人教版七年级数学下册期末测试题及答案(共五套)

合集下载

人教版七年级数学下册期末测试题+答案解析(共四套)

人教版七年级数学下册期末测试题+答案解析(共四套)

⼈教版七年级数学下册期末测试题+答案解析(共四套)B ′C ′D ′O ′A ′O DC BA(第8题图)⼀、选择题(每⼩题3分,计24分,请把各⼩题答案填到表格内)题号 1 2 3 4 5 6 78 总分答案1.如图所⽰,下列条件中,不能..判断l 1∥l 2的是 A .∠1=∠3 B .∠2=∠3 C.∠4=∠5 D.∠2+∠4=180° 2.为了了解某市5万名初中毕业⽣的中考数学成绩,从中抽取500名学⽣的数学成绩进⾏统计分析,那么样本是 A .某市5万名初中毕业⽣的中考数学成绩 B .被抽取500名学⽣(第1题图)C .被抽取500名学⽣的数学成绩D .5万名初中毕业⽣ 5.有⼀个两位数,它的⼗位数数字与个位数字之和为5,则符合条件的数有 A .4个 B .5个 C .6个D .⽆数个 7.下列事件属于不确定事件的是A .太阳从东⽅升起B .2010年世博会在上海举⾏C .在标准⼤⽓压下,温度低于0摄⽒度时冰会融化D .某班级⾥有2⼈⽣⽇相同 8.请仔细观察⽤直尺和圆规.....作⼀个⾓∠A ′O ′B ′等于已知⾓∠AOB 的⽰意图,请你根据所学的图形的全等这⼀章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是 A .SAS B .ASA C .AASD .SSS⼆、填空题(每⼩题3分,计24分)9.⽣物具有遗传多样性,遗传信息⼤多储存在DNA 分⼦上.⼀个DNA 分⼦的直径约为0.0000002cm .这个数量⽤科学记数法可表⽰为 cm . 10.将⽅程2x+y=25写成⽤含x 的代数式表⽰y 的形式,则y= . 11.如图,AB∥CD,∠1=110°,∠ECD=70°,∠E 的⼤⼩是 °. 12.三⾓形的三个内⾓的⽐是1:2:3,则其中最⼤⼀个内⾓的度数是 °.13.掷⼀枚硬币30次,有12次正⾯朝上,则正⾯朝上的频率为 .14.不透明的袋⼦中装有4个红球、3个黄球和5个蓝球,每个球除颜⾊不同外其它都相同,从中任意摸出⼀个球,则摸出球的可能性最⼩. 15.下表是⾃18世纪以来⼀些统计学家进⾏抛硬币试验所得的数据:试验者试验次数n 正⾯朝上的次数m正⾯朝上的频率nm布丰 4040 2048 0.5069 德·摩根 4092 2048 0.5005 费勤1000049790.4979那么估计抛硬币正⾯朝上的概率的估计值是 . 16.如图,已知点C 是∠AOB 平分线上的点,点P 、P′分别在OA 、OB 上,如果要得到OP =OP′,需要添加以下条件中的某⼀个即可:①PC=P′C;②∠OPC=∠OP′C;③∠OCP=∠OCP′;④PP′⊥OC.请你写出⼀个正确结果的序号:.三、解答题(计72分)17.(本题共8分)如图,⽅格纸中的△ABC 的三个顶点分别在⼩正⽅形的顶点(格点)上,称为格点三⾓形.请在⽅格纸上按下列要求画图.在图①中画出与△ABC 全等且有⼀个公共顶点的格点△C B A ''';在图②中画出与△ABC 全等且有⼀条公共边的格点△C B A ''''''.20.解⽅程组:(每⼩题5分,本题共10分)(1)=+-=300342150y x yx (2)=+=+300%25%53%5300y x y x 21.(本题共8分)已知关于x 、y 的⽅程组=+=+73ay bx by ax 的解是==12y x ,求a b +的值.OAC P P′(第16题图)(第16题图)22.(本题共9分)如图,AB=EB ,BC=BF ,CBF ABE ∠=∠.EF 和AC 相等吗?为什么?23.(本题9分)⼩王某⽉⼿机话费中的各项费⽤统计情况见下列图表,请你根据图表信息完成下列各题:(2)请将条形统计图补充完整. (3)扇形统计图中,表⽰短信费的扇形的圆⼼⾓是多少度?24.(本题4+8=12分)上海世博会会期为2010年5⽉1⽇⾄2010年10⽉31⽇。

人教版七年级数学下册期末测试题及答案(共五套)

人教版七年级数学下册期末测试题及答案(共五套)

七下期期末(共六套)一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )±4 B.3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( ) A.135x y x y -=⎧⎨+=⎩ B.135x y x y -=-⎧⎨+=-⎩ C.331x y x y -=⎧⎨-=⎩ D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC ,CP 平分∠ACB ,则∠BPC 的大小是( )A .1000B .1100C .1150D .120PCBA(1) (2) (3)7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 c m 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(•0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x-9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,•为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,•则∠ABC=_______度.16.如图,AD ∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______.17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-25│则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD ∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。

人教版七年级下册数学期末质量检测题(含答案)

人教版七年级下册数学期末质量检测题(含答案)

人教版七年级下册数学期末质量检测题(含答案)一、选择题1.100的算术平方根是() A .100B .10±C .10-D .102.下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是( ) A .B .C .D .3.在平面直角坐标系中,点P (﹣5,4)位于( ) A .第一象限B .第二象限C .第三象限D .第四象限4.下列命题中假命题的是( ) A .同旁内角互补,两直线平行B .如果两条直线都与第三条直线平行,那么这两条直线也互相平行C .在同一平面内,过一点有且只有一条直线与已知直线垂直D .在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线也互相垂直 5.如图,直线a ,b 被直线c ,d 所截,若12∠=∠,3125∠=︒,则4∠的度数是( )A .65︒B .60︒C .55︒D .75︒6.下列说法正确的是( )A .9的立方根是3B .算术平方根等于它本身的数一定是1C .﹣2是4的一个平方根D .4的算术平方根是27.如图,在//AB CD 中,∠AEC =50°,CB 平分DCE ∠,则ABC ∠的度数为( )A .25°B .30°C .35°D .40°8.如图,在平面直角坐标系内原点O (0,0)第一次跳动到点A 1(0,1),第二次从点A 1跳动到点A 2(1,2),第三次从点A 2跳动到点A 3(-1,3),第四次从点A 3跳动到点A 4(-1,4),……,按此规律下去,则点A 2021的坐标是( ).A .(673,2021)B .(674,2021)C .(-673,2021)D .(-674,2021)九、填空题9.若23(2)m n =0,则n m =________ .十、填空题10.点(m ,1)和点(2,n)关于x 轴对称,则mn 等于_______.十一、填空题11.如图,AD 、AE 分别是△ABC 的角平分线和高,∠B =50°,∠C =70°,则∠DAE =_____________°.十二、填空题12.将一副直角三角板如图放置(其中60A ∠=︒,45F ∠=︒),点E 在AC 上,//ED BC ,则AEF ∠的度数是______.十三、填空题13.如图为一张纸片沿直线AB 折成的V 字形图案,已知图中140∠=︒,则2∠=______°.十四、填空题14.如图,在纸面上有一数轴,点A 表示的数为﹣1,点B 表示的数为3,点C 表示的数为3.若子轩同学先将纸面以点B 为中心折叠,然后再次折叠纸面使点A 和点B 重合,则此时数轴上与点C 重合的点所表示的数是_______.十五、填空题15.若P(2-a ,2a+3)到两坐标轴的距离相等,则点P 的坐标是____________________.十六、填空题16.如图,在平面直角坐标系中,将正方形①依次平移后得到正方形②,③,④…;相应地,顶点A 依次平移得到A 1,A 2,A 3,…,其中A 点坐标为(1,0),A 1坐标为(0,1),则A 20的坐标为__________.十七、解答题17.(1()2228(2()()2232527243⎛⎫---+÷- ⎪⎝⎭(3)已知()2116x +=,求x 的值.十八、解答题18.求满足下列各式x 的值 (1)2x 2﹣8=0; (2)12(x ﹣1)3=﹣4.十九、解答题19.如图,BD 平分∠ABC ,F 在AB 上,G 在AC 上,FC 与BD 相交于点H ,∠3+∠4=180°,试说明∠1=∠2(请通过填空完善下列推理过程) 解:∵∠3+∠4=180°(已知),∠FHD =∠4( ). ∴∠3+∠FHD =180°(等量代换).∴FG ∥BD ( ).∴∠1= (两直线平行,同位角相等). ∵BD 平分∠ABC ,∴∠ABD = (角平分线的定义). ∴∠1=∠2(等量代换).二十、解答题20.如图,ABC 的三个顶点坐标分别为()2,3A -,()0,1B ,()2,2C .(1)在平面直角坐标系中,画出ABC ;(2)将ABC 向下平移4个单位长度,得到111A B C △,并画出111A B C △,并写出点1A 的坐标.二十一、解答题21.阅读材料,解答问题: 材料:∵479,即273<,∴7272.问题:已知52a +的立方根是3,31a b +-的算术平方根是4,c 13 (113 (2)求3a b c -+的平方根.二十二、解答题22.如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.(1)拼成的正方形的面积与边长分别是多少?(2)如图所示,以数轴的单位长度的线段为边作一个直角三角形,以数轴的-1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是多少?点A表示的数的相反数是多少?(3)你能把十个小正方形组成的图形纸,剪开并拼成正方形吗?若能,请画出示意图,并求它的边长二十三、解答题23.阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB//CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF//AB,则有∠BEF=.∵AB//CD,∴//,∴∠FED=.∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a//b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).二十四、解答题24.如图1,E 点在BC 上,A D ∠=∠.180ACB BED ∠+∠=︒.(1)求证://AB CD(2)如图2,//,AB CD BG 平分ABE ∠,与EDF ∠的平分线交于H 点,若DEB ∠比DHB ∠大60︒,求DEB ∠的度数.(3)保持(2)中所求的DEB ∠的度数不变,如图3,BM 平分,EBK DN ∠平分CDE ∠,作//BP DN ,则PBM ∠的度数是否改变?若不变,请直接写出答案;若改变,请说明理由.二十五、解答题25.如图,直线//PQ MN ,一副直角三角板,ABC DEF ∆∆中,90,45,30,60ACB EDF ABC BAC DFE DEF ︒︒︒︒∠=∠=∠=∠=∠=∠=.(1)若DEF ∆如图1摆放,当ED 平分PEF ∠时,证明:FD 平分EFM ∠.(2)若,ABC DEF ∆∆如图2摆放时,则PDE ∠=(3)若图2中ABC ∆固定,将DEF ∆沿着AC 方向平移,边DF 与直线PQ 相交于点G ,作FGQ ∠和GFA ∠的角平分线GH FH 、相交于点H (如图3),求GHF ∠的度数.(4)若图2中DEF ∆的周长35,5cm AF cm =,现将ABC ∆固定,将DEF ∆沿着CA 方向平移至点F 与A 重合,平移后的得到''D E A ∆,点D E 、的对应点分别是''D E 、,请直接写出四边形'DEAD 的周长.(5)若图2中DEF ∆固定,(如图4)将ABC ∆绕点A 顺时针旋转,1分钟转半圈,旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF ∆的一条边平行时,请直接写出旋转的时间.【参考答案】一、选择题 1.D 解析:D 【分析】根据算术平方根的定义求解即可求得答案. 【详解】 解:∵102=100, ∴100算术平方根是10; 故选:D . 【点睛】本题考查了算术平方根的定义.注意熟记定义是解此题的关键.2.B 【分析】根据图形的平移只改变图形的位置,而不改变图形的形状和大小对各个选项进行逐一判断即可. 【详解】A,C,D选项中的图案不能通过平移得到,B选项中的图案通过平移后可以得到.故选B.解析:B【分析】根据图形的平移只改变图形的位置,而不改变图形的形状和大小对各个选项进行逐一判断即可.【详解】A,C,D选项中的图案不能通过平移得到,B选项中的图案通过平移后可以得到.故选B.【点睛】本题考查了平移的性质和平移的应用等有关知识,熟练掌握平移的性质是解答本题的关键. 3.B【分析】根据各象限内点的坐标特征解答.【详解】解:点P(﹣5,4)位于第二象限.故选:B.【点睛】本题主要考查点的坐标,熟练掌握点的坐标象限的符合特征:第一象限为“+、+”,第二象限为“-,+”,第三象限为“-,-”,第四象限为“+,-”是解题的关键.4.D【分析】根据平行线的判定定理逐项分析即可判断.【详解】A. 同旁内角互补,两直线平行,是真命题,不符合题意;B. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行,是真命题,不符合题意;C. 在同一平面内,过一点有且只有一条直线与已知直线垂直,是真命题,不符合题意;D. 在同一平面内,如果两条直线都与第三条直线垂直,那么这两条直线互相平行,故D选项是假命题,符合题意;故选D【点睛】本题考查了真假命题的判断,掌握相关定理与性质是解题的关键.5.C【分析】首先证明a∥b,推出∠4=∠5,求出∠5即可.【详解】解:∵∠1=∠2,∴a∥b,∴∠4=∠5,∵∠5=180°﹣∠3=55°,∴∠4=55°,故选:C.【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型.6.C【解析】【分析】利用立方根、平方根和算术平方根的定义进行判断即可.【详解】解:939A项错误;算术平方根等于它本身的数是1和0,故B项错误;﹣2是4的一个平方根,故C项正确;42D项错误;故选C.【点睛】本题考查了平方根、算术平方根和立方根,熟练掌握各自的定义是解题的关键.7.A【分析】根据平行线的性质得到∠ABC=∠BCD,∠ECD=∠AEC=50°再根据角平分线的定义得到∠ECD=25°,由此即可求解.∠BCE=∠BCD =12【详解】解:∵AB∥CD,∴∠ABC=∠BCD,∠ECD=∠AEC=50°∵CB平分∠DCE,∠ECD=25°∴∠BCE=∠BCD =12∠ABC=∠BCD=25°故选A.【点睛】本题考查了平行线的性质,角平分线的定义,掌握平行线的性质:两直线平行,内错角相等是解题的关键.8.B【分析】根据已知点的坐标寻找规律并应用解答即可.【详解】解:∵A1(0,1),A2(1,2),A3(-1,3),A4(-1,4),∴A5(2,5),A6(-2,6),A7(-2,7),A解析:B【分析】根据已知点的坐标寻找规律并应用解答即可.【详解】解:∵A1(0,1),A2(1,2),A3(-1,3),A4(-1,4),∴A5(2,5),A6(-2,6),A7(-2,7),A8(3,8),∴A3n-1(n,3n-1),A3n(-n,3n),A3n+1(-n,3n+1)(n为正整数),∵3×674-1=2021,∴n=674,所以A 2021(674,2021).故选B.【点睛】本题主要考查了点的坐标规律,根据已知点坐标找到A3n-1(n,3n-1),A3n(-n,3n),A3n+1(-n,3n+1)(n为正整数)的规律是解答本题的关键.九、填空题9.9【解析】试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n-2=0,解得:m=-3,n=2,则==9.考点:非负数的性质.解析:9【解析】试题分析:根据非负数之和为零则每个非负数都为零可得:m+3=0,n-2=0,解得:m=-3,n=2,则n m =2(3) =9.考点:非负数的性质.十、填空题10.-2【分析】直接利用关于x 轴对称点的性质得出m ,n 的值进而得出答案.【详解】∵点A (m ,1)和点B (2,n )关于x 轴对称,∴m =2,n =-1,故mn =−2.故填:-2.【点睛】此题解析:-2【分析】直接利用关于x 轴对称点的性质得出m ,n 的值进而得出答案.【详解】∵点A (m ,1)和点B (2,n )关于x 轴对称,∴m =2,n =-1,故mn =−2.故填:-2.【点睛】此题主要考查了关于x 轴对称点的性质,正确掌握关于x 轴对称点的性质是解题关键. 十一、填空题11.10【分析】根据三角形内角和定理求出∠BAC ,再根据角平分线的定义求出∠BAD ,根据直角三角形两锐角互余求出∠BAE ,然后求解即可.【详解】解:∵∠B=50°,∠C=70°,∴∠BAC=1解析:10【分析】根据三角形内角和定理求出∠BAC ,再根据角平分线的定义求出∠BAD ,根据直角三角形两锐角互余求出∠BAE ,然后求解即可.【详解】解:∵∠B=50°,∠C=70°,∴∠BAC=180°-∠B-∠C=180°-50°-70°=60°,∵AD是角平分线,∴∠BAD=12∠BAC=12×60°=30°,∵AE是高,∴∠BAE=90°-∠B=90°-50°=40°,∴∠DAE=∠BAE-∠BAD=40°-30°=10°.故答案为:10.【点睛】本题考查了三角形的内角和定理,三角形的角平分线、高线的定义,直角三角形两锐角互余的性质,熟记定理并准确识图是解题的关键.十二、填空题12.【分析】由题意得∠ACB=30°,∠DEF=45°,根据ED∥BC,可以得到∠DEC=∠ACB=30°,即可求解.【详解】解:由图形可知:∠ACB=30°,∠DEF=45°∵ED∥BC,解析:165【分析】由题意得∠ACB=30°,∠DEF=45°,根据ED∥BC,可以得到∠DEC=∠ACB=30°,即可求解.【详解】解:由图形可知:∠ACB=30°,∠DEF=45°∵ED∥BC,∴∠DEC=∠ACB=30°∴∠CEF=∠DEF-∠DEC =45°-30°=15°,∴∠AEF=180°-∠CEF=165°故答案为:165°.【点睛】本题主要考查了平行线的性质,解题的关键在于能够熟练掌握平行线的性质.十三、填空题13.70【分析】根据∠1+2∠2=180°求解即可.【详解】解:∵∠1+2∠2=180°,,∴∠2=70°.故答案为:70.【点睛】本题考查了折叠的性质,角的和差计算,由图得出∠1+2∠解析:70【分析】根据∠1+2∠2=180°求解即可.【详解】解:∵∠1+2∠2=180°,140∠=︒,∴∠2=70°.故答案为:70.【点睛】本题考查了折叠的性质,角的和差计算,由图得出∠1+2∠2=180°是解答本题的关键.十四、填空题14.4+或6﹣或2﹣.【分析】先求出第一次折叠与A重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C点重合的点表示的数即可.【详解】解:第一次折叠后与A重合的点表示的数是:3+解析:62【分析】先求出第一次折叠与A重合的点表示的数,然后再求两点间的距离即可;同理再求出第二次折叠与C点重合的点表示的数即可.【详解】解:第一次折叠后与A重合的点表示的数是:3+(3+1)=7.与C重合的点表示的数:3+(36第二次折叠,折叠点表示的数为:12(3+7)=5或12(﹣1+3)=1.此时与数轴上的点C重合的点表示的数为:5+(5﹣11)=2故答案为:62【点睛】本题主要考查了数轴上的点和折叠问题,掌握折叠的性质是解答本题的关键.十五、填空题15.(,)或(7,-7).【分析】根据题意可得关于a的绝对值方程,解方程可得a的值,进一步即得答案.【详解】解:∵P(2-a ,2a+3)到两坐标轴的距离相等,∴.∴或,解得或,当时,P 点解析:(73,73)或(7,-7). 【分析】根据题意可得关于a 的绝对值方程,解方程可得a 的值,进一步即得答案.【详解】解:∵P (2-a ,2a +3)到两坐标轴的距离相等, ∴223a a -=+.∴223a a -=+或2(23)a a -=-+, 解得13a =-或5a =-, 当13a =-时,P 点坐标为(73,73); 当5a =-时,P 点坐标为(7,-7). 故答案为(73,73)或(7,-7). 【点睛】本题考查了直角坐标系中点的坐标特征,根据题意列出方程是解题的关键.十六、填空题16.(-19,8)【分析】求出A3,A6,A9的坐标,观察得出A3n 横坐标为1−3n ,可求出A18的坐标,从而可得结论.【详解】解:观察图形可知:A3(−2,1),A6(−5,2),A9(−8,解析:(-19,8)【分析】求出A 3,A 6,A 9的坐标,观察得出A 3n 横坐标为1−3n ,可求出A 18的坐标,从而可得结论.【详解】解:观察图形可知:A 3(−2,1),A 6(−5,2),A 9(−8,3),•••,∵−2=1−3×1,−5=1−3×2,−8=1−3×3,∴A 3n 横坐标为1−3n ,∴A 18横坐标为:1−3×6=−17,∴A 18(−17,6),把A 18向左平移2个单位,再向上平移2个单位得到A 20,∴A 20(−19,8).故答案为:(−19,8).【点睛】本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.十七、解答题17.(1)2;(2)6;(3) 或【解析】【分析】(1)利用乘法分配律给括号中各项都乘以 ,把化为最简二次根式即可得到结果;(2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果; 解析:(1)2;(2)6;(3) 3x =或5x =-【解析】【分析】(1 (2)原式利用平方根、立方根定义以及实数的运算法则计算即可得到结果;(3)直接利用平方根的定义计算得出答案.【详解】解:(1)22=-2=;(2()22243⎛⎫-+÷- ⎪⎝⎭()353442⎛⎫=--++⨯- ⎪⎝⎭, 5346=++-,6=;(3)∵()2116x +=∴14x +=±解得:3x =或5x =-.故答案为:(1)2;(2)6;(3) 3x =或5x =-.【点睛】本题考查立方根以及平方根,实数的运算,熟练掌握运算法则是解题的关键.十八、解答题18.(1)或者;(2)【分析】(1)根据求一个数的平方根解方程(2)根据求一个数的立方根解方程【详解】(1)2x2﹣8=0,,,解得或者;(2)(x ﹣1)3=﹣4,,,解得.【解析:(1)2x =或者2x =-;(2)1x =-【分析】(1)根据求一个数的平方根解方程(2)根据求一个数的立方根解方程【详解】(1)2x 2﹣8=0,228x =,24x =,解得2x =或者2x =-;(2)12(x ﹣1)3=﹣4,3(1)8x -=-, 12x -=-,解得1x =-.【点睛】本题考查了求一个数的平方根和立方根,掌握平方根和立方根的概念是解题的关键. 十九、解答题19.对顶角相等,∠FHD ,同旁内角互补,两直线平行,∠ABD ,两直线平行,同位角相等,∠2.【分析】求出∠3+∠FHD=180°,根据平行线的判定得出FG ∥BD ,根据平行线的性质得出∠1=∠ABD,解析:对顶角相等,∠FHD,同旁内角互补,两直线平行,∠ABD,两直线平行,同位角相等,∠2.【分析】求出∠3+∠FHD=180°,根据平行线的判定得出FG∥BD,根据平行线的性质得出∠1=∠ABD,根据角平分线的定义得出∠ABD=∠2即可.【详解】解:∵∠3+∠4=180°(已知),∠FHD=∠4(对顶角相等),∴∠3+∠FHD=180°(等量代换),∴FG∥BD(同旁内角互补,两直线平行),∴∠1=∠ABD(两直线平行,同位角相等),∵BD平分∠ABC,∴∠ABD=∠2(角平分线的定义),∴∠1=∠2(等量代换),故答案为:对顶角相等,∠FHD,同旁内角互补,两直线平行,∠ABD,两直线平行,同位角相等,∠2.【点睛】本题主要考查了平行线的性质和判定,角平分线的定义,能灵活运用平行线的性质和判定定理进行推理是解此题的关键.二十、解答题20.(1)见解析;(2)见解析,A1(-2,-1).【分析】(1)先根据坐标描出A、B、C三点,然后顺次连接即可;(2)先根据平行描出A1、B1、C1三点,然后顺次连接即可得到,最后直接读出A点坐解析:(1)见解析;(2)见解析,A1(-2,-1).【分析】(1)先根据坐标描出A、B、C三点,然后顺次连接即可;(2)先根据平行描出A1、B1、C1三点,然后顺次连接即可得到111△,最后直接读出AA B C点坐标即可.【详解】解:(1)如图:△ABC即为所求;(2)如图:111△即为所求,点A1的坐标为(-2,-1).A B C【点睛】本题主要考查了坐标与图形、图形的平移等知识点,根据坐标描出图形是解答本题的关键.二十一、解答题21.(1);(2).【分析】(1)直接利用估算无理数的大小的方法分别得出答案;(2)根据平方根和立方根的定义以及(1)结论,代入解答即可.【详解】(1)∵即,∴的整数部分为3,小数部分为,解析:(1133;(2)4±.【分析】(1)直接利用估算无理数的大小的方法分别得出答案;(2)根据平方根和立方根的定义以及(1)结论,代入解答即可.【详解】(1)∵91316,即3134<, ∴133133, ∴13133;(2)∵52a +的立方根是3,31a b +-的算术平方根是4,c 13 ∴5227a +=,3116a b +-=,3c =,∴5a =,2b =,3c =,∴316a b c -+=,3a b c -+的平方根是4±.【点睛】本题考查了立方根的意义、算术平方根的意义、无理数的估算方法、平方根的意义、代数式求值等知识点,读懂题意,掌握解答顺序,正确计算即可.二十二、解答题22.(1)5;;(2);;(3)能,.【分析】(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.(2)求出斜边长即可.(3)一共有10个小正解析:(1)5;5;(2)51-;(3)能,10.-;15【分析】(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.(2)求出斜边长即可.(3)一共有10个小正方形,那么组成的大正方形的面积为10,边长为10的算术平方根,画图.【详解】试题分析:解:(1)拼成的正方形的面积与原面积相等1×1×5=5,边长为5,如图(1)(2)斜边长=22+=,2222故点A表示的数为:222-;点A表示的相反数为:222-(3)能,如图拼成的正方形的面积与原面积相等1×1×10=1010考点:1.作图—应用与设计作图;2.图形的剪拼.二十三、解答题23.(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,解析:(1)∠B,EF,CD,∠D;(2)①65°;②180°﹣11 22 aβ+【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)①如图1,过点E作EF∥AB,当点B在点A的左侧时,根据∠ABC=60°,∠ADC=70°,参考小亮思考问题的方法即可求∠BED的度数;②如图2,过点E作EF∥AB,当点B在点A的右侧时,∠ABC=α,∠ADC=β,参考小亮思考问题的方法即可求出∠BED的度数.【详解】解:(1)过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案为:∠B;EF;CD;∠D;(2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=12∠ABC=30°,∠EDC=12∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度数为65°;②如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF =180°﹣∠EBA ,∵AB ∥CD ,∴EF ∥CD .∴∠FED =∠EDC .∴∠BEF +∠FED =180°﹣∠EBA +∠EDC .即∠BED =180°﹣∠EBA +∠EDC ,∵BE 平分∠ABC ,DE 平分∠ADC ,∴∠EBA =12∠ABC =12α,∠EDC =12∠ADC =12β, ∴∠BED =180°﹣∠EBA +∠EDC =180°﹣1122a β+. 答:∠BED 的度数为180°﹣1122a β+. 【点睛】本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质. 二十四、解答题24.(1)见解析;(2)100°;(3)不变,40°【分析】(1)如图1,延长交于点,根据,,可得,所以,可得,又,进而可得结论; (2)如图2,作,,根据,可得,根据平行线的性质得角之间的关系,再 解析:(1)见解析;(2)100°;(3)不变,40°【分析】(1)如图1,延长DE 交AB 于点F ,根据180ACB BED ∠+∠=︒,180CED BED ∠+∠=︒,可得ACB CED ∠=∠,所以//AC DF ,可得A DFB ∠=∠,又A D ∠=∠,进而可得结论; (2)如图2,作//EM CD ,//HN CD ,根据//AB CD ,可得//////AB EM HN CD ,根据平行线的性质得角之间的关系,再根据DEB ∠比DHB ∠大60︒,列出等式即可求DEB ∠的度数;(3)如图3,过点E 作//ES CD ,设直线DF 和直线BP 相交于点G ,根据平行线的性质和角平分线定义可求PBM ∠的度数.【详解】解:(1)证明:如图1,延长DE 交AB 于点F ,180ACB BED ∠+∠=︒,180CED BED ∠+∠=︒,ACB CED ∴∠=∠,//AC DF ∴,A DFB ∴∠=∠,A D ∠=∠,DFB D ∴∠=∠,//AB CD ∴;(2)如图2,作//EM CD ,//HN CD ,//AB CD ,//////AB EM HN CD ∴,1180EDF ∴∠+∠=︒,MEB ABE ∠=∠, BG 平分ABE ∠,12ABG ABE ∴∠=∠, //AB HN ,2ABG ∴∠=∠,//CF HN ,23β∴∠+∠=∠, ∴132ABE β∠+∠=∠, DH 平分EDF ∠,132EDF ∴∠=∠, ∴1122ABE EDF β∠+∠=∠,1()2EDF ABE β∴∠=∠-∠, 2EDF ABE β∴∠-∠=∠,设DEB α∠=∠,1180180()1802MEB EDF ABE EDF ABE αβ∠=∠+∠=︒-∠+∠=︒-∠-∠=︒-∠,DEB ∠比DHB ∠大60︒,60αβ∴∠-︒=∠,1802(60)αα∴∠=︒-∠-︒解得100α∠=︒DEB ∴∠的度数为100︒;(3)PBM ∠的度数不变,理由如下:如图3,过点E 作//ES CD ,设直线DF 和直线BP 相交于点G ,BM 平分EBK ∠,DN 平分CDE ∠,12EBM MBK EBK ∴∠=∠=∠, 12CDN EDN CDE ∠=∠=∠, //ES CD ,//AB CD ,////ES AB CD ∴,DES CDE ∴∠=∠,180BES ABE EBK ∠=∠=︒-∠,G PBK ∠=∠,由(2)可知:100DEB ∠=︒,180100CDE EBK ∴∠+︒-∠=︒,80EBK CDE ∴∠-∠=︒,//BP DN ,CDN G ∴∠=∠,12PBK G CDN CDE ∴∠=∠=∠=∠, PBM MBK PBK ∴∠=∠-∠1122EBK CDE =∠-∠ 1()2EBK CDE =∠-∠ 1802=⨯︒ 40=︒.【点睛】本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质. 二十五、解答题25.(1)见详解;(2)15°;(3)67.5°;(4)45cm ;(5)10s 或30s 或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.【详解】(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°−∠PEF=180°−120°=60°,∴∠MFD=∠MFE−∠DFE=60°−30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如图2,过点E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF−∠KEA,又∵∠DEF=60°.∴∠PDE=60°−45°=15°,故答案为:15°;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,∴∠QGH=12∠FGQ,∠HFA=12∠GFA,∵∠DFE=30°,∴∠GFA=180°−∠DFE=150°,∴∠HFA=12∠GFA=75°,∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,∴∠GFL=∠GFA−∠LFA=150°−45°=105°,∴∠RHG=∠QGH=12∠FGQ=12(180°−105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四边形DEAD′的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:BC∥DE时,如图5,此时AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF时,如图6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°−∠ACB=90°,∴∠CAK=90°−∠BKA=15°,∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,∴3t=120,解得:t=40,综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行.【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.。

人教版七年级数学下册期末考试测试卷(含答案)

人教版七年级数学下册期末考试测试卷(含答案)

人教版七年级数学下册期末考试测试卷(含答案)班级姓名成绩第Ⅰ卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.36的平方根是()A.﹣6 B.36 C.±D.±62.已知a<b,则下列四个不等式中,不正确的是()A.a﹣2<b﹣2 B.﹣2a<﹣2b C.2a<2b D.a+2<b+23.若是关于x和y的二元一次方程ax+y=1的解,则a的值等于()A.3 B.1 C.﹣1 D.﹣34.如图,直线l与直线a,b相交,且a∥b,∠1=110°,则∠2的度数是()A.20°B.70°C.90°D.110°5.下列调査中,适合用全面调查方式的是()A.了解某校七年级(1)班学生期中数学考试的成绩B.了解一批签字笔的使用寿命C.了解市场上酸奶的质量情况D.了解某条河流的水质情况6.如图,小手盖住的点的坐标可能为()A.(﹣4,﹣5)B.(﹣4,5)C.(4,5)D.(4,﹣5)7.方程4x+3y=16的所有非负整数解为()A.1个B.2个C.3个D.无数个8.已知方程组,则x+y的值为()A.﹣1 B.0 C.2 D.39.已知点A(a,3),点B是x轴上一动点,则点A、B之间的距离不可能是()A.2 B.3 C.4 D.510.某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣5分,小明得分要超过120分,他至少要答对多少道题?如果设小明答对x道题,则他答错或不答的题数为20﹣x.根据题意得()A.10x﹣5(20﹣x)≥120 B.10x﹣5(20﹣x)≤120C.10x﹣5(20﹣x)>120 D.10x﹣5(20﹣x)<12011.若不等式组⎩⎨⎧-+-142322xxax>>,的解集为32<<x-,则a的取值范围是( )A.21=a B.2-=a C.2-≥a D.1-≤a12.若不等式组⎩⎨⎧<-<-mxxx632无解,则m的取值范围是()A.m>2 B.m<2 C.m≥2 D.m≤2第Ⅱ卷二、填空题(本大题共6小题,每小题3分,共18分)13.若点A(1,3)向左平移2个单位长度,再向下平移4个单位长度得到点B,则B的坐标为.14.若a+1和-5是实数m的两个平方根,则a的值为.15.若0x2-x=++y,则=xy .16.如图,将一个宽度相等的纸条按如图所示沿AB所折叠,已知︒=∠601,则=∠2 .17.已知a是5的整数部分,b是5的小数部分,则a-b= .18.若不等式组⎩⎨⎧<->+1bx23a2x解集为1<x<2,则(a+2)(b-1)值为 .三、解答题(本大题共7小题,共46分.解答应写出文字说明、证明过程或演算步骤)19.计算(5分)2-1-8-02--91-322020+++)()(20.解方程组(5分)⎩⎨⎧=+=+②①1534255x 2y x y21.(6分)解下列不等式组,并把解集在数轴上表示出来。

新人教版七年级数学下册期末测试卷及答案【精选】

新人教版七年级数学下册期末测试卷及答案【精选】

新人教版七年级数学下册期末测试卷及答案【精选】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab-ac-bc的值是()A.0 B.1 C.2 D.32.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°3.若整数x满足5+19≤x≤45+2,则x的值是()A.8 B.9 C.10 D.114.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A.120元B.100元C.80元D.60元5.若x取整数,则使分式6321xx+-的值为整数的x值有()A.3个B.4个C.6个D.8个6.实数a,b在数轴上对应点的位置如图所示,化简|a|+2()a b+的结果是( )A.﹣2a-b B.2a﹣b C.﹣b D.b7.在数轴上,点A,B在原点O的两侧,分别表示数a,2,将点A向右平移1个单位长度,得到点C.若CO=BO,则a的值为()A.-3 B.-2 C.-1 D.18.在数轴上,a所表示的点总在b所表示的点的右边,且|a|=6,|b|=3,则a-b 的值为( )A .-3B .-9C .-3或-9D .3或99.如图是一个切去了一个角的正方体纸盒,切面与棱的交点A ,B ,C 均是棱的中点,现将纸盒剪开展成平面,则展开图不可能是( )A .B .C .D .10.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为 A .-1 B .1 C .2 D .3二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是_____.3.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.若()2320m n -++=,则m+2n 的值是________.5.如图,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,BF = CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是________.(只需写一个,不添加辅助线)6.如果20a b --=,那么代数式122a b +-的值是________.三、解答题(本大题共6小题,共72分)1.解方程组:25342x y x y -=⎧⎨+=⎩2.已知关于x 的方程(m+3)x |m+4|+18=0是一元一次方程,试求:(1)m 的值;(2)2(3m+2)-3(4m-1)的值.3.如图,直线AB ∥CD,BC 平分∠ABD,∠1=65°,求∠2的度数.4.某住宅小区有一块草坪如图所示.已知AB =3米,BC =4米,CD =12米,DA =13米,且AB ⊥BC ,求这块草坪的面积.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:运费车型运往甲地/(元/辆)运往乙地/(元/辆)大货车 720 800小货车 500 650(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、C4、C5、B6、A7、A8、D9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、40°3、70.4、-15、AC=DF(答案不唯一)6、5三、解答题(本大题共6小题,共72分)1、21 xy=⎧⎨=-⎩2、(1)m=-5 (2)373、50°.4、36平方米5、(1)800,240;(2)补图见解析;(3)9.6万人.6、(1)大货车用8辆,小货车用10辆;(2)w=70a+11400(0≤a≤8且为整数);(3)使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.。

新人教版七年级数学(下册)期末试题及答案

新人教版七年级数学(下册)期末试题及答案

新人教版七年级数学(下册)期末试题及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-2.如图,过△ABC 的顶点A ,作BC 边上的高,以下作法正确的是( )A .B .C .D .3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x4.如图,两个较大正方形的面积分别为225、289,且中间夹的三角形是直角三角形,则字母A 所代表的正方形的面积为( )A .4B .8C .16D .645.已知x 是整数,当30x 取最小值时,x 的值是( )A .5B .6C .7D .86.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A.70°B.180°C.110°D.80°7.把1aa-根号外的因式移入根号内的结果是()A.a-B.a--C.a D.a-8.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,9.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对10.如图,在菱形ABCD中,2,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)1.有理数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣a|+|b﹣c|的结果是________.2.绝对值不大于4.5的所有整数的和为________.3.如图,有两个正方形夹在AB与CD中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为_____cm(杯壁厚度不计).5.如图,直线a,b与直线c相交,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠3=180°;⑤∠6=∠8,其中能判断a∥b的是________(填序号)6.已知一组从小到大排列的数据:2,5,x,y,2x,11的平均数与中位数都是7,则这组数据的众数是________.三、解答题(本大题共6小题,共72分)1.解方程组:25 342 x yx y-=⎧⎨+=⎩2.若a、b互为相反数,c、d互为倒数,m的绝对值为2.(1)直接写出a+b,cd,m的值;(2)求a bm cdm+++的值.3.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.4.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点0;∆≅∆求证:(1)DBC ECB=(2)OB OC5.为丰富学生的课余生活,陶冶学生的情趣,促进学生全面发展,其中七年级开展了学生社团活动.学校为了解学生参加情况,进行了抽样调查,制作如下的统计图:请根据上述统计图,完成以下问题:(1)这次共调查了______名学生;扇形统计图中,表示“书法类”所在扇形的圆心角是______度;(2)请把统计图1补充完整;(3)若七年级共有学生1100名,请估算有多少名学生参加文学类社团?6.请根据图中提供的信息,回答下列问题.(1)一个暖瓶与一个水杯分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、C4、D5、A6、C7、B8、D9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-2a2、03、70.4、205、①③④⑤.6、5三、解答题(本大题共6小题,共72分)1、21 xy=⎧⎨=-⎩2、(1)a+b=0,cd=1,m=±2;(2)3或-13、4.4、(1)略;(2)略.5、(1)50;72;(2)详见解析;(3)330.6、(1)一个暖瓶30元,一个水杯8元;(2)到乙家商场购买更合算.。

人教版七年级数学下册期末考试测试卷(含答案)

人教版七年级数学下册期末考试测试卷(含答案)

人教版七年级数学下册期末考试测试卷(含答案)班级:姓名:得分:时间:120分钟满分:120分一、选择题(共10小题,每题3分,共30分)1.在实数5、227、0、2π、36、-1.414中,有理数有( )A.1个 B.2个 C.3个 D.4个2.在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围为()A.-1<m<3B.m>3C.m<-1D.m>-13.在直角坐标系中,点A(2,1)向左平移4个单位长度,再向下平移2个单位长度后的坐标为()(A)(4,3)(B)(-2,-1)(C)(4,-1)(D)(-2,3)4.将一直角三角板与两边平行的纸条如图所示放置,有下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°.其两边平行的纸条如图所中正确的个数为()A.1 B.2 C.3 D.45.如图,已知AC∥BD,∠CAE=30°,∠DBE=45°,则∠AEB等于( )A.30° B.45° C.60° D.75°6.如果a3x b y与﹣a2y b x+1是同类项,则()A 、23xy=-⎧⎨=⎩B.23xy=⎧⎨=-⎩C.23xy=-⎧⎨=-⎩D.23xy=⎧⎨=⎩7.林老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是( ).组别A 型B 型 AB 型 O 型 频率 0.40.350.10.15A.16人B.14人C.4人D.6人8.若y x 、满足0)2(|3|52=-+-+y x y x ,则有( )(A )⎩⎨⎧-=-=21y x (B )⎩⎨⎧-=-=12y x (C )⎩⎨⎧==12y x (D )⎩⎨⎧==21y x9.某校团委与社区联合举办“保护地球,人人有责”活动,选派20名学生分三组到120个店铺发传单,若第一、二、三小组每人分别负责8、6、5个店铺,且每组至少有两人,则学生分组方案有( ) A.6种 B.5种 C.4种 D.3种10.若关于x 的一元一次不等式组⎩⎨⎧>-<-01a x x 无解,则a 的取值范围是( )A . 1≥aB . 1>aC .1-≤aD . 1-<a 二、填空题(共10小题,每题3分,共30分) 11.点P (-5,1),到x 轴距离为__________.12.如图,是象棋盘的一部分,若“帅”位于点(2,-1)上,“相”位于点(4,-1)上,则“炮”所在的点的坐标是 。

2022—2023年人教版七年级数学下册期末测试卷【及答案】

2022—2023年人教版七年级数学下册期末测试卷【及答案】

2022—2023年人教版七年级数学下册期末测试卷【及答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b,c是三角形的三边,那么代数式a2-2ab+b2-c2的值()A.大于零B.等于零C.小于零D.不能确定2.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有()A.20人B.40人C.60人D.80人3.如图,∠1=68°,直线a平移后得到直线b,则∠2﹣∠3的度数为()A.78°B.132°C.118°D.112°4.如果a与1互为相反数,则|a+2|等于()A.2 B.-2 C.1 D.-15.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D6.如图,下列条件:∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判13241804523623 l l的有()断直线12A.5个B.4个C.3个D.2个7.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°8.如图,直线a,b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠59.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )A.10°B.15°C.18°D.30°10.把代数式244-+分解因式,下列结果中正确的是().ax ax aA .()22a x -B .()22a x +C .()24a x -D .()()22a x x +-二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________.3.如图,给出了直线外一点作已知直线平行线的一种方法,它的依据是_________.4.若关于x 、y 的二元一次方程组34355x y m x y -=+⎧⎨+=⎩的解满足0x y +≤,则m 的取值范围是________.5.如图,在△ABC 和△DEF 中,点B 、F 、C 、E 在同一直线上,BF = CE ,AC ∥DF ,请添加一个条件,使△ABC ≌△DEF ,这个添加的条件可以是________.(只需写一个,不添加辅助线)6.已知x 2{y 1==是二元一次方程组mx ny 7{nx my 1+=-=的解,则m+3n 的立方根为________.三、解答题(本大题共6小题,共72分)1.解方程(1)37322x x +=- (2)31322322510x x x +-+-=-2.先化简,再求值(1)2229x 6x 3x x 3⎛⎫+-- ⎪⎝⎭,其中x 2=-; (2)()()()22222a b ab 2a b 12ab 1+---+,其中a 2=-,b 2=.3.如图1,点E 在直线AB 上,点F 在直线CD 上,EG ⊥FG .(1)若∠BEG+∠DFG =90°,请判断AB 与CD 的位置关系,并说明理由;(2)如图2,在(1)的结论下,当EG ⊥FG 保持不变,EG 上有一点M ,使∠MFG =2∠DFG ,则∠BEG 与∠MFD 存在怎样的数量关系?并说明理由.(3)如图2,若移动点M ,使∠MFG =n ∠DFG ,请直接写出∠BEG 与∠MFD 的数量关系.4.如图,∠1=70°,∠2 =70°. 说明:AB ∥CD .5.为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调查(问卷调查表如图1所示),并根据调查结果绘制了图2、图3两幅统计图(均不完整),请根据统计图解答下列问题.(1)本次接受问卷调查的学生有________名.(2)补全条形统计图.(3)扇形统计图中B类节目对应扇形的圆心角的度数为________.(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生人数.6.已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A、点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为8?若存在,请求出x的值;若不存在,说明理由;(3)现在点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,点P以6个单位长度/秒的速度同时从O点向左运动.当点A与点B 之间的距离为3个单位长度时,求点P所对应的数是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、D4、C5、C6、B7、C8、C9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±4.2、150°3、同位角相等,两直线平行4、2m ≤-5、AC=DF (答案不唯一)6、2三、解答题(本大题共6小题,共72分)1、(1)x=5;(2)811x =2、(1)26x 8x +;20;(2)0;0;3、(1)AB //CD ,理由略;(2)∠BEG 13+∠MFD =90°,理由略;(3)∠BEG +11n +∠MFD =90°.4、略.5、(1)100;(2)见解析;(3)72 ;(4)160人.6、(1)点P对应的数是1;(2)存在x的值,当x=﹣3或5时,满足点P到点A、点B的距离之和为8;(3)当点A与点B之间的距离为3个单位长度时,点P所对应的数是﹣4或﹣28.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.已知 a>b>0,那么下列不等式组中无.解.的是( )
A.
x x
a b
B.
x x
a b
C.
x x
a b
D.
x x
a b
4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角
度可能为 ( )
(A) 先右转 50°,后右转 40° (B) 先右转 50°,后左转 40°
第三种调运方案:用 A 型货厢 30 节,用 B 型货厢 20 节.

-6-
人教版七年级第二学期综合测试题(二)
班别 一成绩
1.81 的算术平方根是______, 3 64 =________.
2.如果 1<x<2,化简│x-1│+│x-2│=________.
3.在△ABC 中,已知两条边 a=3,b=4,则第三边 c 的取值范围是_________.
4.若三角形三个内角度数的比为 2:3:4,则相应的外角比是_______.
5.已知两边相等的三角形一边等于 5cm,另一边等于 11cm,则周长是________.
二、选择题:(每题 3 分,共 15 分)
9.以下说法正确的是( ) A.有公共顶点,并且相等的两个角是对顶角 B.两条直线相交,任意两个角都是对顶角
F
A
E
B
C.两角的两边互为反向延长线的两个角是对顶角
G
H
D.两角的两边分别在同一直线上,这两个角互为对顶角
10.下列各式中,正确的是( )
C
D
A.± 9 =± 3 16 4
B.± 9 = 3 ; 16 4
七年级下期末测评
一、选择题:(本大题共 10 个小题,每小题 3 分,共 30 分)
1.若 m>-1,则下列各式中错.误.的.是( ) A.6m>-6 B.-5m<-5 C.m+1>0
D.1-m<2
2.下列各式中,正确的是( )
A. 16 =±4 B.± 16 =4
C. 3 27 =-3
D. (4)2 =-4
,并把解集在数轴上表示出来.
20.解方程组:
2
3
x
3 4
y
1 2
4(x y) 3(2x y) 17
21.如图, AD∥BC , AD 平分∠EAC,你能确定∠B 与∠C 的数量关系吗?请说明理由。
-2-
E
A1
2
D
B
C
22.如图,已知 D 为△ABC 边 BC 延长线上一点,DF⊥AB 于 F 交 AC 于 E,∠A=35°,•∠D=42°, 求∠ACD 的度数.
2
A.5
B.6
C.7
D.8
9.如图,△A1B1C1 是由△ABC 沿 BC 方向平移了 BC 长度的一半得到的,若△ABC 的面积为
20 cm2,则四边形 A1DCC1 的面积为( )
A.10 cm2
B.12 cm2
C.15 cm2
D.17 cm2
10.课间操时,小华、小军、小刚的位置如图 1,小华对小刚说,如果我的位置用(•0,0)表示,
(C) 先右转 50°,后左转 130° (D) 先右转 50°,后左转 50°
5.解为
x y
1 2
的方程组是(

A.
x y 1 3x y 5
B.
x y 1 3x y 5
C.
x y 3 3x y 1
D.
x 2y 3x y
3 5
6.如图,在△ABC 中,∠ABC=500,∠ACB=800,BP 平分∠ABC,CP 平分∠ACB,则∠BPC 的
A F
E
B
CD
23.如图, 已知 A(-4,-1),B(-5,-4),C(-1,-3),△ABC 经过平移得到的△A′B′C′,△ABC 中任意一点 P(x1,y1)平移后的对应点为 P′(x1+6,y1+4)。 (1)请在图中作出△A′B′C′;(2)写出点 A′、B′、C′的坐标.
y
4 3
y A'
小军的位置用(2,1)表示,那么你的位置可以表示成( )
A.(5,4) B.(4,5) C.(3,4) D.(4,3)
-1-
二、填空题:本大题共 8 个小题,每小题 3 分,共 24 分,把答案直接填在答题卷的横线上.
11.49 的平方根是________,算术平方根是______,-8 的立方根是_____.
1
P(x1,y1) -2
C -3
B
-4
A'
P'(x1+6,y1+4) C'
23 4 5x
24. 解:设甲、乙两班分别有 x、y 人.
根据题意得
8x 5x
10y 920 5y 515
解得
x y
55 48
故甲班有 55 人,乙班有 48 人. 25. 解:设用 A 型货厢 x 节,则用 B 型货厢(50-x)节,由题意,得
35x 25(50 x) 1530 15x 35(50 x) 1150
解得 28≤x≤30. 因为 x 为整数,所以 x 只能取 28,29,30.
相应地(5O-x)的值为 22,21,20. 所以共有三种调运方案. 第一种调运方案:用 A 型货厢 28 节,B 型货厢 22 节; 第二种调运方案:用 A 型货厢 29 节,B 型货厢 21 节;
火车站
15.从 A 沿北偏东 60°的方向行驶到 B,再从 B 沿南偏西 20°
的方向行驶到 C,•则∠ABC=_______度.
16.如图,AD∥BC,∠D=100°,CA 平分∠BCD,则∠DAC=_______. 17.给出下列正多边形:① 正三角形;② 正方形;③ 正六边形;④
A
D
正八边形.用上述正多边形中的一种能够辅满地面的是
6.点 P(a,b)在第四象限,则点 P 到 x 轴的距离是( )
A.a B.b
C.│a│ D.│b│
7.已知 a<b,则下列式子正确的是( )
A.a+5>b+5
B.3a>3b; C.-5a>-5b
D. a > b 33
8.如图,不能作为判断 AB∥CD 的条件是( )
A.∠FEB=∠ECD
B.∠AEC=∠ECD; C.∠BEC+∠ECD=180° D.∠AEG=∠DCH
_____________.(将所有答案的序号都填上)
18.若│x2-25│+ y 3 =0,则 x=_______,y=_______.
B
C
三、解答题:本大题共 7 个小题,共 46 分,解答题应写出文字说明、证明过程或演算步骤.
x 3(x 2) 4,
19.解不等式组:
2x
1
5
x 1. 2
∴∠3 =∠B(等量代换)
∴ AB∥ CD (

A
E
B
1
A F
4
C
32 F
D
E
B
CD
图1
图2
九.如图 2,已知 D 为△ABC 边 BC 延长线上一点,DF⊥AB 于 F 交 AC 于 E,∠A=35°,
∠D=42°,求∠ACD 的度数.(8 分)
十、(14 分)某城市为开发旅游景点,需要对古运河重新设计,加以改造,现需要 A、B 两 种花砖共 50 万块,全部由某砖瓦厂完成此项任务。该厂现有甲种原料 180 万千克,乙种原 料 145 万千克,已知生产 1 万块 A 砖,用甲种原料 4.5 万千克,乙种原料 1.5 万千克,造 价 1.2 万元;生产 1 万块 B 砖,用甲种原料 2 万千克,乙种原料 5 万千克,造价 1.8 万元。
12.不等式 5x-9≤3(x+1)的解集是________.
13.如果点 P(a,2)在第二象限,那么点 Q(-3,a)在_______.
李庄
14.如图 3 所示,在铁路旁边有一李庄,现要建一火车站,•为
了使李庄人乘火车最方便(即距离最近),请你在铁路旁选 一点来建火车站(位置已选好),说明理由:____________.
2
1 B'
-5A-4 -3
-2
-1 0 -1
1
P'(x1+6,y1+4) C'
23 4 5x
P(x1,y1) -2
C -3
B
-4
24.长沙市某公园的门票价格如下表所示:
-3-
购票人数
1~50 人 51~100 人 100 人以上
票价
10 元/人 8 元/人 5 元/人
某校九年级甲、乙两个班共 100•多人去该公园举行毕业联欢活动,•其中甲班有 50
六,已知 a、b、c 是三角形的三边长,化简:|a-b+c|+|a-b-c|(6 分)
-8-
八,填空、如图1,已知∠1 =∠2,∠B =∠C,可推得AB∥CD。理由如下:(10 分)
∵∠1 =∠2(已知),且∠1 =∠4(

∴∠2 =∠4(等量代换)
∴CE∥BF(

∴∠ =∠3(

又∵∠B =∠C(已知)
三、解答题:( 每题 6 分,共 18 分) 11.解下列方程组:
C.± 9 =± 3 16 8
D. 9 =± 3 16 4
12.解不等式组,并在数轴表示:
2x 5y 25, 4x 3y 15.
2x 3 6 x, 1 4x 5x 2.
13.若 A(2x-5,6-2x)在第四象限,求 a 的取值范围.
(1)利用现有原料,该厂能否按要求完成任务?若能,按 A、B 两种花砖的生产块数, 有哪几种生产方案?请你设计出来(以万块为单位且取整数);
相关文档
最新文档