通后二极管两端电压UD=Uon=0.7V,A、B两端电压为
UAB
20.2
2.35V
212
(3)在图1-1(c)中,二极管VD1、VD2开路时,VD1端电压UD1=5V,VD2端电压
解:设二级管的Uon=0.5V,rD=200Ω。图1-5(a)的等效电路如图1-5(b)所示。
(1)当UI=0时,二极管反偏截止,相当于等效电路中开关断开,相应的输出电压UO=0; 当UI=4V时,二极管导通,相当于等效电路中开关闭合,相应的输出电压
模拟电子技术课后习题解答

第三部分 习题与解答习题1客观检测题一、填空题1、在杂质半导体中,多数载流子的浓度主要取决于掺入的 杂质浓度 ,而少数载流子的浓度则与 温度 有很大关系。
2、当PN 结外加正向电压时,扩散电流 大于 漂移电流,耗尽层 变窄 。
当外加反向电压时,扩散电流 小于 漂移电流,耗尽层 变宽 。
3、在N 型半导体中,电子为多数载流子, 空穴 为少数载流子。
二.判断题1、由于P 型半导体中含有大量空穴载流子,N 型半导体中含有大量电子载流子,所以P 型半导体带正电,N 型半导体带负电。
( × )2、在N 型半导体中,掺入高浓度三价元素杂质,可以改为P 型半导体。
( √ )3、扩散电流是由半导体的杂质浓度引起的,即杂质浓度大,扩散电流大;杂质浓度小,扩散电流小。
(× )4、本征激发过程中,当激发与复合处于动态平衡时,两种作用相互抵消,激发与复合停止。
( × )5、PN 结在无光照无外加电压时,结电流为零。
( √ )6、温度升高时,PN 结的反向饱和电流将减小。
( × )7、PN 结加正向电压时,空间电荷区将变宽。
(× )三.简答题1、PN 结的伏安特性有何特点?答:根据统计物理理论分析,PN 结的伏安特性可用式)1e (I I T V Vs D -⋅=表示。
式中,I D 为流过PN 结的电流;I s 为PN 结的反向饱和电流,是一个与环境温度和材料等有关的参数,单位与I 的单位一致;V 为外加电压; V T =kT/q ,为温度的电压当量(其单位与V 的单位一致),其中玻尔兹曼常数k .J /K -=⨯2313810,电子电量)(C 1060217731.1q 19库伦-⨯=,则)V (2.11594TV T =,在常温(T=300K )下,V T =25.875mV=26mV 。
当外加正向电压,即V 为正值,且V 比V T 大几倍时,1e TV V >>,于是TV V s eI I ⋅=,这时正向电流将随着正向电压的增加按指数规律增大,PN 结为正向导通状态.外加反向电压,即V 为负值,且|V|比V T 大几倍时,1eTV V <<,于是s I I -≈,这时PN 结只流过很小的反向饱和电流,且数值上基本不随外加电压而变,PN 结呈反向截止状态。
模拟电子技术基础学习指导及习题解答(谢红主编)第六章思考题及习题解答

第六章思考题与习题解答6-1 要满足下列要求,应引入何种反馈?(1)稳定静态工作点;(2)稳定输出电压;(3)稳定输出电流;(4)提高输入电阻;(5)降低输入电阻;(6)降低输出电阻、减小放大电路对信号源的影响;(7)提高输出电阻、提高输入电阻。
目的复习引入反馈的原则。
解(1)欲稳定静态工作点应引入直流负反馈,因为静态工作点是个直流问题。
(2)稳定输出电压应引入电压负反馈。
输出电压是交流参量,电压负反馈属于交流反馈组态。
在四种交流负反馈组态中,电压串联负反馈和电压并联负反馈均能达到稳定输出电压的目的。
(3)稳定输出电流应引入电流负反馈。
输出电流也是交流参量,在四种组态中,引电流串联负反馈或电流并联负反馈均可。
(4)提高输入电阻应引入串联负反馈,如电压串联负反馈或者电流串联负反馈。
(5)降低输入电阻应引入并联负反馈,如电压并联负反馈或者电流并联负反馈。
(6)降低输出电阻、减小放大电路对信号源的影响是一个减小输出电阻并提高输入电阻的问题,应引入电压串联负反馈。
(7)输入、输出电阻均提高应引入电流串联负反馈。
6-2 负反馈放大电路为什么会产生自激振荡?产生自激振荡的条件是什么?解在负反馈放大电路中,如果把负反馈引的过深会将负反馈变成正反馈,于是自激振荡就产生了。
产生自激振荡的条件是幅度条件相位条件arg AF=±(2n+1)π,n为整数∆=±180°或者附加相移φ6-3 判断下列说法是否正确,用√或×号表示在括号内。
(1)一个放大电路只要接成负反馈,就一定能改善性能。
( )(2)接入反馈后与未接反馈时相比,净输入量减小的为负反馈。
( )(3)直流负反馈是指只在放大直流信号时才有的反馈;( )交流负反馈是指交流通路中存在的负反馈。
( )。
(4)既然深度负反馈能稳定放大倍数,那么电路所用各个元件都不必选用性能稳定的。
( )(5)反馈量越大,则表示反馈越强。
( )(6)因为放大倍数A越大,引入负反馈后反馈越强,所以反馈通路跨过的级数越多越好。
模拟电子技术第五版基础习题与解答

模拟电子技术第五版基础习题与解答在学习模拟电子技术这门课程时,做习题是巩固知识、加深理解的重要途径。
《模拟电子技术第五版》为我们提供了丰富的习题资源,下面将对一些基础习题进行详细的解答和分析,帮助大家更好地掌握这门课程的核心内容。
首先,让我们来看一道关于二极管的习题。
题目:已知二极管的伏安特性方程为\(I = I_s (e^{\frac{U}{U_T}} 1)\),其中\(I_s\)为反向饱和电流,\(U_T\)约为 26 mV(室温下)。
若二极管的反向饱和电流\(I_s = 10^{-13}\) A ,正向电压\(U = 07\) V ,求通过二极管的电流\(I\)。
解答:将已知值代入伏安特性方程可得:\\begin{align}I&= 10^{-13} (e^{\frac{07}{0026}} 1)\\&= 10^{-13} (e^{2692} 1)\\&\approx 10^{-13} \times 338×10^{11}\\&\approx 338\ mA\end{align}\这道题主要考查了对二极管伏安特性方程的理解和应用。
通过计算,我们可以清楚地看到,当正向电压达到一定值时,二极管的电流会迅速增加。
接下来,看一道关于三极管放大电路的习题。
题目:在一个共发射极三极管放大电路中,三极管的电流放大系数\(β = 100\),基极电流\(I_B = 20\ μA\),求集电极电流\(I_C\)和发射极电流\(I_E\)。
解答:根据三极管的电流关系\(I_C =βI_B\),可得\(I_C= 100 × 20 × 10^{-6} = 2\ mA\)。
又因为\(I_E = I_B + I_C\),所以\(I_E = 20 × 10^{-6}+ 2 × 10^{-3} = 202\ mA\)。
这道题让我们对三极管的电流放大作用有了更直观的认识,同时也巩固了三极管三个电极电流之间的关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章绪论1.1 教学要求本章是模拟电子技术课程教学的开篇,旨在让学生对这门课程的发展历程、课程内容、特点和学习方法进行了解,以唤醒学生的学习兴趣,激发学生的学习欲望。
1.2 基本概念1. 信号及其分类信号是携带信息的载体,可以分为模拟信号和数字信号两大类。
模拟信号是指在时间上和幅度上均具有连续性的信号,从宏观上看,我们周围的大多数物理量都是时间连续、数值连续的变量,如压力、温度及转速等。
这些变量通过相应的传感器都可转换为模拟信号。
数字信号是指幅度随时间不连续变化的、离散的信号,如电报码和用电平的高与低表示的二值逻辑信号等。
2. 电子线路及其分类用于产生、传输和处理模拟信号的电子电路称为模拟电路,如放大电路、滤波电路、电压/电流变换电路等,典型设备有收音机、电视机、扩音机等;用于产生、传输和处理数字信号的电子电路称为数字电路,典型设备是电子计算机等。
模拟电路和数字电路统称为电子线路。
目前,模拟电路和数字电路的结合越来越广泛,在技术上正趋向于把模拟信号数字化,以获取更好的效果,如数码相机、数码电视机等。
3. 电子技术及其分类电子技术是研究电子器件、电子电路和电子系统及其应用的科学技术,可分为模拟电子技术和数字电子技术。
研究模拟电路的电子技术就是模拟电子技术,研究数字电路的电子技术就是数字电子技术。
4. 电子管电子管就是一个特殊的灯泡,不过除灯丝以外,还有几个“极”,里面的灯丝与极都有连线与各自的管脚相连。
最简单的电子管是二极管,它有两个极(阴极和阳极,有的灯丝还兼作阴极),其中,阴极有发射电子的作用,阳极有接收电子的作用。
二极管具有单向导电的特性,可用作整流和检波。
在二极管的基础上增加一个栅极就成了电子三极管,栅极能控制电流,栅极上很小的电流变化,都会引起阳极很大的电流变化,所以,电子三极管有放大作用。
5. 晶体管和集成电路1) 晶体管通俗地说,晶体管是半导体做的固体电子元件。
像金、银、铜、铁等金属,它们导电性能好,叫做导体。
木材、玻璃、陶瓷、云母等不易导电,叫做绝缘体。
导电性能介于导体和绝缘体之间的物质,叫半导体。
晶体管就是用半导体材料制成的,这类材料中最常见的便是锗和硅两种。
晶体管的出现是电子技术之树上绽开的一朵绚丽多彩的奇葩。
与电子管相比,晶体管具有诸多优越性:①晶体管的构件是没有消耗的;②晶体管消耗电子极少,仅为电子管的十分之一或几十分之一;③晶体管不需预热,一开机就工作;④晶体管结实可靠,比电子管可靠100倍,耐冲击、耐振动。
2) 集成电路集成电路是一种微型电子器件或部件。
采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及连线,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,便成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体。
集成电路具有体积小、重量轻、引出线和焊接点少、寿命长、可靠性高、性能好等优点,同时成本低,便于大规模生产。
它不仅在工用、民用电子设备如收录机、电视机、计算机等方面得到了广泛的应用,同时在军事、通信、遥控等方面也得到了广泛的应用。
用集成电路来装配电子设备,其装配密度可比晶体管提高几十倍至几千倍,设备的稳定工作时间也可大大提高。
1.3 学习方法指导第1章属于综述类型,是本课程的开篇。
在学习本章时,主要了解电子技术的作用、功能与发展阶段及各发展阶段的特点。
第1章FPGA及其硬件描述语言VHDL 第2章二极管及其电路2.1 教学要求半导体二极管是模拟电路的基本构件之一,在学习电子电路之前,必须对它的结构、工作原理、特性及其应用有充分的了解。
本章教学要求如下。
(1) 理解半导体中两种载流子——电子和空穴的物理意义。
理解N型和P型半导体的物理意义及PN结的形成机理。
(2) 熟练掌握PN结的单向导电性,理解PN结的伏安特性方程的物理意义。
(3) 掌握半导体二极管的特性及主要参数,熟练掌握半导体二极管的模型对基本应用电路的分析。
(4) 掌握稳压管的特性及主要参数,以及稳压管构成的稳压电路。
2.2 基本概念1. 半导体的基本知识半导体是一种导电能力介于导体和绝缘体之间的物质。
它的导电能力与温度、光照和掺杂浓度有关。
1) 本征半导体硅(Si)和锗(Ge)是具有四个共价键结构的半导体材料,如图2.1所示。
纯净且具有完整晶体结构的半导体称为本征半导体。
在一定的温度下,本征半导体内最重要的物理现象是本征激发(又称热激发或产生),如图2.2所示。
本征激发产生两种带电性质相反的载流子——自由电子和空穴。
温度越高,本征激发越强。
图2.1 本征硅或锗的晶体结构图2.2 本征激发产生自由电子空穴对2) 杂质半导体在本征硅(或锗)中掺入微量五价(或三价)元素后形成N型(或P型)杂质半导体。
N型半导体如图2.3所示,P型半导体如图2.4所示。
图2.3 N型半导体图2.4 P 型半导体N型(P型)半导体产生自由电子和杂质正离子对(空穴和杂质负离子对)。
由于杂质电离,N型半导体中的多子是自由电子,少子是空穴;而P型半导体中的多子是空穴,少子是自由电子。
在常温下,多子>>少子。
多子浓度和掺杂浓度有关,几乎等于杂质浓度,与温度无关;而少子浓度是温度的敏感函数。
杂质半导体的电导率比本征半导体高很多。
3) 半导体中的两种电流半导体中存在因内电场作用产生的少数载流子漂移电流(这与金属导电一致),以及因载流子浓度差而产生的多数载流子扩散电流。
2. PN结的基本知识1) PN结在具有完整晶格的P型和N型材料的物理界面附近,会形成一个特殊的薄层——PN 结,如图2.5所示。
图2.5 PN结的形成当浓度差引起的多子的扩散运动和内电场引起的少子的漂移运动达到动态平衡时,就形成了PN结。
第1章 FPGA 及其硬件描述语言VHDL2) PN 结的单向导电性PN 结加正向偏置时,能形成较大的正向电流,PN 结正向电阻很小;加反向偏置时,反向饱和电流很小,PN 结呈高阻这就是PN 结的单向导电性。
3. 半导体二极管普通二极管内部就是一个PN 结,P 区引出正电极,N 区引出负电极。
1) 二极管的伏安特性 二极管的伏安特性方程为D T D S (e 1)v V i I =-。
在低频下,二极管具有单向导电特性,正偏时导通;反偏时截止。
S I 称为反向饱和电流。
2) 二极管的主要参数二极管的主要参数有:最大整流电流;最大反向工作电压;反向电流R I (反向饱和电流S I );最高工作频率。
4. 二极管电路的分析方法二极管是一种非线性器件,可以采用图解法和等效模型分析法。
1) 图解法把电路分成两个部分,一部分是由二极管组成的非线性电路,另一部分则是由电源、电阻等线性元件组成的线性部分。
分别画出非线性部分(二极管)的伏安特性曲线和线性部分的特性曲线,两条特性曲线的交点即为电路的工作电压和电流。
2) 等效模型分析法二极管的等效模型有四种:理想、恒压降、折线和微变等效模型。
一般情况下,理想模型和恒压降模型用得较多。
5. 二极管的应用二极管广泛用于整流电路(半波整流、全波整流、桥式整流)、限幅电路(顶部限幅、底部限幅、双向限幅)、开关(嵌位)电路以及通信电路(检波器、混频器)等中。
6. 特殊二极管及其应用1) 稳压二极管稳压二极管(简称稳压管)具有稳压作用,其稳压特性表现在反向击穿的状态下。
稳压管反向击穿后的曲线越陡,则稳压性能越好。
当稳压管工作在正向偏置或反向偏置但未到击穿值时,则其状况相当于普通二极管。
稳压管的符号、伏安特性及反向击穿时的模式如图2.6所示。
稳压管的主要参数有:Z V ——稳压值;ZM I ——最大稳定电流值;Z r ——动态电阻,Z /r v i =∆∆;Z P ——额定功耗,Z Z ZM P V I =⨯;α——温度系数。
2) 稳压管稳压电路稳压二极管具有很陡的反向击穿特性,当反向电流有很大变化时,稳压管两端的电压几乎保持不变,利用该原理可设计稳压电路。
稳压管的稳压功能是靠稳压管稳压特性和限流电阻的电压调节作用相互配合来实现的。
图2.6 稳压管的符号、伏安特性及反向击穿时的模型2.3 重点难点分析(1) 本征半导体是指完全纯净的、结构完整的半导体晶体。
半导体中有两种载流子参与导电(这也是其与导体区别的一个重要特征)。
自由电子与空穴的电量相等,极性相反,迁移方向相反。
半导体中的载流子数目越多,导电电流就可能越大。
半导体的一个重要特性就是其导电性能对温度很敏感。
本征半导体的导电能力很弱(载流子浓度低),不能满足电子电路的要求。
在本征半导体中掺入微量的不同价的其他元素(杂质),可大大提高载流子的浓度,从而改善导电性能。
常在硅或锗半导体中掺入五价元素(磷、锑)形成N型半导体。
N型半导体中:多子为电子;少子为空穴。
提供电子的杂质元素称为“施主杂质”。
在硅或锗半导体中掺入三价元素(硼、铟)形成P型半导体。
P型半导体中:多子为空穴;少子为电子。
提供空穴的杂质元素称为“受主杂质”。
多数载流子的浓度决定于掺杂浓度,少数载流子的浓度与温度有关。
(2) PN结是构成各种半导体器件的基础。
PN结的形成原理是:由于掺杂不同,P、N 间存在多子浓度的差异(P区的多子为空穴;N区的多子为电子);浓度差引起多子的扩散运动,且其在交界处产生复合,留下由于晶格化而不能运动的正负离子(不参与导电),称为空间电荷。
空间电荷区平衡时,产生的电压一般为零点几伏,又称为“接触电位差”。
扩散运动继续进行,空间电荷区加宽。
同时空间电荷区产生内电场(方向为正离子区指向负离子区),其作用是阻止扩散,而使少子产生漂移运动。
最终达到动态平衡(这时电场力等于扩散力),空间电荷区不再加宽。
空间电荷区的几种称谓包括:耗尽层、阻挡层、势垒区。
从半导体的导电角度来看,非空间电荷区呈现低电阻特性,而空间电荷区则具有阻止电流的作用,呈现高阻特性。
空间电荷区越宽,电阻值越大,反之亦然。
PN结外加正向电压——正向偏置时,由于是多子导电,因而外加电压的微小变化将使电流有较大的变化。
结果,扩散力大于电场力——由多子形成的扩散(正向)电流起主导地位,而少子形成的漂移电流可忽略不计,空间电荷区变窄,电阻变小。
当外加负向电压——反向偏置时,电场力大于扩散力——由少子形成的漂移(反向)电流起主导地位,而多子形成的扩散电流可忽略不计,空间电荷区变宽,电阻变得很大。
即PN结有单向导电特性(正偏导通,反偏截止)。
当PN结的外加电压进一步增加时,会产生反向击穿(电击穿),有齐纳击穿和雪崩击穿第1章 FPGA 及其硬件描述语言VHDL两种。
电击穿具有“自愈性”(可逆性)。
对硅材料而言,一般来说,外加电压大于6V 时的击穿为雪崩击穿,呈正温度系数;小于4V 时的击穿为齐纳击穿,呈负温度系数;介于4V 和6V 之间时的温度系数很小。