七年级数学期末复习基础达标测试题(附答案)

合集下载

人教版七年级数学上册期末达标测试卷含答案

人教版七年级数学上册期末达标测试卷含答案

人教版七年级数学上册期末达标测试卷七年级数学上(R版)时间:90分钟满分:120分一、选择题(每题3分,共30分)1.2 024的相反数是()A.-2 024 B.2 024 C.12 024D.-12 0242.[教材P56习题T3变式情境题科技创新]从提出北斗建设工程开始,北斗导航卫星研制团队攻坚克难,突破重重关键技术,建成独立自主、开放兼容的全球卫星导航系统,成为世界上第三个独立拥有全球卫星导航系统的国家,现在每分钟200多个国家和地区的用户访问北斗卫星导航系统超70 000 000次.其中70 000 000用科学记数法表示为() A.7×103 B.7×105 C.7×106 D.7×1073.下列计算正确的是()A.7x+x=7x2B.5y-3y=2 C.4x+3y=7xy D.3x2y-2x2y=x2y 4.[教材P153例1变式2023沈阳]如图是由5个相同的小立方块搭成的几何体,这个几何体从正面看到的图形是()A BC D5.[情境题地域特色2023咸阳秦汉中学模拟]乾州四宝是陕西省乾县的著名传统小吃,分别为锅盔、挂面、馇酥、豆腐脑,被评为“中华名小吃”及“陕西名小吃”.如图是一个正方体的表面展开图,把它折成正方体后,与“挂”字相对的面上所写的字是()A.锅B.盔C.馇D.酥6.已知x=1是关于x的一元一次方程2x+a=0的解,则a的值是()A.2 B.-2 C.12D.-127.[情境题生活应用]某地区居民生活用水收费标准:每月用水量不超过20立方米,每立方米a元;超过部分每立方米(a+2)元.该地区某家庭上月用水量为25立方米,则应缴水费()A.25a元B.(25a+10)元C.(25a+50) 元D.(20a+10) 元8.[2024哈尔滨第四十七中月考]下列说法正确的是()A.若x+1=0,则x=1B.若|a|>1,则a>1C.2x2y与-xy2不能进行合并D.若AM=BM,则点M为线段AB的中点9.有理数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a>-2 B.ab>0 C.-a<b D.|a|>|b|10.[新考向数学文化]我国明朝数学家程大位所著的《算法统宗》中介绍了一种计算乘法的方法,被称为“铺地锦”.例如,如图①所示,计算31×47,首先把乘数31和47分别写在方格的上面和右面,然后以31的每位数字分别乘以47的每位数字,将结果计入对应的格子中(如3×4=12中的12写在3下面的方格里,十位上的1写在斜线的上面,个位上的2写在斜线的下面),再把同一斜线上的数相加,结果写在斜线左下端对应的方格旁,最后把得数依次写下来是1457,即31×47=1 457.如图②,用“铺地锦”的方法表示两个两位数相乘,则a的值是()(第10题)A.5B.4C.3D.2二、填空题(每题4分,共24分)11.已知∠A与∠B互余,∠A=56°15',则∠B=.12.[ 2024福州仓山区期末]如图,一艘货轮从O点出发沿北偏西25°方向航行经过点A,一艘客轮从O点出发沿南偏东60°方向航行经过点B,则∠AOB的度数为.(第12题)13.[新考法 整体代入法 2023 聊城东昌府区期末]已知a +3b -2=0,则多项式2a +6b +1的值为 .14.如图,已知点C 是线段AB 的中点,点D 是线段AB 上的一点,若AD =1, CD =2, 则AB 的长度为 .(第14题)15.[2024北京十三中期末]若多项式2(x 2-xy -3y 2)-(3x 2-axy +y 2)中不含xy 项,则a = .16.[新考法 分类讨论法 2023 太原]如图,将直角三角板的直角顶点O 放在直线AB 上,射线OE 平分∠BOC ,∠AOC =α,将三角板绕点O 旋转(旋转过程中∠AOC 与∠BOC 均大于0°且小于180°)一周,∠DOE 的度数为 (用含α的代数式表示).(第16题)三、解答题(共66分) 17.(6分)计算:(1)20-11+(-10)-(-12); (2)-14-18÷(-3)2×(-2)3.18.(6分)解下列方程: (1)3(x -1)+16(2x -3)=-16; (2)2x+13-x -56=1.19.(6分)如图,已知直线l 和直线外三点A ,B ,C ,按下列要求画图(不写作法和结论).(1)画射线AB ;(2)连接BC 并延长BC 至D ,使得CD =BC ;(3)在直线l 上确定点E ,使得AE +CE 最小,理由: .20.(8分)[2024郑州中原区期末]为响应河南省“2024全民阅读”系列活动,某校开展“书香校园”文学阅读与知识竞赛活动.知识竞赛为百分制,共设20道选择题,各题分值相同,每题必答.A,B,C三位参赛者得分情况如下表所示,求参赛者C答对的题数.参赛者答对题数答错题数得分A20 0 100B19 1 94C58 21.(10分)[2023福州长乐区期末]如图,线段AB=10,点C,E,F在线段AB上.(1)当点E,F分别是线段AC和线段BC的中点时,求线段EF的长;(2)当点E,F分别是线段AB和线段BC的中点时,请你写出线段EF与线段AC之间的数量关系并简要说明理由.22.(10分)[2024长春期末]如图,∠AOB=120°,点C为∠AOB内部一点,OD平分∠BOC,OE平分∠AOD.(1)如果∠AOC=30°,依题意补全图形;(2)在(1)的条件下,写出求∠EOC的度数的思路(不必..写出完整的推理过程);(3)如果∠AOC=α(0°<α<120°),直接..用含α的代数式表示∠EOC的度数.23.(10分) [新考法分类讨论法]对于数轴上的两点P,Q,我们把点P与点Q之间的距离记作d[PQ].例如,在数轴上点P表示的数是5,点Q表示的数是2,则点P与点Q之间的距离d[PQ]=3.如图,已知点O为数轴原点,点A表示的数为-1,点B表示的数为5.(1)d[OA]=;d[AB]=.d[BC]时,求x的值.(2)点C表示的数为x,且点C在点A左侧,当满足d[AC]=12(3)若点E表示的数为m,点F表示的数为m+2,且d[AF]=3d[BE],求m的值.24.(10分) [情境题方案设计题]一套某种精密仪器由一个A部件和两个B部件制成,用1 m3钢材可以做40个A部件或240个B部件,现在要用4 m3钢材制作这种仪器.(1)请问用多少钢材做A部件,多少钢材做B部件,可以恰好制成整套的仪器?(2)可以制成仪器套.(3)现在某公司要租赁这批仪器a套,每天的付费方案有两种选择:方案一:当a不超过50时,每套支付租金100元;当a超过50时,超过的套数每套支付租金打八折.方案二:不论租赁多少套,每套支付租金90元.当a>50时,请回答下列问题:①若按照方案一租赁,公司每天需支付租金元;若按照方案二租赁,公司每天需支付租金元.(用含a的式子表示)②假如你是公司负责人,请你谋划一下,选择哪种租赁方案更合算?参考答案一、1. A 2. D 3. D 4. A 5. D 6. B 7. B 8. C 9. D 10. A 点拨:由题易得a +a -2+1=a +4,解得a =5. 二、11.33°45' 12.145° 13.5 14.6 15.216.12α或180°-12α 点拨:当OC 在AB 上方时,如图①.因为∠AOC =α, 所以∠BOC =180°-α. 因为OE 平分∠BOC ,所以∠COE =12∠BOC =90°-12α. 因为∠COD =90°,所以∠DOE =90°-∠COE =90°-(90°-12α)=12α;①②当OC 在AB 下方时,如图②. 同理可得∠COE =90°-12α.因为∠COD =90°,所以∠DOE =90°+∠COE =90°+90°-12α=180°-12α.三、17.(1)11 (2)15 18.(1)x =1 (2)x =-1319.解:(1)(2)如图所示.(3)如图.两点之间线段最短20.解:由参赛者A 可得,答对一题得100÷20=5(分),结合参赛者B 可得,答错一题扣19×5-94=1(分). 设参赛者C 答对的题数为x .根据题意,得5x -(20-x )×1=58,解得x =13.答:参赛者C 答对的题数为13.21.解:(1)因为点E ,F 分别是线段AC 和线段BC 的中点,所以CE =12AC ,CF =12CB .所以EF =CE +CF =12AC +12CB =12(AC +CB )=12AB .又因为AB =10,所以EF =12AB =5.(2)EF =12AC .理由如下:如图,因为点E ,F 分别是线段AB 和线段BC 的中点, 所以EB =12AB ,FB =12CB .所以EF =EB -FB =12AB -12CB =12(AB -CB )=12AC .22.解:(1)补全图形如图.(2)解题思路如下:① 由∠AOB =120°,∠AOC =30°,得∠COB =90°; ② 由OD 平分∠BOC ,得∠DOB =∠DOC =45°; ③ 由∠AOB =120°,∠DOB =45°,得∠DOA =75°; ④ 由OE 平分∠AOD ,得∠DOE =∠AOE =37.5°; ⑤ 所以∠EOC =∠DOC -∠DOE =45°-37.5°=7.5°. (3)∠EOC =|34α-30°|. 23.解:(1)1;6(2)因为点C 在点A 左侧,点C 表示的数为x ,所以d [AC ]=-1-x ,d [BC ]=5-x . 因为d [AC ]=12d [BC ], 所以-1-x =12(5-x ). 所以 x =-7.(3)①当点E 在点A 左侧时,d [AF ]<d [BE ],不合题意,舍去,②当点E 在A ,B 两点之间时,d [AF ]=m +2-(-1)=m +3,d [BE ] =5-m . 因为d [AF ]=3d [BE ], 所以m +3=3(5-m ).所以m=3;③当点E在点B右侧时,d[AF]=m+2-(-1)=m+3,d[BE]=m-5.因为d[AF]=3d[BE],所以m+3=3(m-5),解得m=9.综上所述,m=3或9.24.解:(1)设用x m3钢材做A部件,则用(4-x)m3钢材做B部件.由题意得2×40x=240(4-x),解得x=3.则4-x=1.答:用3 m3钢材做A部件,1 m3钢材做B部件,可以恰好制成整套的仪器.(2)120(3)①(80a+1 000);90a②当两种方案的租金相同时,80a+1 000=90a,解得a=100.故当50<a<100时,选择方案二更合算;当a=100时,两种方案一样合算;当a>100时,选择方案一更合算.。

人教版2022—2023学年七年级上学期期末测试数学试卷含答案

人教版2022—2023学年七年级上学期期末测试数学试卷含答案

七数(上)期末试卷第1页(共6页)人教版2022-2023 学年度上学期期末质量测评七年级数学试卷温馨提示:1.答题前,考生务必将自己所在学校、姓名、考号填写在试卷上指定的位置.2.选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题的答案必须写在答题卡的指定位置,在本卷上答题无效.3.本试卷满分120分,考试时间120分钟.一、精心选一选,相信自己的判断!(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得0分)1.-3的绝对值是A .3B .-3C .3或-3D .13或-132.2021年3月26日,国家航天局发布两幅由“天问一号”探测器拍摄的南、北半球火星侧身影像,该影像是探测器飞行至距离火星1.1万千米处,利用中分辨率相机拍摄的,将1.1万用科学记数法表示为A .11×103B .1.1×104C .1.1×105D .0.11×1053.若-3x 2y n 与5x m y 3是同类项,则m -n 的值是A .0B .1C .-1D .54.以下各图均由彼此连接的六个小正方形纸片组成,其中不能折叠成一个正方体的是A .B .C .D .5.电影院第一排有m 个座位,后面每排比前一排多2个座位,则第n 排的座位数是A .2m n ++B .2(1)m n +-C .2mn +D .2m n+6.时钟显示为8:30时,时针与分针所夹的角是A .120°B .90°C .84°D .75°7.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,可列方程为A .8x -3=7x +4B .8x +3=7x +4C .8x -3=7x -4D .8x +3=7x -4七数(上)期末试卷第2页(共6页)8.如图,把一长方形纸片ABCD 的一角沿AE 折叠,使点D 的对应点D'落在∠BAC 内部.若∠CAE =2∠BAD′,且∠CAD′=15°,则∠DAE 的度数为A .12°B .24°C .39°D .45°二、细心填一填,试试自己的身手!(本大题共8小题,每小题3分,共24分.请将结果直接填写在答题卡相应位置上)9.计算3(4)-的值为★.10.一个角的余角的3倍比这个角的4倍大18°,则这个角等于★.11.如图,已知直线上顺次三个点A 、B 、C ,已知AB =10cm ,BC =4cm .D 是AC 的中点,M 是AB 的中点,那么MD =★cm.12.在某次足球甲A 的前11轮(场)比赛中,某足球队保持连续不败记录,按比赛规则,胜一场得3分,平一场得1分,输一场计0分,若该队共积23分,那么该队共胜了★场.13.在灯塔O 处观测到轮船A 位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB 的大小为★.14.如图,是2021年12月的日历表,方框内①、②、③、④中的日期之和为a ,用含a的式子表示①框中日期为★.15.某商店有大、小两种书包,小书包比大书包的进价少20元,它们的利润相同.其中,小书包的盈利率为30%,大书包的盈利率为20%,大书包的进价是★元.16.按照一定规律排列的一组数:12,16,112,120,…,1a ,4621,1b,…(其中a ,b 为正整数),则a -b =★.七数(上)期末试卷第3页(共6页)三、用心做一做,显显自己的能力!(本大题共8小题,满分72分.解答写在答题卡上)17.(本题满分6分=3分+3分)计算:(1)(-46)+(+27)+(-54)+(-127)(2)35211()24()228342-´+¸-+-18.(本题满分8分=4分+4分)解下列方程:(1)2(x +1)=1-(x +3).(2)5731164x x --+=.七数(上)期末试卷第4页(共6页)19.(本题满分8分=4分+4分)计算:(1)35°45′+23°29′-53°17′;(2)67°31′+48°39′-21°17′×520.(本题满分10分=6分+4分)如图,是由一些完全相同的小正方体堆成的一个几何体.(1)在下面的网格中画出从正面、左面、上面看的平面图;(2)若每个小正方体的棱长均为1,求这个几何体的表面积.21.(本题满分9分=4分+2分+3分)已知一个三角形第一条边长为2a +5b ,第二条边比第一条边长3a -2b ,第三条边比第二条边短3a .(1)则第二条边的边长为★,第三条边的边长为★;(用含a ,b 的式子表示)(2)用含a ,b 的式子表示这个三角形的周长,并化简;(3)若a ,b 满足|a -5|+(b -3)2=0,求这个三角形的周长.七数(上)期末试卷第5页(共6页)22.(本题满分9分=5分+4分)阅读理解:我们知道:一条线段有两个端点,线段AB 和线段BA 表示同一条线段.若在直线l 上取三个不同的点,则以它们为端点的线段共有★条,若取四个不同的点,则共有线段★条,…,依此类推,取n 个不同的点,共有线段★条(用含n 的式子表示).类比探究:以一个锐角的顶点为端点向这个角的内部引射线:(1)若引出两条射线,则所得图形中共有★个锐角;(2)若引出n 条射线,则所得图形中共有★个锐角(用含n 的式子表示).拓展应用:一条铁路上共有8个火车站,若一列客车往返过程中必须停靠每个车站,则铁路局需为这条线路准备多少种车票?23.(本题满分10分=4分+3分+3分)如图,已知∠AOB 和∠BOC ,且OE 平分∠AOC ,OF 平分∠BOC .(1)若∠AOB 是直角,∠BOC =60°,求∠EOF 的度数;(2)猜想∠EOF 与∠AOB 的数量关系,并说明理由;(3)若∠AOB +∠EOF =156°,求∠EOF是多少度?24.(本题满分12分=4分+3分+5分)为了落实国家“双减政策”,东方红学校在拓展课后服务时,开展了丰富多彩的社团活动,其中球类以“三大球”为主开展活动,即足球运球绕标志杆、排球对墙垫球、篮球行进间运球上篮.为了使学生得到更好的训练,该校计划再采购足球,排球若干个.现有A、B两家体育用品公司参与竞标,两家公司的标价都是足球每个50元,排球每个40元.他们的优惠政策是:A公司足球和排球一律按标价8折优惠;B公司规定每购买2个足球,赠送1个排球(单买排球按标价计算).(1)该校计划采购100个足球,x个排球(x>50).①请用含x的式子分别表示出购买A、B公司体育用品的费用;②当购买A、B两家公司体育用品的费用相等时,求此时x的值;(2)已知该学校原有足球、排球各50个,篮球100个.在训练时,每个同学都只进行一种球类训练,每人需要的球类个数如下表:足球排球篮球1人用1个1人用1个2人共用1个若该学校要满足600名学生同时训练,计划拨出10500元经费采购这批足球与排球,这批经费够吗?若够,应在哪家公司采购?若不够,请说明理由.七数(上)期末试卷第6页(共6页)人教版2022-2023学年度上学期期末质量测评七年级数学参考答案一、选择题:题号12345678答案A B C D B D A C二、填空题:9.-6410.36°11.212.613.141°14.14a-115.6016.-86三、解答题:17.解:(1)(-46)+(+27)+(-54)+(-127)=[(-46)+(-54)]+[(+27)+(-127)]=(-100)+(-100)………………………………2分=-200………………………………3分(2)解:原式=1124(8)22244-´+-+………………………………4分=1222--+………………………………5分=19………………………………6分18.解:(1)2(x+1)=1-(x+3)去括号得:2x+2=1-x-3,………………………………1分移项合并得:3x=-4,………………………………3分解得:x=-43;………………………………4分(2)5731164 x x --+=去分母得:2(5x﹣7)+12=3(3x﹣1),………………………………6分10x﹣14+12=9x﹣3,………………………………7分移项合并得:x=﹣1.………………………………8分19.解:(1)35°45′+23°29′-53°17′=59°14′-53°17′………………………………3分=5°57′………………………………4分(2)67°31′+48°39′-21°17′×5解:原式=116°10′-106°25′………………………………7分=9°45′………………………………8分20.解:(1)如图所示:(画正确一个得分2)………………………………6分(2)1×1=1,………………………………7分10×2×1+7×2×1+9×2×1=52.………………………………9分故这个几何体的表面积是52.………………………………10分21.解:(1)则第二边的边长为5a +3b ,………………………………2分第三边的边长为2a +3b ;………………………………4分(2)周长为:2a +5b +5a +3b +2a +3b =9a +11b ;………………………………6分(3)∵|a ﹣5|+(b ﹣3)2=0,∴a ﹣5=0,b ﹣3=0,即a =5,b =3,………………………………8分∴周长为:9a +11b =45+33=78.………………………………9分22.解:阅读理解:故答案为:3;6;21n (n -1);(每个1分)………………………………3分类比探究:(1)引出两条射线,共有4条射线,锐角的个数为6;(2)引出n 条射线,共有n +2条射线,锐角的个数:21(n +1)(n +2);故答案为:6;21(n +1)(n +2);(每个1分)………………………………5分拓展应用:8个火车站共有线段条数21×7×8=28,………………………………7分需要车票的种数:28×2=56(种).………………………………9分23.解:(1)∵∠AOC =∠AOB +∠BOC ,∴∠AOC =90°+60°=150°.………………………………1分∵OE 平分∠AOC ,∴∠EOC =150°÷2=75°.………………………………2分∵OF 平分∠BOC ,∴∠COF =60°÷2=30°.………………………………3分∵∠EOC =∠EOF +∠COF ,∴∠EOF =75°-30°=45°………………………………4分(2)猜想:∠EOF =21∠AOB .理由如下:………………………………5分∵OE 平分∠AOC ,OF 平分∠BOC .∴∠COE =21∠AOC ,∠COF =21∠BOC ………………………………6分∵∠AOB =∠AOC -∠BOC ∴∠EOF =∠COE -∠COF=21∠AOC -21∠BOC =21(∠AOC -∠BOC )=21∠AOB ………………………………7分(3)由(2)可得:∠EOF =21∠AOB .………………………………8分又∵∠AOB +∠EOF =156°,∴2∠EOF +∠EOF =156°,………………………………9分∴∠EOF =52°………………………………10分24.解:(1)①购买A 公司体育用品的费用为:0.8(50×100+40x )=32x +4000;……2分购买B 公司体育用品的费用为:50×100+40×(x -1002)=40x +3000;…………4分②根据题意,32x +4000=40x +3000,………………………………5分解得,x =125.………………………………6分答:当购买A 、B 两个公司体育用品的费用相等时,此时x 为125;……………………7分(2)因为该学校原有足球、排球各50个,篮球100个,要满足600名学生同时训练,则需要购买足球和排球数量为:600-50-50-100×2=300,………………………………8分设购买足球m 个,购买排球(300-m )个,购买A公司体育用品的费用为:0.8[50m+40(300-m)]=10500,………………………9分解得,m=112.5,购买足球112个,购买排球188个,总费用为10496元;………………10分m)=10500,………………………………11分购买B公司体育用品,50m+40(300-m-2解得,m=150,购买足球150个,购买排球150个,总费用为10500元;答:经费够用,可在A公司购买,费用更少.………………………………12分[备注]按以上答案可得全分,按以下分类也可得全分.∵总经费为10500元,由0.8[50m+40(300-m)]=10500,解得m=112.5………………………………8分m)=10500,由50m+40(300-m-2解得m=150;当m=151时实际费用超过10500元.………………………………9分又在B公司购买排球不能为负,∴m=200时,送足球100符合题意.①当m取0~112.5间的整数时,A公司够用,B公司经费超过,故选A公司;……10分②当m取112.5~150间的整数时,A,B两家公司均超过10500元,都不选;……11分③当m取150~200间的整数(m≠151)时,A公司经费超过,B公司够用,故选B公司.12分注意:1.按照评分标准分步评分,不得随意变更给分点;2.第17题至第24题的其它解法,只要思路清晰,解法正确,都应按步骤给予相应分数.。

北师大版数学七年级下册第二学期期末 达标测试卷(含答案)

北师大版数学七年级下册第二学期期末 达标测试卷(含答案)

第二学期期末达标测试卷一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.下列四个汉字中,可以看作是轴对称图形的是()2.某种芯片每个探针单元的面积为0.000 001 68 cm2,则0.000 001 68用科学记数法可表示为()A.1.68×10-5B.1.68×10-6C.0.168×10-7D.0.168×10-5 3.小华同学喜欢锻炼,周六他先从家跑步到新华公园,在那里与同学打一会儿羽毛球后又步行回家,下面能反映小华离家距离y与所用时间x之间关系的图象是()4.已知十个数据如下:63,65,67,69,66,64,66,64,65,68,将这些数据绘制成频率分布表,其中64.5~66.5这组的频率是()A.0.4 B.0.5 C.4 D.55.下面的说法中,不正确的是()A.两直线平行,同位角相等B.若∠α=∠β,则∠α和∠β是一对对顶角C.若∠α与∠β互为补角,则∠α+∠β=180°D.如果一个角的补角是130°,那么这个角的余角等于40°6.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,若AB=9 cm,则△DEB的周长是()A.6 cm B.7 cm C.8 cm D.9 cm(第6题)(第7题)7.如图,在△ABC和△DEF中,点B,F,C,D在同一条直线上,已知∠A=∠D,AB=DE,添加以下条件,不能判定△ABC≌△DEF的是()A.∠B=∠E B.AC=DFC.∠ACD=∠BFE D.BF=CD8.如图,在Rt△ABC中,∠ACB=90°,点M为BA延长线上一点,∠ABC的平分线BE和∠CAM的平分线AD相交于点P,分别交AC和BC的延长线于E,D两点.过P作PF⊥AD交AC的延长线于点H,交BC的延长线于点F,连接AF,并延长交DH于点G,则下列结论:①∠APB=45°;②PF=P A;③BD-AH=AB,其中正确的是()A.①B.①②C.①②③D.②③(第8题)(第9题)(第13题)二、填空题(共5小题,每小题3分,计15分)9.如图是小明同学的健康码示意图,用黑白打印机打印在边长为2 cm的正方形区域内,图中黑色部分的总面积为2 cm2,现在向正方形区域内随机掷点,点落入黑色部分的概率为_________________________.10.规定a*b=2a×2b,如2*3=22×23=25=32.若2*(x+1)=16,则x的值为________.11.一个三角形的三条边的长分别是5,7,10,另一个三角形的三条边的长分别是5,3x-2,2y+1,若这两个三角形全等,则x+y的值是__________.12.为了加强公民的节水意识,某市制定了如下用水收费标准:①每户每月的用水不超过10立方米时,水价为每立方米2.2元;②超过10立方米时,超出部3 分按每立方米3.8元收费,该市每户居民6月份用水x 立方米(x >10),应交水费y 元,则y 与x 的关系式为________________.13.如图,在△ABC 中,AB =AC ,D 是BC 边的中点,EF 垂直平分AB 边,动点P 在直线EF 上,若BC =12,S △ABC =84,则线段PB +PD 的最小值为____________.三、解答题(共13小题,计81分,解答应写出过程) 14.(5分)计算:(π-3)0+⎝ ⎛⎭⎪⎫-12-2+⎝ ⎛⎭⎪⎫142 023×(-4)2 024.15.(5分)化简:[(a +2b )(a -2b )-(a -2b )2]÷(-2b ).16.(5分)先化简,再求值:[(3x -2y )2-(x -y )(9x +2y )]÷⎝ ⎛⎭⎪⎫-12y ,其中x =1,y =-2.17.(5分)已知:如图,DG ⊥BC ,AC ⊥BC ,∠1=∠2.试说明EF ∥CD . 小明给出了如下不完整的解题过程,请你帮助小明完成.(第17题)解:∵DG ⊥BC ,AC ⊥BC (已知),∴∠DGB =∠ACB =90°( ), ∴DG ∥AC ( ), ∴∠2=________( ), ∵∠1=∠2(已知),∴∠1=________(等量代换),∴EF ∥CD ( ). 18.(5分)尺规作图(不写作法,请保留作图痕迹).已知:如图,△ABC ,求作:在BC 边上求作点D ,使得S △ABD =S △ACD .(第18题)19.(5分)如图,AC 平分∠BAD ,CB ⊥AB ,CD ⊥AD ,垂足分别为B ,D .(第19题)(1)试说明△ABC≌△ADC;(2)若AB=4,CD=3,求四边形ABCD的面积.20.(5分)一个不透明的袋子中装有9个红球和2个白球,这些球除颜色外都相同,从中任意摸出一个球.(1)“摸到红球”是________事件,“摸到黑球”是________事件;(填“不可能”或“必然”或“随机”)(2)如果要使摸到红球的概率为35,需要往袋子里再放入多少个白球?21.(6分)在高铁站广场前有一块长为(2a+b)m,宽为(a+b)m的长方形空地(如图).计划在中间留两个长方形喷泉(图中阴影部分),两喷泉及周边留有宽度为b m的人行通道.(第21题)(1)请用代数式表示广场面积并化简;(2)请用代数式表示两个长方形喷泉(图中阴影部分)的面积并化简.522.(7分)如图,点O在直线AB上,OC⊥OD,∠D与∠1互余,F是DE上一点,连接OF.(第22题)(1)试说明:ED∥AB;(2)若OF平分∠COD,∠OFD=70°,求∠1的度数.23.(7分)如图,点P关于OA,OB轴对称的对称点分别为C,D,连接CD,交OA于M,交OB于N.(第23题)(1)若CD的长为18 cm,求△PMN的周长;(2)若∠CPD=131°,∠C=21°,∠D=28°,求∠MPN.24.(8分)小明家、新华书店、学校在一条笔直的公路旁,某天小明骑车上学,当他骑了一段后,想起要买某本书,于是又返回到刚经过的新华书店,买到书后继续骑车去学校,他本次骑车上学的过程中离家距离与所用的时间的关系如图所示,请根据图象提供的信息回答下列问题:(1)小明家到学校的距离是________米;小明在书店停留了________分;(2)如果骑车的速度超过了300米/分就超越了安全限度,小明买到书后继续骑车到学校的这段时间的骑车速度在安全限度内吗?请说明理由;(第24题)(3)小明出发后多长时间离家的距离为900米?725.(8分)如图,AB=AC=16 cm,BC=10 cm,点D为AB的中点,点P在边BC上以每秒2 cm的速度由点B向点C运动,同时,点M在边CA上由点C 向点A匀速运动.(1)若点M的运动速度与点P的运动速度相同,经过1 s后,△BPD与△CMP是否全等?请说明理由;(2)若点M的运动速度与点P的运动速度不相等,当点M的运动速度为多少时,能够使△BPD与△CMP全等?(第25题)26.(10分)【问题发现】(1)如图①,在△ABC与△CDE中,∠B=∠E=∠ACD =90°,AC=CD,B,C,E三点在同一直线上,AB=3,ED=4,则BE=________;【问题提出】(2)如图②,在Rt△ABC中,∠ABC=90°,BC=4,过点C作CD⊥AC,且CD=AC,求△BCD的面积;【问题解决】(3)如图③,在四边形ABCD中,∠ABC=∠CAB=∠ADC=45°,△ACD的面积为12且CD的长为6,求△BCD的面积.(第26题)9答案一、1.A 2.B 3.B 4.A 5.B6.D 点拨:因为AD 平分∠CAB ,∠C =90°,DE ⊥AB ,所以∠CAD =∠BAD ,∠C =∠AED =90°.在△CAD 和△EAD 中,⎩⎨⎧∠C =∠DEA ,∠CAD =∠EAD ,AD =AD ,所以△CAD ≌△EAD ,所以AC =AE ,CD =DE . 因为AC =BC ,所以BC =AE .所以△DEB 的周长为DB +DE +BE =DB +CD +BE =CB +BE =AE +BE =AB =9 cm. 故选D. 7.D8.C 点拨:由题意可设∠MAP =∠P AC =x ,∠ABP =∠PBD =y ,则有⎩⎨⎧x =y +∠APB ,2x =2y +∠ACB , 可得∠APB =12∠ACB =45°,故①正确; 因为PF ⊥AD ,所以∠APF =90°, 所以∠APB =∠FPB =45°.在△PBA 和△PBF 中,⎩⎨⎧∠APB =∠FPB ,PB =PB ,∠ABP =∠FBP ,所以△PBA ≌△PBF ,所以P A =PF ,BA =BF ,故②正确;因为∠DPF =∠HCF =90°,∠DFP =∠HFC , 所以∠PDF =∠PHA .在△DPF 和△HP A 中,⎩⎨⎧∠DPF =∠HP A =90°,∠PDF =∠PHA ,PF =P A ,所以△DPF ≌△HP A ,所以DF =AH .11所以BD -AH =BD -DF =BF ,又因为BF =AB ,所以BD -AH =AB ,故③正确.所以其中正确的是①②③.故选C.二、9.0.5 10.1 11.152或712.y =3.8x -1613.14 点拨:连接AD ,AP .因为AB =AC ,D 是BC 边的中点,所以AD ⊥BC ,又因为BC =12,S △ABC =84,所以12×12×AD =84, 所以AD =14.因为EF 垂直平分AB ,所以P A =PB ,所以PB +PD =P A +PD ,所以当点A ,P ,D 在同一直线上时,PB +PD =P A +PD =AD ,即AD 的长度=PB +PD 的最小值,所以PB +PD 的最小值为14.三、14.解:原式=1+4+⎝ ⎛⎭⎪⎫-14×42 023×(-4) =1+4+(-1)×(-4)=1+4+4=9.15.解:原式=(a 2-4b 2-a 2+4ab -4b 2)÷(-2b )=(4ab -8b 2)÷(-2b )=-2a +4b .16.解:[(3x -2y )2-(x -y )(9x +2y )]÷⎝ ⎛⎭⎪⎫-12y =(9x 2-12xy +4y 2-9x 2-2xy +9xy +2y 2)÷⎝ ⎛⎭⎪⎫-12y =(-5xy +6y 2)÷⎝ ⎛⎭⎪⎫-12y =10x -12y .当x =1,y =-2时,原式=10×1-12×(-2)=34.17.垂直的性质;同位角相等,两直线平行;∠ACD ;两直线平行,内错角相等;∠ACD ;同位角相等,两直线平行18.解:如图,点D 即为所求.(第18题)19.解:(1)因为AC 平分∠BAD ,所以∠BAC =∠DAC .因为CB ⊥AB ,CD ⊥AD ,所以∠B =∠D =90°.在△ABC 和△ADC 中,⎩⎨⎧∠B =∠D ,∠BAC =∠DAC ,AC =AC ,所以△ABC ≌△ADC .(2)由(1)知:△ABC ≌△ADC ,所以BC =CD =3,S △ABC =S △ADC ,所以S △ABC =12AB ·BC =12×4×3=6,所以S △ADC =6,所以S 四边形ABCD =S △ABC +S △ADC =12.20.解:(1)随机;不可能(2)设需要往袋子里再放入x 个白球,根据题意,得35×(9+2+x )=9,解得x =4, 则需要往袋子里再放入4个白球.21.解:(1)广场面积为(a +b )(2a +b )=(2a 2+3ab +b 2)(m 2).(2)两个长方形喷泉(图中阴影部分)的面积为(a +b -2b )(2a +b -3b )=(a -b )(2a -2b )=(2a 2-4ab +2b 2)(m 2).22.解:(1)因为OC ⊥OD ,所以∠COD =90°,因为∠1+∠COD +∠BOD =180°,所以∠1+∠BOD =90°,因为∠D与∠1互余,所以∠1+∠D=90°,所以∠D=∠BOD,所以ED∥AB.(2)因为OF平分∠COD,∠COD=90°,所以∠FOD=45°,因为∠OFD=70°,所以∠D=180°-∠OFD-∠FOD=65°,因为∠1+∠D=90°,所以∠1=25°.23.解:(1)由题意知PM=CM,ND=NP.所以PN+PM+MN=CM+MN+ND=CD=18 cm,所以△PMN的周长为18 cm.(2)因为PM=CM,PN=ND,所以∠C=∠CPM=21°,∠D=∠DPN=28°,所以∠MPN=∠CPD-∠CPM-∠DPN=131°-21°-28°=82°.24.解:(1)1 500;4(2)由图象可知:12~14分时,平均速度=1 500-60014-12=450(米/分),因为450>300,所以小明买到书后继续骑车到学校的这段时间的骑车速度不在安全限度内.(3)从图象上看,小明出发后离家距离为900米时,一共有三个时间:①在0~6分时,平均速度为1 2006=200(米/分),设距家900米的时间为t1,则t1=900÷200=4.5(分);②在6~8分内,平均速度为1 200-6008-6=300(米/分),设距家900米的时间为t2,则1 200-300(t2-6)=900,解得t2=7;13③在12~14分内,平均速度为450米/分,设距家900米的时间为t 3,则600+450(t 3-12)=900,解得t 3=1223.综上,小明出发后4.5分或7分或1223分离家的距离为900米.25.解:(1)△BPD 与△CMP 全等.理由如下:经过1 s 后,BP =2 cm ,CM =2 cm ,BD =12AB =8 cm ,CP =10-2=8(cm),所以BP =CM ,BD =CP .因为AB =AC ,所以∠B =∠C ,在△BDP 和△CPM 中,⎩⎨⎧BD =CP ,∠B =∠C ,BP =CM ,所以△BDP ≌△CPM .(2)由题意知△BPD 与△CMP 全等,因为CM ≠PB ,所以CM =BD =8 cm ,PC =PB =5 cm ,所以点M 的运动速度为8÷52=165(cm/s).26.解:(1)7(2)过点D 作DE ⊥BC 交BC 的延长线于E ,如图①.因为DE ⊥BC ,CD ⊥AC ,所以∠E =∠ACD =90°,所以∠ACB =90°-∠DCE =∠CDE .在△ABC 和△CED 中,⎩⎨⎧∠ABC =∠E =90°,∠ACB =∠CDE ,AC =CD ,所以△ABC ≌△CED ,所以BC =ED =4,15所以S △BCD =12BC ·DE =8.(第26题) (3)过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 交DC 的延长线于点F ,如图②.因为△ACD 的面积为12且CD 的长为6,所以12×6×AE =12,所以AE =4.因为∠ADC =45°,AE ⊥CD ,所以△ADE 是等腰直角三角形,所以DE =AE =4,所以CE =CD -DE =2,因为∠ABC =∠CAB =45°,所以∠ACB =90°,AC =BC ,所以∠ACE =90°-∠BCF =∠CBF .在△ACE 和△CBF 中,⎩⎨⎧∠AEC =∠F =90°,∠ACE =∠CBF ,AC =BC ,所以△ACE ≌△CBF ,所以BF =CE =2,所以S △BCD =12CD ·BF =6.。

2022-2023学年江西省七年级数学第一学期期末达标测试试题含解析

2022-2023学年江西省七年级数学第一学期期末达标测试试题含解析

2022-2023学年七上数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. “地球停电一小时”活动的某地区烛光晚餐中,设座位有 x 排,每排坐 30 人,则有 8 人无 座位;每排坐 31 人,则空 26 个座位.则下列方程正确的是( )A .30x ﹣8=31x ﹣26B .30x + 8=31x+26C .30x + 8=31x ﹣26D .30x ﹣8=31x+262.下列合并同类项中,正确的是( )A .235a b ab +=B .22523b b -=C .330ab ba -=D .277a a a += 3.下列说法,正确的是( )A .经过一点有且只有一条直线B .两条射线组成的图形叫做角C .两条直线相交至少有两个交点D .两点确定一条直线4.如图1是一个小正方体的侧面形展开图,小正方体从图2中右边所示的位置依次翻到第1格,第2格,第3格,这时小正方体朝上一面的字是( )A .中B .国C .江D .苏5.下列运算正确的是( )A .235x x x +=B .236x x x ⋅=C .633x x x ÷=D .()23636x x =6.已知a =b ,则下列等式不一定成立的是( )A .a+1=b+1B .a ﹣3=b ﹣3C .ac =bcD .a÷c =a÷c7.若a ,b 是互为相反数(a ≠0),则关于x 的一元一次方程ax +b =0的解是( )A .1B .﹣1C .﹣1或1D .任意有理数8.对于题目“如图,点O 为数轴的原点,点A 对应的数为a ,点B 对应的数为b ,且()24100a b ++-=,点P 为数轴上的动点,且点P 对应的数为x .当217PA PB +=时,求x 的值.”嘉嘉的结果是“7或11”,淇淇的结果是“13-或11”,则( )A .嘉嘉的结果正确B .淇淇的结果正确C .两人的结果合在一起才正确D .以上均不正确9.如果单项式22m x y +与n x y 的和仍然是一个单项式,则()2019m n +等于( ) A .1 B .-1 C .2019 D .-2019 10.如图,下列图形绕直线l 旋转一周后,能得到圆锥体的是( )A .B .C .D .11.十九大中指出,过去五年,我国经济建设取得重大成就,经济保持中高速增长,在世界主要国家中名列前茅,国内生产总值从五十四万亿元增长到八十万亿元,稳居世界第二,八十万亿元用科学记数法表示为80000000000000元( )A .8×1014元B .0.8×1014元C .80×1012元D .8×1013元12.如图,点C 是线段AB 的中点,点D 是线段BC 的中点,下列等式正确的是( )A .CD =AC -DBB .CD =AB -DBC .AD = AC -DB D .AD =AB -BC二、填空题(每题4分,满分20分,将答案填在答题纸上)13.18世纪最杰出的瑞士数学家欧拉,最先把关于x 的多项式用符号“f (x )”表示,如f (x )=﹣3x 2+2x ﹣1,把x =﹣2时多项式的值表示为f (﹣2),则f (﹣2)=_____.14.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km .用科学记数法表示1.496亿是___________.15.已知:5,3a b c d =-+=,则()()b c a d +--的值为_______.16.一个两位数,十位上的数字是m ,个位上的数字比十位上的数字多1,则这个两位数是__________(用m 表示).17.已知∠α=28°,则∠α的余角等于___.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)为发展校园足球运动,某校决定购买一批足球运动装备,经过调查发现:甲、乙两家商场以同样的价格出售相同品牌的足球队服和足球,已知每套队服比每个足球多60元,三套队服与四个足球的费用相等.经过协商,甲商场提供的优惠方案是:每购买十套队服,赠送一个足球;乙商场提供的优惠方案是:若购买队服超过90套,则购买足球打七折.(1)求每套队服和每个足球的价格是多少?(2)若需要购买100套队服和40个足球,通过计算说明到哪家商场购买更优惠.19.(5分)如图,已知ABC ∠、ACB ∠的平分线相交于点O ,EF 过点O 且//EF BC .(1)若50ABC ∠=︒,60ACB ∠=︒,求BOC ∠的度数;(2)若130BOC ∠=︒,1:23:2∠∠=,求ABC ∠、ACB ∠的度数.20.(8分)如图,B ,C 两点把线段AD 分成2∶4∶3的三部分,M 是线段AD 的中点,CD =6 cm ,求线段MC 的长.21.(10分)数学中,运用整体思想方法在求代数式的值中非常重要.例如:已知:a 2+2a =1,则代数式2a 2+4a +4=2( a 2+2a ) +4=2×1+4=6. 请你根据以上材料解答以下问题:(1)若232x x -=,求213x x +-的值;(2)当1x =时,代数式31px qx ++的值是5,求当1x =-时,代数式px 3+qx +1的值;(3)当2019x =时,代数式535ax bx cx ++-的值为m ,求当2019x =-时,求代数式535ax bx cx ++-的值是多少?22.(10分)甲乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇.相遇后,拖拉机继续前进,汽车在相遇处停留1个小时后调头按原速返回,汽车在返回后半个小时追上了拖拉机.(1)在这个问题中,1小时20分= 小时;(2)相向而行时,汽车行驶 小时的路程+拖拉机行驶 小时的路程=160千米;同向而行时,汽车行驶 小时的路程=拖拉机行驶 小时的路程;(3)全程汽车、拖拉机各自行驶了多少千米?23.(12分)如图1,长方形OABC 的边OA 在数轴上,O 为原点,长方形OABC 的面积为12,边OC 长为1.(1)数轴上点A 表示的数为 ;(2)将长方形OABC 沿数轴水平移动,移动后的长方形记为O ′A ′B ′C ′,移动后的长方形O ′A ′B ′C ′与原长方形OABC 重叠部分(如图2中阴影部分)的面积记为S .①当S 恰好等于原长方形OABC 面积的一半时,数轴上点A ′表示的数是多少?②设点A 移动的距离AA ′=x ,当S =4时,求x 的值.参考答案一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、C【解析】试题分析:设座位有x 排,根据总人数是一定的,列出一元一次方程30x+8=31x-1.故选C .2、C【分析】根据同类项的定义和合并同类项的法则逐项判断即可.【详解】解:A 、2a 与3b 不是同类项,不能合并,故本选项错误;B 、222523b b b -=,故本选项错误;C 、330ab ba -=,故本选项正确;D 、78a a a +=,故本选项错误.故选C.【点睛】本题考查了同类项的概念和合并同类项的法则,属于基础题型,熟练掌握合并同类项的法则是解题的关键.3、D【分析】根据直线的性质、角的定义、相交线的概念一一判断即可.【详解】A 、经过两点有且只有一条直线,故错误;B 、有公共顶点的两条射线组成的图形叫做角,故错误;C 、两条直线相交有一个交点,故错误;D 、两点确定一条直线,故正确,故选D .【点睛】本题考查直线的性质、角的定义、相交线的概念,熟练掌握相关知识是解题的关键.4、B【分析】先根据翻转的方向确定底面上的字,再由平面图形的折叠及立体图形的表面展开图的特点得出朝上一面的字即可得答案.【详解】由题意可知正方体翻转到3时,“盐”字在底面,∵正方体表面展开图相对面之间一定相隔一个正方形,∴“盐”字的对面是“国”字,∴小正方体朝上一面的字是“国”,故选:B .【点睛】本题考查正方体相对两个面上的文字,熟练掌握正方体的表面展开图相对面之间一定相隔一个正方形的特点并解结合实际操作是解题关键.5、C【分析】分别依据同类项概念、同底数幂的乘法、幂乘方与积的乘方和同底数幂的除法法则逐一计算即可.【详解】A 选项:2x 与3x 不是同类项,不能合并,故A 错误;B 选项:232356x x x x x +⋅==≠,故B 错误;C 选项:63633x x x x -÷==,故C 正确;D 选项:()2332663996x x x x ⨯==≠,故D 错误.故选:C .【点睛】本题主要考查幂的运算,解题的关键是掌握同类项概念、同底数幂的乘法、幂的乘方与积的乘方和同底数幂的除法法则.6、D【分析】根据等式的基本性质逐一判断可得.【详解】A 、由a =b 知a+1=b+1,此选项一定成立;B 、由a =b 知a ﹣3=b ﹣3,此选项一定成立;C 、由a =b 知ac =bc ,此选项一定成立;D 、由a =b 知当c =0时a÷c =a÷c 无意义,此选项不一定成立;故选:D .【点睛】本题考查等式的基本性质,解题的关键是掌握等式的基本性质.7、A【分析】根据解一元一次方程的步骤进行即可【详解】∵a ,b 互为相反数∴=-a b∵ax+b =0∴ax b =-∴1x =故选:A【点睛】本题考查了相反数的概念,及一元一次方程的解法,熟知以上知识是解题的关键.8、A【分析】首先根据绝对值非负性得出4,10a b =-=,进而得出AB ,然后分类讨论:若点P 在A 的左侧;若点P 在A 、B 的之间;若点P 在B 的右侧;构建一元一次方程,进行求解即可. 【详解】∵()24100a b ++-=∴40,100a b +=-=,即4,10a b =-=∴AB=14若点P 在A 的左侧,则()()421017x x --+-= 解得13x =-∵A 为-4∴相矛盾,此情况不存在;若点P 在A 、B 的之间,则()()421017x x ++-=解得7x =,符合题意;若点P 在B 的右侧,则()()421017x x ++-=解得11x =,符合题意;故x 的值为7或11,嘉嘉的结果正确;故选:A .【点睛】此题主要考查数轴上的动点问题以及绝对值非负性的运用、一元一次方程的求解,熟练掌握,即可解题.9、A【分析】根据题意,可知单项式22m x y +与n x y 是同类项,然后求出m 、n 的值,即可得到答案.【详解】解:∵单项式22m x y+与n x y 的和仍然是一个单项式, ∴单项式22m x y +与n x y 是同类项,∴21+=m ,2n =,∴1m =-,∴()20192019(12)1m n +=-+=;故选择:A.【点睛】本题考查了求代数式的值,以及同类项的定义,解题的关键是利用同类项的定义求出m 、n 的值.10、B【分析】根据点动成线,线动成面,面动成体,只有直角三角形绕直角边旋转一周,可以得到一个以旋转直角边为高,另一直角边为底面半径的圆锥.【详解】解:只有直角三角形绕直角边旋转一周,可以得到一个圆锥.故选:B .【点睛】本题考查了点、线、面、体之间的关系,抓住旋转的定义和圆锥的特征即可解决此类问题.11、D【解析】80000000000000元=8×1013元,故选D .点睛: 本题考查了正整数指数科学计数法,对于一个绝对值较大的数,用科学记数法写成10n a ⨯ 的形式,其中110a ≤<,n 是比原整数位数少1的数.12、A【分析】根据点C 是线段AB 的中点,可得AC =BC ,根据点D 是线段BC 的中点,可得BD =CD ,据此逐项判断即可.【详解】∵点C 是线段AB 的中点,∴AC =BC ,∵点D 是线段BC 的中点,∴BD =CD .A 、CD =BC -DB =AC -DB ,故选项A 正确;B 、AB -DB =AD≠CD ,故选项B 不正确;C 、AC -DB≠AD ,故选项C 不正确;D 、AB -BC =AC≠AD ,故选项D 不正确.故选:A .【点睛】此题主要考查了两点间的距离的求法,以及线段的中点的含义和应用,要熟练掌握.二、填空题(每题4分,满分20分,将答案填在答题纸上)13、-1【分析】把x =﹣2代入﹣3x 2+2x ﹣1,求出等于多少即可.【详解】解:当x =﹣2时,f (﹣2)=﹣3×(﹣2)2+2×(﹣2)﹣1,=﹣12﹣4﹣1,=﹣1,故答案为:﹣1.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.14、81.49610【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:数据1.496亿用科学记数法表示为1.496×1, 故答案为:1.496×1. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.15、8【分析】先将已知5a b =-变形5b a -=,,然后原式去括号整理后,直接将已知式的值代入计算即可求解.【详解】解:∵5a b =-,∴5b a -=,又∵3c d +=,∴原式()()538b c a d b a c d =+-+=-++=+=.故答案为:8.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则、整体代入的思想是解本题的关键.16、11m+1【分析】先表示出个位数的数字为(m+1),再根据数的表示列式整理即可得解.【详解】解:根据题意,个位数的数字为(m+1),所以,这个两位数为10m+(m+1)=11m+1.故答案为:11m+1【点睛】本题考查列代数式,正确理解题意是关键.17、62°.【分析】互为余角的两角和为90︒,而计算得.【详解】该余角为90°﹣28°=62°.故答案为:62°.【点睛】本题考查了余角,从互为余角的两角和为90︒而解得.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18、(1)每套队服的价格为240元,每个足球的价格为180元;(2)乙商场.【分析】(1)设每套队服的价格为x 元,从而可得每个足球的价格为(60)x -元,再根据“三套队服与四个足球的费用相等”建立方程,解方程即可得;(2)结合(1)的结论,根据甲、乙商场的优惠方案,分别求出所需费用,再比较大小即可得.【详解】(1)设每套队服的价格为x 元,则每个足球的价格为(60)x -元,由题意得:34(60)x x =-,解得240x =,则6024060180x -=-=,答:每套队服的价格为240元,每个足球的价格为180元;(2)甲商场所需费用为100100240(40)1802940010⨯+-⨯=(元), 乙商场所需费用为1002404018070%29040⨯+⨯⨯=(元),因为2904029400<,所以到乙商场购买更优惠.【点睛】本题考查了一元一次方程的实际应用,依据题意,正确建立方程是解题关键.19、(1)∠BOC =125°;(2)∠ABC=60°,∠ACB=40°.【分析】(1)由角平分线的性质可求出∠OBC 、∠OCB 的度数,再根据三角形内角和即可得出答案;(2)由邻补角的定义可求出∠1+∠2=50°,再根据1:23:2∠∠=即可分别求出∠1和∠2的度数,最后根据两直线平行内错角相等及角平分线的性质即可得出答案.【详解】解:(1)因为∠ABC 和∠ACB 的平分线BO 与CO 相交于点O ,所以∠EBO =∠OBC 12ABC =∠,∠FCO =∠OCB 12ACB =∠ 又∠ABC =50°,∠ACB =60°,所以∠OBC =25°,∠OCB =30°所以∠BOC =180°-∠OBC -∠OCB =125°(2)因为∠BOC=130°,所以∠1+∠2=50°因为∠1: ∠2=3:2所以3150305∠=⨯︒=︒,2250205∠=⨯︒=︒ 因为 EF ∥BC所以∠OBC =∠1=30°,∠OCB =∠2=20°因为∠ABC 和∠ACB 的平分线BO 与CO 相交于点O ,所以∠ABC=60°,∠ACB=40°.【点睛】本题考查了角平分线的性质、平行线的性质、三角形内角和性质,熟练掌握性质定理是解题的关键.20、3cm【分析】设AB=2x ,BC=4x ,CD=3x ,再根据CD=6cm 求出x 的值,故可得出线段AD 的长度,再根据M 是AD 的中点可求出MD 的长,由MC=MD-CD 即可得出结论.【详解】解:∵B ,C 两点把线段AD 分成2:4:3三部分,∴设AB=2x ,BC=4x ,CD=3x ,∵CD=6cm ,即3x=6cm ,解得x=2cm ,∴AD=2x+4x+3x=9x=9×2=18cm , ∵M 是AD 的中点,∴MD=12AD=12×18=9cm , ∴MC=MD-CD=9-6=3cm .【点睛】本题考查的是两点间的距离,在解答此类问题时要注意各线段之间的和、差及倍数关系.21、(1)1-;(2)3-;(3)10m --.【分析】(1)对代数式213x x +-适当变形将232x x -=整体代入即可;(2)将1x =代入代数式求得4p q +=,再将1x =-代入,对所得代数式1p q --+进行变形,整体代入即可; (3)将2019x =代入代数式求得532019201920195a b c m ⋅+⋅+⋅=+,再将2019x =-代入,对所得代数式53(2019)(2019)(2019)5a b c ⋅-+⋅-+⋅--适当变形,整体代入即可.【详解】解:(1)22131(3)121x x x x +-=--=-=-;(2)将1x =代入31px qx ++得311115p q p q ⋅+⋅+=++=, 化简得4p q +=.将1x =-代入31px qx ++得3(1)(1)11()1p q p q p q ⋅-+⋅-+=--+=-++ 将4p q +=代入得31px qx ++=()1413p q -++=-+=-;(3)当2019x =时,代数式535ax bx cx ++-的值为m∴532019201920195a b c m ⋅+⋅+⋅-=,∴532019201920195a b c m ⋅+⋅+⋅=+当2019x =-时,53535(2019)(2019)(2019)5ax bx cx a b c ++-=⋅-+⋅-+⋅--=53(201920192019)5a b c -⋅+⋅+⋅-=(5)5m -+-=10m --.【点睛】本题考查代数式求值——整体代入法. 在求代数式的值时,一般先化简,再把各字母的取值代入求值.有时题目并未给出各个字母的取值,而是给出几个式子的值,这时可以把这几个式子看作一个整体,把多项式化为含这几个式子的代数式,再将式子看成一个整体代入求值.运用整体代换,往往使问题得到简化.22、(1)113;(2)113,113,12,112;(3)汽车行驶的路程为165千米,拖拉机行驶的路程为85千米. 【分析】(1)根据1小时=60分进行单位换算即可;(2)相向而行,相遇时两者行驶时间相同,行驶距离之和为160千米,同向而行,汽车追上拖拉机时,汽车行驶时间为12小时,拖拉机行驶112小时,据此填写即可; (3)设汽车、拖拉机的速度分别是,x y 千米/小时,根据(2)中的等量关系建立方程求出汽车和拖拉机的速度,再用速度乘以行驶的总时间求出行驶路程.【详解】(1)20分=201=603小时, ∴1小时20分=111=133+小时 故答案为:113. (2)相向而行,相遇时,两者行驶时间均为113小时,同向而行,汽车追上拖拉机时,汽车行驶时间为12小时,拖拉机行驶111=122⎛⎫+ ⎪⎝⎭小时 故答案为:113,113,12,112. (3) 解:设汽车、拖拉机的速度分别是,x y 千米/小时,依题意有:11111603311(1)22x y x y ⎧+=⎪⎪⎨⎪=+⎪⎩,解之得:9030x y =⎧⎨=⎩ 全程汽车行驶的路程为1141(1)()90120451653232x +=+⨯=+=(千米)全程拖拉机行驶的路程为1141(11)(1)30403015853232++=++⨯=++=y(千米)答:全程汽车行驶的路程为165千米,拖拉机行驶的路程为85千米.【点睛】本题考查了二元一次方程组的应用,熟练掌握相向而行与同向而行中的等量关系是解题的关键.23、(1)2;(2)①2或6;②8 3【分析】(1)利用面积÷OC可得AO长,进而可得答案;(2)①首先计算出S的值,再根据矩形的面积表示出O′A的长度,再分两种情况:当向左运动时,当向右运动时,分别求出A′表示的数;②根据面积可得x的值.【详解】解:(1)∵OC=1,S长方形OABC=OC•OA=12,∴OA=2,即点A表示的数是2,故答案为2.(2)如图1,∵S=6,即数轴上阴影部分的边长刚好为原来边长的一半,所以,当长方形OABC向左移动时,如图1,OA′=12OA=2,∴点A′表示的数为2;如图2,当长方形OABC向右移动时,O′A=12OA=2,O′A′=OA=2,∴OA′=6,∴点A′表示的数为6,故数轴上点A′表示的数为2或6;②∵S=O′A•AB=(O′A′﹣A′A)•OC=1×(2﹣x)=2,∴x=83.【点睛】此题主要考查了一元一次方程的应用,数轴,关键是正确理解题意,利用数形结合列出方程,注意要分类讨论,不要漏解.。

2022-2023学年度第二学期北师大版七年级数学期末复习测试题 (含答案)

2022-2023学年度第二学期北师大版七年级数学期末复习测试题 (含答案)

2022-2023学年度第二学期北师版七年级数学期末复习测试题一、选择题(本大题共12个小题,每小题4分,共48分)1. 下列冬奥元素中是轴对称图形的是()A. B. C. D.2.全球可被人类利用的淡水总量约占地球上总水量的0.00003,因此珍惜水,保护水是每个公民的责任.其中数字0.00003用科学记数法表示为()A.3×10-5B.3×10-4C.0.3×10-5D.0.3×10-43.下列计算正确的是()A.B.C.D.4.一个均匀的小球在如图所示的水平地板上自由滚动,并随机停在某块方砖上,若每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是()A. B. C. D. 15.下列事件为必然事件的是()A.打开电视,正在播放新闻B.买一张电影票,座位号是奇数号C.任意画一个三角形,其内角和是180°D.掷一枚质地均匀的硬币,正面朝上6.如图,直线AD∥BC,若∠1=40°,∠BAC=80°,则∠2的度数为()7.如图,按以下方法作一个角的平分线:(1)以O为圆心,适当长为半径画弧,分别交OA、OB于点M、N.(2)分别以点M、N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC,射线OC即为所求.这种作图方法的依据是()A.AAS B.SAS C.SSS D.ASA8.如图,把两根钢条AB,CD的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳)只要量得AC的长度,就可知工件的内径BD是否符合标准,这是利用的什么数学原理呢?()A.SSS B.SAS C.ASA D.AAS9.如图,是的中线,是的中线,是的中线,若,则等于()A.16B.14C.12D.1010.如图,在△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N,再分别以M,N为圆心,大于MN长为半径西弧,两弧交于点O,作射线AO,交BC于点E.已知CE=3,AB=10,则△ABE的面积是()A.B...计算:的结果等于.若多项式是完全平方式,则如图,在中,,,尺规作图作出的垂直平分线与交于点则的度数为写出y与x的关系式________.18.如图,两个正方形边长分别为a、b,如果a2+b2=300,ab=12,则阴影部分的面积为______.三、解答题(本大题共8个体,共78分.解答应写出文字说明,证明过程或演算步骤.)19计算:(1)3xy•(﹣2x3y)2÷(﹣6x5y3);(2)(m+2)(m﹣2)﹣(m﹣1)2(3)化简求值:(2x+1)2﹣4(x﹣1)(x+1),其中x=.20.如图,ABC的顶点A、B、C都在小正方形的顶点上,利用网格线按下列要求画图.(1)画A 1B1C1,使它与ABC关于直线l成轴对称;(2)求ABC的面积;(3)在直线l上找一点P,使点P到点A、B的距离之和最短(不需计算,在图上直接标记出点P的位置).21如图,,,,求的度数.解:∵,∴ ∵,∴(∴ ∴ (∵,∴ AB CD )求证:ABF≌DCE2022-2023学年度第二学期北师版七年级数学期末复习测试题及答案一、选择题(本大题共12个小题,每小题4分,共48分)1. 下列冬奥元素中是轴对称图形的是()A. B. C. D.【答案】D2.全球可被人类利用的淡水总量约占地球上总水量的0.00003,因此珍惜水,保护水是每个公民的责任.其中数字0.00003用科学记数法表示为()A.3×10-5B.3×10-4C.0.3×10-5D.0.3×10-4【答案】A3.下列计算正确的是( )A.B.C.D.【答案】C3.一个均匀的小球在如图所示的水平地板上自由滚动,并随机停在某块方砖上,每一块方砖除颜色外完全相同,那么小球最终停留在黑砖上的概率是()A. B. C. D. 1【答案】A5.下列事件为必然事件的是()A.打开电视,正在播放新闻B.买一张电影票,座位号是奇数号C.任意画一个三角形,其内角和是180°D.掷一枚质地均匀的硬币,正面朝上【答案】C6.如图,直线AD∥BC,若∠1=40°,∠BAC=80°,则∠2的度数为()A.70°B.60°C.50°D.40°【答案】B8.如图,按以下方法作一个角的平分线:、(1)以O为圆心,适当长为半径画弧,分别交OA、OB于点M、N.(2)分别以点M、N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC,射线OC即为所求.这种作图方法的依据是()A.AAS B.SAS C.SSS D.ASA【答案】C8.如图,把两根钢条AB,CD的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳)只要量得AC的长度,就可知工件的内径BD是否符合标准,这是利用的什么数学原理呢?()A.SSS B.SAS C.ASA D.AAS【答案】B9.如图,是的中线,是的中线,是的中线,若,则等于()A.16B.14C.12D.10【答案】A9.如图,在△ABC中,∠C=90°,以A为圆心,任意长为半径画弧,分别交AC,AB于点M,N,分别以M,N为圆心,大于MN长为半径西弧,两弧交于点O,作射线AO,交BC于点E.已知CE=3,AB=10,则△ABE的面积是()A.8B.15C.24D.30【答案】B11如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若∠BAC=114°,则∠EAF为()A.40°B.44°C.48°D.52°A.B...计算:的结果等于.若多项式是完全平方式,则如图,在中,,,尺规作图作出的垂直平分线与交于点则的度数为写出y与x的关系式________.【答案】y=12+0.5x18.如图,两个正方形边长分别为a、b,如果a2+b2=300,ab=12,则阴影部分的面积为______.【答案】144三、解答题(本大题共8个体,共78分.解答应写出文字说明,证明过程或演算步骤.)19计算:(1)3xy•(﹣2x3y)2÷(﹣6x5y3);(2)(m+2)(m﹣2)﹣(m﹣1)2(3)化简求值:(2x+1)2﹣4(x﹣1)(x+1),其中x=.解:(1)原式=3xy•4x6y2÷(﹣6x5y3)=12x7y3÷(﹣6x5y3)=﹣2x2;(2)原式=m2﹣4﹣(m2﹣2m+1)=m2﹣4﹣m2+2m﹣1=2m﹣5;(3)原式=4x2+4x+1﹣4(x2﹣1)=4x2+4x+1﹣4x2+4=4x+5;当x=时,原式=4×+5=6.20.如图,ABC的顶点A、B、C都在小正方形的顶点上,利用网格线按下列要求画图.(1)画A 1B1C1,使它与ABC关于直线l成轴对称;(2)求ABC的面积;(3)在直线l上找一点P,使点P到点A、B的距离之和最短(不需计算,在图上直接标记出点P的位置).)如图,A)ABC﹣×4×2﹣×2×1﹣×2×3如图,,,,求的度数.解:∵,∴ ( )又∵,∴(∴ ∴ (∵,∴ ∵,∴(两直线平行,同位角相等.∵,∴(等量代换)∴(内错角相等,两直线平行)∴(两直线平行,同旁内角互补)∵,∴.故答案为:;两直线平行,同位角相等;等量代换;;内错角相等,两直线平行;;两直线平行,同旁内角互补;.AB CD)求证:ABF≌DCEAB CD在ABF与DCE,∴ABF≌DCE)知,ABF≌DCE的概率是=,故答案为:;所以三条线段能构成三角形的概率是=,故答案为:.(1)求∠DAF的度数.(2)若BC的长为50,求△DAF的周长.解:(1)∵∠ABC=20°,∠ACB=65°,∴∠BAC=180°-∠ABC-∠ACB=95°.∵DE,FG分别为AB,AC的垂直平分线,∴DA=DB,FA=FC,∴∠DAB=∠ABC=20°,∠FAC=∠ACB=65°,∴∠DAF=∠BAC-∠DAB-∠FAC=10°.(2)由(1)可知DA=DB,FA=FC,∴△DAF的周长=DA+DF+FA=DB+DF+FC=BC=50.25.一辆大客车和一辆小轿车同时从甲地出发去乙地,匀速而行,大客车到达乙地后停止,小轿车到达乙地后停留4小时,再按照原速从乙地出发返回甲地,小轿车返回甲地后停止,已知两车距甲地的路程s千米与所用的时间t小时的关系如图所示,请结合图象解答下列问题:(1)在上述变化过程中,自变量是________;因变量是________;(2)小轿车的速度是________km/h,大客车的速度是________ km/h;(3)两车出发多少小时后两车相遇,两车相遇时,距离甲地的路程是多少?解:(1)自变量是时间t;因变量是路程s;500÷=30∴∠ACB﹣∠DCF=∠DCE﹣∠DCF,∴∠ACD=∠BCE,在△CDA和△CEB中,,∴△CDA≌△CEB(SAS),∴AD=BE;②∵△CDA≌△CEB,∴∠CEB=∠CDA=180°﹣∠CDE=120°,∵∠CED=60°,∴∠AEB=∠CEB﹣∠CED=120°﹣60°=60°;(2)①∵AC=BC,CD=CE,∠ACB=∠DCE=90°,∴△ACB和△DCE均为等腰直角三角形,∴∠CDE=45°=∠CED,∴∠ACB﹣∠DCB=∠DCE﹣∠DCB,即∠ACD=∠BCE,∴∠ADC=180°﹣∠CDE=135°,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴∠ADC=∠BEC=135°,∴∠AEB=∠BEC﹣∠CED=90°,故填:90°;②∵△ACD≌△BCE,BE=2,∴BE=AD=2,∵∠CAF=∠BAF=22.5°,∠CDE=45°=∠CAD+∠ACD,∴∠ACD=∠CAD=22.5°,∴AD=CD=2,∵∠DCF=90°﹣∠ACD=67.5°,∠AFC=∠ABC+∠BAF=67.5°,∴∠DCF=∠AFC,∴DC=DF=2,∴AF=AD+DF=4,。

人教版七年级上册期末综合复习数学测试题(含答案)

人教版七年级上册期末综合复习数学测试题(含答案)

人教版七年级数学上册期末综合复习测试题(含答案)(考试时间:90分钟试卷满分:100分)第Ⅰ卷一、选择题:本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中只有一项符合题目要求。

1.在我国古代著名的数学专著《九章算术》中,首次引入负数,如果收入100元记作元,则元表示()A.支出50元B.收入50元C.支出100元D.收入100元2.下列数中:56,,,,0,,,25中,是负数的有()A.2个B.3个C.4个D.5个3.第七次全国人口普查结果显示,台州市常住人口约为万人.用科学记数法表示这个数正确的是()A.B.C.D.4.下列说法错误的是()A.是二次三项式B.的次数是6C.的系数是D.不是单项式5.如图,将图中长方形绕着给定的直线旋转一周后形成的几何体是()A.B. C.D.6.如图是正方体表面的一种展开图,表面上的语句为北京2022年冬奥会和冬残奥会的主题口号“一起向未来!”,如果“未”字在正方体的底部,那么正方体的上面是()A.一B.起C.向D.来7.时钟的分针从8点整转到8点20分,分针旋转了()度.A.20 B.120 C.90 D.1508.直线、线段、射线的位置如图所示,下图中能相交的是()A .B .C .D .9.将多项式5x ³y ﹣y 4+2xy 2﹣x 4按x 的降幕排列是( ) A .﹣y 4+5x 3y +2xy 2﹣x 4 B .﹣x 4+5x 3y +2xy 2﹣y 4 C .﹣x 4+5x 3y ﹣y 4+2xy 2D .2xy 2+5x 3y ﹣y 4﹣x 410.随着计算机技术的迅猛发展,电脑价格不断降低.某品牌电脑按原售价降低元后,又降低,现售价为元,那么该电脑的原售价为( ) A .元B .元C .元D .元11.下列等式的变形中,正确的是( ) A .如果同,那么B .如果,那么C .如果,那么24m c -=24nc - D .如果,那么12.在锐角内部由O 点引出3种射线,第1种是将分成10等份;第2种是将分成12等份;第3种是将分成15等份,所有这些射线连同OA 、OB 可组成的角的个数是( )A .595B .406C .35D .666第Ⅱ卷二、填空题(本题共6小题,每题3分,共18分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏科版学年度七年级数学期末复习基础达标测试题一、仔细选一选:1.一个正多边形的每个内角的度数都等于相邻外角的度数,则该正多边形的边数是()A.3 B.4 C.6 D.122..如图,某公司安装管道,他们从点A处铺设到点B处时,由于有一个人工湖挡住了去路,需要改变方向经过点C,再拐到点D,然后沿与AB平行的DE方向继续铺设,如果∠ABC=135°,∠BCD=65°,则∠CDE等于()A.105°B.110°C.115°D.135°3.如图,已知直线AB∥CD,∠C=125°,那么∠1的大小为()A.125°B.65°C.55°D.45°4.若x2+kx+9是完全平方式,则k的值是()A.6 B.﹣6 C.9 D.6或﹣65.甲、乙两种机器分别以固定速率生产一批货物,若4台甲机器和2台乙机器同时运转3小时的总产量与2台甲机器和5台乙机器同时运转2小时的总产量相同,则1台甲机器运转1小时的产量与1台乙机器运转几小时的产量相同?()A.12B.23C.32D.26.(达州中考)不等式组的解集在数轴上表示正确的是() A.B.C.D.7.下列计算中,正确的是().A.()235x x=B.()236x x=C.()2121n nx x++=D.326x x x⋅=8.方程组43235x y kx y-=⎧⎨+=⎩的解中x与y的值相等,则k等于()A.2 B.1 C.3 D.49.不等式﹣3≥2(x﹣3)的非负整数解有()个A.4 B.3 C.2 D.1二、认真填一填:10.已知,,为的平分线,为的平分线,则=________.11.一个工程队规定在6天内完成300千米的修路工程,第一天完成了60千米,现在接到通知要比原计划至少提前2天完成任务,以后几天平均每天至少完成__________千米.12.若a、b、m均为整数,且(x+a)(x+b)=x2+mx+6,那么m的值为_________.13.若不等式组{x ax b<>的解集是空集,则,a b的大小关系是_________.14.若关于x的不等式组的整数解共有6个,则a的取值范围是______.15.已知(a-2b)2=9,(a+2b)2=25,则a2+4b2=________.16.若一个正多边的每一个外角都是36°,则这个正多边形的内角和等于______.17.如图,已知,,,则__________.18.已知:a-b=3,ab=1,则a2-3ab+b2=_____.三、耐心做一做:19.如图所示,已知点C、P、D在一直线上,∠BAP与∠APD互补,∠1=∠2,试说明∠E=∠F 的理由.20.将下列各式因式分解:(1)5a 3b (a ﹣b )3﹣10a 4b 3(b ﹣a )2;(2)(b ﹣a )2+a (a ﹣b )+b (b ﹣a );(3)(3a ﹣4b )(7a ﹣8b )+(11a ﹣12b )(8b ﹣7a );(4)x (b+c ﹣d )﹣y (d ﹣b ﹣c )﹣c ﹣b+d .21.如图,已知直线AB 上一点O ,OC ⊥AB ,OD ⊥OE , 若∠COE=∠BOD . (1)求∠COE, ∠BOD, ∠AOE 的度数. (2)若OF 平分∠BOE ,求∠AOF 的度数.22.化简求值.(1)求()()()323251x x x x +---的值,其中2x =.(2)若220m m +-=,求()()2131m m -++的值.23.阅读下列材料:小明在一本课外读物上看到一道有意思的数学题:例1、解不等式:,根据绝对值的几何意义,到原点距离小于1的点在数轴上集中在-1和+1之间,如图:所以,该不等式的解集为-1<x<1.因此,不等式的解集为x<-1或x>1.根据以上方法小明继续探究:例2:求不等式:的解集,即求到原点的距离大于2小于5的点的集合就集中在这样的区域内,如图:所以,不等式的解集为-5<x<-2或2<x<5.仿照小明的做法解决下面问题:(1)不等式的解集为____________.(2)不等式的解集是____________.(3)求不等式的解集.24.解不等式组,并把它的解集在数轴上表示出来.25.(1)如图1,试探究其中∠1,∠2与∠3,∠4之间的关系,并证明.(2)用(1)中的结论解决下列问题:如图2,AE、DE分别是四边形ABCD的外角∠NAD、∠MDA的平分线,∠B+∠C=240°,求∠E的度数.26.已知方程组的解、的值的符号相同.(1)求的取值范围;(2)化简.27.平面内的两条直线有相交和平行两种位置关系。

(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD +∠D,得∠BPD=∠B-∠D。

将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数。

选做题:28.手机下单,随叫随走,每公里一元……继“共享单车”后,重庆、北京、上海、成都等多地开始流行起时尚、炫酷的“共享汽车”,只需下载手机APP ,注册后就能用手机在附近找到汽车使用,到达目的地后可把车还到指定停车网点或任意的正规停车场.这种新兴出行方式越来越受到人们的青睐.在重庆,戴姆勒集团和力帆集团已经完成第一批共享汽车的投放,共计1400辆,戴姆勒集团投放的奔驰smart 汽车购买单价为15万元,力帆集团投放的AE 纯电动汽车购买单价为8万元;两家公司的汽车成本总投资额为1.54亿元. (1)求两集团公司在重庆第一批共享汽车的投放数量分别为多少?(2)这种共享的方式能够很好的整合社会资源,实现社会资源的优化配置,政府决定对后期投放的每辆汽车补贴成本价的%(050)a a <<,在此政策刺激下,戴姆勒集团公司决定再次购买并投放与第一次销售单价相同的第二批奔驰smart 共享汽车,数量在两家公司第一次投放总和的一半的基础上增加4%a ,并且享受完政府补贴后,购买成本为1.197亿元,求a 的值参考答案 一、仔细选一选:二、认真填一填:10.25°或45°11.80 12.±5,±7 13.b a14.-18≤a<-15 15.17 16.1440°17.18.8三、耐心做一做:19.∠E与∠F相等,理由【解析】解:∠E与∠F相等.理由如下:因为∠BAP和∠APD互补,所以AB∥CD(同旁内角互补,两直线平行),所以∠BAP=∠CPA(两直线平行,内错角相等).因为∠1=∠2,所以∠PAE=∠APF,所以AE∥PF(内错角相等,两直线平行),所以∠E=∠F(两直线平行,内错角相等).20.(1)5a3b(a﹣b)2(a﹣b﹣2ab2);(2)2(a﹣b)2;(3)8(7a﹣8b)(b﹣a)(4)(b+c﹣d)(x+y﹣1).解::(1)5a3b(a﹣b)3﹣10a4b3(b﹣a)2=5a3b(a﹣b)2(a﹣b﹣2ab2)(2)(b﹣a)2+a(a﹣b)+b(b﹣a)=(a﹣b)(a﹣b+a﹣b)=2(a﹣b)2;(3)(3a﹣4b)(7a﹣8b)+(11a﹣12b)(8b﹣7a)=(7a﹣8b)(3a﹣4b﹣11a+12b)=8(7a﹣8b)(b﹣a)(4)x(b+c﹣d)﹣y(d﹣b﹣c)﹣c﹣b+d=(b+c﹣d)(x+y﹣1).21.(1)120°;(2)150°解:(1)∵∠COE=∠BOD∴设∠COE=x,则∠BOD=5x∵OD ⊥OE, ∴∠DOE=90°, ∴∠BOE=∠BOD-∠DOE=5x-90°∵OC ⊥AB, ∴∠BOC=90°, ∴∠COE+∠BOE=90° ∴x+5x-90=90, x=30° ∴∠COE=30° ∴∠BOD=5x=150°∴∠AOE=∠AOC+∠COE=90+30=120° (2)作OF 平分∠BOE ∴∠BOF=∠BOE∵∠BOE=90°-∠COE=60°, ∴∠BOF=30° ∴∠AOF=180°-∠BOF=150° 22.(1)22;(2)6 解:(1)()()()323251x x x x +---,229455xx x =--+,2454x x =+-,∵2x =,∴原式242524=⨯+⨯-,16104=+-,22=.(2)()()2131m m -++,22133m m m =-+++,24m m =++, ∵220m m +-=,∴22m m +=,∴原式246=+=. 23.(1)-5<x <5 ;(2)-3<x <-1或1<x <3;(3)0<x<4. 解:(1)由范例1可知:不等式的解集就是数轴上到原点的距离小于5的点所对应的数组成的,如下图所示:∴不等式的解集为:;(2)由范例2可知:求不等式的解集就是由数轴上到原点的距离大于1,而小于3的点所对应的数组成,如下图所示:∴不等式的解集是或;(3)由(1)可知,在不等式中,当把看作一个整体时,的取值范围就是数轴上到原点的距离小于2的点表示的数组成的,如下图所示:∴,解得:∴不等式的解集是.24.x≥1.数轴表示.解:,解不等式①,得:x>﹣2,解不等式②,得:x≥1,将解集表示在同一数轴上如下:∴不等式组的解集为x≥1.25.(1)∠1+∠2=∠3+∠4(2)60°解:(1)∠1+∠2=∠3+∠4,理由如下:由四边形的内角和是360°可知:∠3+∠4+∠5+∠6=360°,∵∠1+∠5=180°,∠2+∠6=180°,∴∠1+∠2+∠5+∠6=360°,∴∠1+∠2=∠3+∠4;(2)由(1)可知∠MDA+∠DAN=∠B+∠C=240°,∵AE 、DE 分别是四边形ABCD 的外角∠NAD 、∠MDA 的平分线,∴∠EDA=∠MDA ,∠EAD=∠DAN ,∴∠EDA+∠EAD=×(∠MDA+∠DAN )=×240°=120°,∴∠E=180°-(∠EDA+∠EAD) =180°-120°=60°.26.(1);(2),3.解:(1)已知方程组的解、的值的符号相同, 3x=6-3a ;x=2-a ;y=5+a-2+a=3+2a ;∴(2-a)(3+2a)≥0; ∴; (2)当时,|2a+3|+2|a|=2a+3-2a=3; 当时,|2a+3|+2|a|=2a+3+2a=4a+3.27.(1)不成立,结论是∠BPD=∠B+∠D,证明详见解析;(2)∠BPD=∠BQD+∠B+∠D ;(3)∠A+∠B+∠C+∠D ∠E+∠F=360°.解:题利用三角形的外角定理和内角和定理。

相关文档
最新文档