七年级下册数学测试题
人教版七年级数学下册 第六章 实数。单元测试题精选(Word版附答案)

人教版七年级数学下册第六章实数。
单元测试题精选(Word版附答案)人教版七年级数学第6章《实数》单元测试题精选完成时间:120分钟满分:150分得分评卷人:______________ 姓名:______________ 成绩:______________一、选择题(本大题10小题,每小题4分,共40分。
每小题给出的四个选项中,只有一个选项是符合题意的,请将该选项的标号填入表格内)题号 1 2 3 4 5 6 7 8 9 10答案 B A D A A C D C B B二、填空题(每题5分,共20分)11.m = 3.n = 1.(m+n)^5 = 243.12.(1) 0.000 521 7 (2) 0.002 284.13.3.14.x = 8.三、解答题(共90分)15.1) x = ±5/3;2) x = 3/5.16.1.17.a = 9.b = -8.3a+b的算术平方根为 5.18.已知 $m=\lfloor 313\rfloor$。
$n=0.13$,求 $m-n$ 的值。
19.如图,计划围一个面积为 $50\text{ m}^2$ 的长方形场地,一边靠旧墙(墙长为 $10$ m),另外三边用篱笆围成,并且它的长与宽之比为 $5:2$。
讨论方案时,XXX说:“我们不可能围成满足要求的长方形场地。
”小军说:“面积和长宽比例是确定的,肯定可以围得出来。
”请你判断谁的说法正确,为什么?解:设长为 $5x$,宽为 $2x$,则面积为 $10x^2$,另一条边长为 $10-5x$,由题意得 $10x^2=(10-5x)\times2x$,解得$x=1$,长为 $5$,宽为 $2$,可以围成满足要求的长方形场地,小军的说法正确。
20.若 $x+3+(y-3)^2=3$,则 $(xy)^{\frac{2015}{3}}$ 等于多少?解:移项得 $(y-3)^2=3-x-3=-x$,所以 $xy=\frac{3-x}{y-3}$,将其代入 $(xy)^{\frac{2015}{3}}$ 得 $\left(\frac{3-x}{y-3}\right)^{\frac{2015}{3}}$,根据乘方的运算法则,得$\left(\frac{3-x}{y-3}\right)^{671}$。
初中数学人教版七年级下册期末-章节测试习题(1)

章节测试题1.【题文】已知关于的方程组(1)若求方程组的解;(2)若方程组的解满足求的取值范围.【答案】(1) ;(2) a>-.【分析】(1)将a=2代入方程组计算即可求出解;(2)将a看做已知数求出x与y,根据x大于y得到a的范围. 【解答】解:(1)当a=2时,方程组为,①-②得:3y=6,即y=2,将y=2代入①得:x=9,则方程组的解为;(2)方程组两方程相减得:3y=10-2a,即y=,将y=代入第一个方程得:x=,根据题意得:>,解得:a>-.2.【题文】为了了解某地区“雾霾天气的主要成因”,随机调查了该地区部分市民,并对调査结果随机调査了该市部分市民,并对调査结果进行整理,绘制了如下尚不完整的统计图表.根据图表中提供的信息解答下列问题:(1)求接受调查的总人数;(2)填空:扇形统计图中E组所占的百分比为______%;(3)扇形统计图中,C组所对应扇形圆心角的度数为________;(4)若该地区人口约有100万人,请你估计持D组观点的市民人数.【答案】(1)600人;(2)60,150,15%;(3)90°;(4)30万人.【分析】(1)根据A组的人数和所占的百分比可以求得接受调查的总人数;(2)根据接受调查的总人数和B组观点的百分比可以求得m,总人数减去其余各组的人数可以求得n的值,根据E组人数和总人数可求得所占的百分比;(3)根据C组观点的人数占的百分比可以求得C组所对应扇形圆心角的度数;(4)根据D组观点占的百分比可以求得持D组观点的市民人数.【解答】解:(1)由题意可得,接受调查的总人数是:120÷20%=600,即接受调查的一共有600人;(2)m=600×10%=60,n=600-180-120-90-60=150,扇形统计图中E组所占的百分比为:×100%=15%,故答案为:60,150,15%;(3)扇形统计图中,C组所对应扇形圆心角的度数为:360°×=90°,故答案为:90°;(4)100×=30(万人),答:持D组观点的市民有30万人.3.【题文】某体育器材公司最新推出A、B两种不同型号的跳绳,我区某学校第一次订购两种跳绳共计640条,该公司共获利2160元,两种跳绳的成本价、销售价如下表:(1)求学校第一次订购A、B两种跳绳各多少条?(2)第二次订购A、B两种跳绳的条数皆为第一次的2倍,销售时,A种跳绳按原售价销售,B种跳绳全部降价出售,该公司为使利润不小于4080元,则B种跳绳每条的最低销售价应为多少元?【答案】(1)学校第一次订购A种跳绳400条,B种跳绳240条;(2)第二次B 种跳绳每条的最低销售价应为9.5元.【分析】(1)设学校第一次订购A种跳绳x条B种跳绳y条,根据“两种跳绳共计640条,该公司共获利2160元”列出方程组进行求解;(2)设第二次B种跳绳每条的最低销售价应为a元,根据“该公司的利润不少于4080元”列出不等式,继而即可求解.【解答】解:(1)设学校第一次订购A种跳绳x条,B种跳绳y条,根据题意得:,解得:.答:学校第一次订购A种跳绳400条,B种跳绳240条.(2)设第二次B种跳绳每条的最低销售价应为a元,根据题意得:(8-5)×400×2+(a-6)×240×2≥4080,解得:a≥9.5.答:第二次B种跳绳每条的最低销售价应为9.5元.4.【题文】如图1,在平面直角坐标系中,点A(0,4),C(2,0).(1)已知坐标轴上有两动点P、Q同时出发,P点从C点出发沿轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿轴正方向移动,点Q到达A点整个运动随之结束,AC的中点D的坐标是(1,2),设运动时间为秒,问:是否存在这样的使若存在,请求出的值;若不存在,请说明理由.(2)如图2,点F是线段AC上一点,满足∠FOC=∠FCO,点G是第二象限中一点,连OG,使得∠AOG=∠AOF,点E是线段OA上一动点,连CE交OF于点H,当点E在线段OA上运动的过程中,以下两个式子:哪个式子为定值,请求出这个定值.【答案】(1) t=;(2)的值不变,其值为2.【分析】(1)先得出CP=t,OP=2-t,OQ=2t,AQ=4-2t,再根据,列出关于t的方程,求得t的值即可;(2)过H点作AC的平行线,交x轴于P,先判定OG∥AC,再根据角的和差关系以及平行线的性质,得出∠PHO=∠GOF=∠1+∠2,∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,最后代入进行计算即可.【解答】解:(1)由条件可知:P点从C点运动到O点时间为2秒,Q点从O点运动到A点时间为2秒,∴0<t≤2时,点Q在线段AO上,即 CP=t,OP=2-t,OQ=2t,AQ=4-2t,∴S△DOP=OP•y D=(2−t)×2=2−t,S△DOQ=OQ•x D=×2t×1=t,∵,∴2(2-t)=t,∴t=;(2)的值不变,其值为2.∵∠2+∠3=90°,又∵∠1=∠2,∠3=∠FCO,∴∠GOC+∠ACO=180°,∴OG∥AC,∴∠1=∠CAO,∴∠OEC=∠CAO+∠4=∠1+∠4,如图,过H点作AC的平行线,交x轴于P,则∠4=∠PHC,PH∥OG,∴∠PHO=∠GOF=∠1+∠2,∴∠OHC=∠OHP+∠PHC=∠GOF+∠4=∠1+∠2+∠4,∴==,不能确定.===2.5.【题文】已知,平面直角坐标系中,A(2,0),B(),且满足(1)求点B坐标;(2)P(0,)为轴上一点,求的取值范围;(3)若Q为直线AB上一点,连接OQ,且直接写出点Q 的纵坐标的取值范围.【答案】(1)B(-2,4);(2)m≥6或m≤-2;(3)≤y≤3或6≤y≤8.【分析】(1)根据非负数的性质列出方程组,解方程组求出a、b,得到点B的坐标;(2)先利用待定系数法求得直线AB的解析式为y=-x+2,进而得出直线AB交y 轴于(0,2),根据三角形的面积公式求出根据S△ABP不小于8时,×|y-2|×(2+2)≥8,得到点P的纵坐标m的取值范围;(3)分两种情况,当点Q在线段AB上时,可得2(4-y)≤y≤3(4-y)计算可得;当点Q在线段AB的延长线上时,可得2(y-4)≤y≤3(y-4)计算即可.【解答】解:(1)∵∴2a+b=0,3a+2b-2=0,解得a=-2,b=4,∴B(-2,4);(2)设直线AB的解析式为y=kx+b,把A(2,0),B(-2,4)代入,可得,解得,∴直线AB的解析式为y=-x+2,令x=0,则y=2,即直线AB交y轴于(0,2),=4,根据得,8,即×|m-2|×(2+2)≥8,解得m≥6或m≤-2;(3)≤y≤3或6≤y≤8.6.【答题】下列方程中,是二元一次方程的是()A.3x﹣2y=4zB.4x+y=2C.D.6xy+9=0 【答案】B【分析】直接利用二元一次方程的定义分析得出答案.【解答】A、,是三元一次方程,故此选项错误;B、,是二元一次方程,故此选项正确;C、,是分式方程,故此选项错误;D、,是二元二次方程,故此选项错误;选B.7.【答题】若m<1,则下列各式中错误的是()A.m+2<3B.m﹣1<0C.2m<2D.m+1>0【答案】D【分析】根据不等式的性质即可求出答案.【解答】∵m<1∴m+1<2故D错误选D.8.【答题】在下列调查中,适宜采用全面调查的是()A.了解明德集团所有中学生的视力情况B.了解某校七(4)班学生校服的尺码情况C.调查北京2017年的游客流量D.调查中国“2018俄罗斯世界杯”栏目的收视率【答案】B【分析】根据实际问题的需要选择合适的调查方式.【解答】A、适合用抽样调查;B、适合用全面调查;C、适合用抽样调查;D、适合用抽样调查,所以答案选B.9.【答题】不等式组的解在数轴上表示正确的是()A. B.C. D.【答案】C【分析】分别求出各不等式的解集,再在数轴上表示出来即可.【解答】解:解得:x<3,x≥-1故不等式组的解集为:-1≤x<3在数轴上表示为:.选C.10.【答题】已知是二元一次方程2x+y=14的解,则k的值是()A.2B.﹣2C.3D.﹣3【答案】A【分析】根据方程的解的定义,将方程2x+y=14中x,y用k替换得到k的一元一次方程进行求解.【解答】将代入二元一次方程2x+y=14,得7k=14,解得k=2.选A.11.【答题】在一个三角形中,一个外角是其相邻内角的2倍,那么这个外角是()A.150B.120°C.100°D.90°【答案】B【分析】设与外角相邻的内角为x°,根据平角的定义得到方程3x=180,求出x即可.【解答】设与外角相邻的内角为x°,∵一个三角形中,一个外角是其相邻内角的2倍∴这个外角为2x°∴3x=180∴x=60.即这个外角为120°选B.12.【答题】由方程组可得出x与y的关系式是()A.x+y=9B.x+y=3C.x+y=﹣3D.x+y=﹣9【答案】A【分析】本题考查了二元一次方程组的解法。
2022—2023年人教版七年级数学(下册)期末综合检测卷及答案

2022—2023年人教版七年级数学(下册)期末综合检测卷及答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若m >n ,则下列不等式正确的是( )A .m ﹣2<n ﹣2B .44m n >C .6m <6nD .﹣8m >﹣8n2.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .13.如图,在△ABC 中,AB=20cm ,AC=12cm ,点P 从点B 出发以每秒3cm 速度向点A 运动,点Q 从点A 同时出发以每秒2cm 速度向点C 运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )秒A .2.5B .3C .3.5D .44.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒5.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣16.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b 7.已知关于x 的分式方程+=1的解是非负数,则m 的取值范围是( ) A .m >2 B .m ≥2 C .m ≥2且m ≠3 D .m >2且m ≠38.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .709.运行程序如图所示,规定:从“输入一个值x ”到“结果是否>95”为一次程序操作,如果程序操作进行了三次才停止,那么x 的取值范围是( )A .x ≥11B .11≤x <23C .11<x ≤23D .x ≤2310.如图,已知直线a ∥b ,则∠1、∠2、∠3的关系是( )A .∠1+∠2+∠3=360°B .∠1+∠2﹣∠3=180°C .∠1﹣∠2+∠3=180°D .∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.16的平方根是 .2.如图,一条公路修到湖边时,需拐弯绕湖而过,在A ,B ,C 三处经过三次拐弯,此时道路恰好和第一次拐弯之前的道路平行(即AE ∥CD ),若∠A =120°,∠B =150°,则∠C 的度数是________.3.已知M =x 2-3x -2,N =2x 2-3x -1,则M ______N .(填“<”“>”或“=”)4.方程()()()()32521841x x x x +--+-=的解是_________.5.已知点A(a ,0)和点B(0,5)两点,且直线AB 与坐标轴围成的三角形的面积等于10,则a 的值是______________.6.已知|x|=3,则x 的值是________.三、解答题(本大题共6小题,共72分)1.解方程组:3416 5633 x yx y+=⎧⎨-=⎩2.马虎同学在解方程13123x mm---=时,不小心把等式左边m前面的“﹣”当做“+”进行求解,得到的结果为x=1,求代数式m2﹣2m+1的值.3.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限内一点,CB⊥y轴交y轴负半轴于B(0,b),且|a﹣3|+(b+4)2=0,S四边形AOBC=16.(1)求点C的坐标.(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.4.如图1,P点从点A开始以2厘米/秒的速度沿A→B→C的方向移动,点Q从点C开始以1厘米/秒的速度沿C→A→B的方向移动,在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同时出发,用t(秒)表示移动时间,那么:(1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QA=AP(2)如图2,点Q在CA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的14;(3)如图3,当P点到达C点时,P、Q两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的1 45.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中m的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?6.某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.(1)A、B两种商品的单价分别是多少元?(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、C5、D6、A7、C8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、150°3、<4、3x=.5、±46、±3三、解答题(本大题共6小题,共72分)1、612 xy=⎧⎪⎨=-⎪⎩2、0.3、(1) C(5,﹣4);(2)90°;(3)略4、(1) 4s;(2) 9s;(3) t=323s或16s5、(1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;6、(1)A种商品的单价为16元、B种商品的单价为4元;(2)有两种方案:方案(1):m=12,2m﹣4=20 即购买A商品的件数为12件,则购买B商品的件数为20件;方案(2):m=13,2m﹣4=22 即购买A商品的件数为13件,则购买B商品的件数为22件。
人教版七年级下册数学第六章实数 测试题及答案

人教版七年级下册数学第六章实数测试题及答案人教版七年级数学下册第六章实数一、单选题1.下列说法正确的是()A。
真命题的逆命题都是真命题B。
无限小数都是无理数C。
0.720精确到了百分位D。
16的算术平方根是22.(-9)²的平方根是x,6根是y,则x+y的值为()A。
3B。
7C。
3或7D。
1或73.3(-1)²的立方根是()A。
-1B。
1C。
-4D。
44.若在数轴上画出表示下列各数的点,则与原点距离最近的点是()A。
-1B。
-1/2C。
3/2D。
25.若a=2,则a的值为()A。
2B。
±2C。
4D。
±46.下列计算中,错误的是()A。
30.125=0.5B。
3-273=-644C。
33/31=1/82D。
-3/8²=-125/577.下列说法正确的是()A。
实数分为正实数和负实数B。
3/2是有理数C。
0.9是有理数D。
30.01是无理数8.下列说法:①任何数都有算术平方根;②一个数的算术平方根一定是正数;③a²的算术平方根是a;④(π-4)²的算术平方根是π-4;⑤算术平方根不可能是负数。
其中,不正确的有() A。
2个B。
3个C。
4个D。
5个9.一个正方体的水晶砖,体积为100 cm³,它的棱长大约在()A。
4 cm~5 cm之间B。
5 cm~6 cm之间C。
6 cm~7 cm之间D。
7 cm~8 cm之间10.计算-4-|-3|的结果是()A。
-1B。
-5C。
1D。
5二、填空题11.已知(x-1)³=64,则x的值为4.12.若式子1/(x-1)有意义,则化简|1-x|+|x+2|=3.13.若a与b互为相反数,则它们的立方根的和是0.14.若3x+3y=0,则x与y关系是x=-y。
15.平方等于1/64的数是1/8.16.-27的立方根是-3.三、解答题17.1) 33+53=36;2) |1-2|+|3-2|=2.18.1) (x+1)²=16,解得x=3或x=-5;2) 3(x+2)²=27,解得x=1或x=-5.19.1) 16+3-27-1=-9;2) (-2)²+|2-1|-(2-1)=1.20.a²-b²-(a-b)²=2ab,所以a=3,b=2,代入得9/16.21.1) x=±11/3;2) x=2.22.对于实数a,规定用符号$\lfloor a \rfloor$表示不大于a 的最大整数,称$\lfloor a \rfloor$为a的根整数,例如:$\lfloor 9 \rfloor = 3$,$\lfloor 10 \rfloor = 3$。
人教版七年级下册数学同步练习全套

人教版七年级下册数学同步练习全套5.1.1 相交线一、选择题:(每小题3分,共15分)1.如图所示,∠1和∠2是对顶角的图形有( )A.1个B.2个C.3个D.4个2.如图1所示,三条直线AB,CD,EF 相交于一点O,则∠AOE+∠DOB+∠COF 等于( • ) A.150° B.180° C.210° D.120°(1) (2) (3) 3.下列说法正确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等. A.1个 B.2个 C.3个 D.4个4.如图2所示,直线AB 和CD 相交于点O,若∠AOD 与∠BOC 的和为236°,则∠AOC•的度数为( ) A.62° B.118° C.72° D.59°5.如图3所示,直线L 1,L 2,L 3相交于一点,则下列答案中,全对的一组是( ) A.∠1=90°,∠2=30°,∠3=∠4=60°; B.∠1=∠3=90°,∠2=∠4=30 C.∠1=∠3=90°,∠2=∠4=60°; D.∠1=∠3=90°,∠2=60°,∠4=30° 二、填空题:(每小题3分,共24分)6.如图4所示,AB 与CD 相交所成的四个角中,∠1的邻补角是______,∠1的对顶角___.12121221OFE D CB A O DCBA 60︒30︒34l 3l 2l 112(4) (5) (6) 7.如图4所示,若∠1=25°,则∠2=_______,∠3=______,∠4=_______. 8.如图5所示,直线AB,CD,EF 相交于点O,则∠AOD 的对顶角是_____,∠AOC 的邻补角是_______;若∠AOC=50°,则∠BOD=______,∠COB=_______. 9.如图6所示,已知直线AB,CD 相交于O,OA 平分∠EOC,∠EOC=70°,则∠BOD=•______.10.对顶角的性质是______________________.11.如图7所示,直线AB,CD 相交于点O,若∠1-∠2=70,则∠BOD=_____,∠2=____.(7) (8) (9)12.如图8所示,直线AB,CD 相交于点O,OE 平分∠AOC,若∠AOD-∠DOB=50°,•则∠EOB=______________.13.如图9所示,直线AB,CD 相交于点O,已知∠AOC=70°,OE 把∠BOD 分成两部分,• 且∠BOE:∠EOD=2:3,则∠EOD=________. 三、解答题:(共61分)14.(7分)如图所示,AB,CD,EF 交于点O,∠1=20°,∠BOC=80°,求∠2的度数.34D CBA 12OFED CB A OED CBAODC BA 12OE D CBA OE DCBAOF EDCBA 1215.(10分)如图所示,L 1,L 2,L 3交于点O,∠1=∠2,∠3:∠1=8:1,求∠4的度数.16.(10分)如图所示,AB,CD 相交于点O,OE 平分∠AOD,∠AOC=120°,求∠BOD,∠AOE•的 度数.17.(10分)如图所示,直线AB 与CD 相交于点O,∠AOC:∠AOD=2:3,求∠BOD 的度数.18.(12分)如图所示,直线a,b,c 两两相交,∠1=2∠3,∠2=65°,求∠4的度数.34l 3l 2l 112OE DCBA ODCBAcba341219.(12分)若4条不同的直线相交于一点,则图中共有几对对顶角?若n条不同的直线相交于一点呢?5.1.1 相交线一.填空题1.如图,两条直线AB,CD 相交于点O,图中小于180°的角有______个,其中互为邻补角的有___________,它们之间的数量关系是______________,互为对顶角的有______________,它们之间的数量关系是_______________.第1题图第2题图2.如图,O 是直线AB 上任意一点,∠AOC 与∠BOC 互为________角,它们之间的位置关系是__________,数量关系是_______________.3.如图,直线AB、CD、EF 都经过点O,且∠AOC=35°,∠EOB=99°,则∠FOD =_____ .4.如图,直线AB、CD 相交于点O,OE 平分∠AOD,∠DOF =90°,∠1=40°,则∠2=______,∠3=_______.第3题图第4题图第5题图5.如图,当剪子口∠AOB 增大15°时,∠COD 增大_____________________.二、选择题6.如图,直线AB、CD、EF 相交于点O,∠1的邻补角是 ( )A.∠BOC B.∠BOC 和∠AOF C.∠AOF D.∠BOE 和∠AOF(第6题图第7题图第8题图7.如图,直线a 与直线c 相交于点O,则∠1的度数是 ( )A.60° B.50° C.40° D.30°8.如图,直线AB、CD 相交于点O,射线OM 平分∠AOC.若∠BOD=76°,则∠BOM 等于( )A.38° B.104° C.142° D.144°9.如图,将长方形ABCD 沿EF 折叠,使点B 落在点G 处,点C 落在点H 处.若∠EFD =80°,则∠DFH 的度数为 ( )A.80° B.100° C.20° D.60°三、解答题10.如图,已知直线a,b 相交.(1)若∠1=40°,求∠2,∠3,∠4的度数;(2)若∠1+∠3=90°,求各角的度数;(3)若∠1∶∠2=2∶7,求各角的度数.11.如图,∠ABC 和∠CBD 互为邻补角,BE 平分∠ABC,BF 平分∠CBD.你能求∠EBF 的大小吗? 并说明理由.5.1.2 垂线一、选择题:(每小题4分,共24分)1.如图1所示,下列说法不正确的是 ( ) A.点B 到AC 的垂线段是线段AB; B.点C 到AB 的垂线段是线段AC C.线段AD 是点D 到BC 的垂线段; D.线段BD 是点B 到AD 的垂线段(1) (2) (3)2.如图1所示,能表示点到直线(线段)的距离的线段有 ( ) A.2条 B.3条 C.4条 D.5条3.下列说法正确的有 ( )①在平面内,过直线上一点有且只有一条直线垂直于已知直线; ②在平面内,过直线外一点有且只有一条直线垂直于已知直线; ③在平面内,过一点可以任意画一条直线垂直于已知直线; ④在平面内,有且只有一条直线垂直于已知直线. A.1个 B.2个 C.3个 D.4个4.如图2所示,AD ⊥BD,BC ⊥CD,AB=acm,BC=bcm,则BD 的范围是 ( )DCBADCBAO DCBAA.大于acmB.小于bcmC.大于acm 或小于bcmD.大于bcm 且小于acm 5.到直线L 的距离等于2cm 的点有( )A.0个B.1个;C.无数个D.无法确定6.点P 为直线m 外一点,点A,B,C 为直线m 上三点,PA=4cm,PB=5cm,PC=2cm,则点P 到 直线m 的距离为( )A.4cmB.2cm;C.小于2cmD.不大于2cm 二、填空题:(每小题5分,共20分)6.如图3所示,直线AB 与直线CD 的位置关系是_______,记作_______,此时,•∠AO D=∠_______=∠_______=∠_______=90°.7.过一点有且只有________直线与已知直线垂直.8.画一条线段或射线的垂线,就是画它们________的垂线.9.直线外一点到这条直线的_________,叫做点到直线的距离. 三、解答题(共56分)10.(12分)如图所示,直线AB,CD,EF 交于点O,OG 平分∠BOF,且CD ⊥EF,∠AOE=70°,•求∠DOG 的度数.11.(14分)如图所示,村庄A 要从河流L 引水入庄,需修筑一水渠,请你画出修筑水渠的路线图.GOFEDCBA lA12.(16分)如图6所示,O 为直线AB 上一点,∠AOC=13∠BOC,OC 是∠AOD 的平分线.(1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.13.(14分)如图7所示,一辆汽车在直线形的公路AB 上由A 向B 行驶,M,N•分别是 位于公路AB 两侧的村庄,设汽车行驶到P 点位置时,离村庄M 最近,行驶到Q 点位置时,•离村庄N 最近,请你在AB 上分别画出P,Q 两点的位置.5.1.2 垂 线 一、填空题1.当两条直线相交所成的四个角中有一个角是______时,就说这两条直线互相垂直,其中一条直线是另一条直线的_______,它们的交点叫做_______.垂直是相交的一种特殊情形.2.过一点___________直线与已知直线垂直.3.“神舟”六号发射塔与地平面的夹角为__________度,它与地面的位置关系为_________.4.连接直线外一点与直线上各点的所有线段中,__________最短,直线外一点到这条直线的垂线段的长度,叫做点到直线的________.如图,过点O 作四条与直线l 相交的直线,交点分别为点A 、B 、C 、D,其中OC ⊥l,则在OA 、OB 、OC 、OD 这四ODC BANBA条线段中,________最短,点O 到直线l 的距离是线段______的长.第4题图第5题图第6题图5.如图,OB⊥OA,直线CD 过点O,且∠AOC=25°,则∠BOC=______,∠BOD=_______.6.如图,AC⊥BC,CD⊥AB.(1)图中共有______个直角;(2)图中点C 到直线AB 的距离是线段______的长度,点B 到直线AC 的距离是线段_____的长度,点B 到直线CD 的距离是线段______的长度;(3)线段AD 的长表示___________的距离.7.如图,AB、CD 相交于点O,AC⊥CD 于点C.若∠BOD =38°,则∠A =__________.第7题图第8题图二、选择题8.如图,∠1+∠2等于 ( )A.60° B.90° C.110° D.180°9.①过直线上一点作该直线的垂线不止一条;②直线a 的垂线有无数条;③相交的直线不一定垂直,但垂直的直线必定相交;④过直线外一点作已知直线的垂线有且只有一条.上述说法中不正确的有 ( )A.1个 B.2个 C.3个 D.4个10.过一条线段外一点,画这条线段的垂线,垂足在 ( )A.这条线段上B.这条线段的端点C.这条线段的延长线上D.这条线段上或这条线段的延长线上11.跳远比赛时,小新从点A 跳落在沙坑内B 处(如图所示),这次小新的跳远成绩是3.4m,则小新从起跳点到落脚点之间的距离 ( )A.等于3.4m B.小于3.4m C.大于3.4m D.不能确定12.如图,点P 在∠AOC 的边OA 上.(1)过点P 画OA 的垂线PB,交OC 于点B;(2)画出点P 到OC 的垂线段PM ;(3)上述作图中,哪一条线段的长表示点P 到OB 的距离?(4)比较PM 与OP 的大小,并说明理由.13.如图所示,直线AB、CD 相交于点O,OM ⊥AB.(1)若∠1=∠2,判断ON 与OD 的位置关系,并说明理由;(2)若∠1=41∠BOC,求∠AOC 和∠MOD 的度数.14.如图,A 处是某学生的家,B 处是学校,l 是一条公路,学生要去学校,如何走最近? 该学生要去公路怎样走最近? 请在图中画出相应的路线,并简述理由.15.已知线段AB 的长为acm,点A 、B 到直线l 的距离分别为6cm,4cm .请画图说明在下列条件下符合条件的直线l 有几条. (1)a =3;(2)a =10;(3)a =15.5.1.3同位角、内错角、同旁内角 知识点:1、同位角:两条直线被第三条直线所截,在两条直线的 ,第三条直线的 。
七年级数学下册第二章《整式加减》综合测试卷-人教版(含答案)

七年级数学下册第二章《整式加减》综合测试卷-人教版(含答案)( 时间:90分钟 总分:100分)一、选择题:(本大题共12小题,每小题2分,共计24分)1.下列说法中,正确的是( )A. 单项式b 的次数是0B. 是一次单项式C. 24x 3是7次单项式D. -5是单项式2.对于单项式-的系数和次数分别是( )A. -2,2B. -2,3C. -,2D. -,33.下列单项式中,书写规范的是( )A. 1aB. x ·2C. 0.5xD. 1mn4.若21213n x y --是7次单项式,则n =( ) A. 1 B. 2 C. 3 D. 45.下列说法正确的是( )A. -x +3x 三次二项式B. x -1二次二项式C. x 2-2x +34是二次三项式D. -5x 5+2x 4y 2-1是八次三项式6.一个n 次多项式(n 为正整数),它的每一项的次数是( )A. 都等于nB. 都小于nC. 都不小于nD. 都不大于n7.设M ,N 都是关于x 的五次多项式,则M +N 是( )A.十次多项式B.五次多项式C.次数不大于5的多项式D.次数不大于5的整式8.-3x 4与3y 是同类项,则mn 的值为( )A. 6B. 8C. 2D. 19.化简:ab-(2ab-3ab2)结果是()A.3a2b+3abB.-3ab2-abC.3ab2-abD.-3ab2+3ab10.若x 是两位数,y是一位数,如果把y 置于x左边所得的三位数是()A.100y+xB. 100y+10xC.10y+xD. yx11.减去2-3x等于6x2-3x-8的代数式是()A.6x2-6x-10B.6x2-10C.6x2-6D.6x2-6x-612.若a2b+4=0,则代数式3a2b-(a2b-3a2b)的值为()A. 20B. -20C. 4D. -4二、填空题:(本大题共8小题,每小题2分,共16分)13.用式子表示“数a的3倍与3的差的一半”是.14.把多项式6+2x4-3x2+7x3按各项的次数从高到低重新排列为.15.某项工程。
北师大版数学七年级下册第五章生活中的轴对称 达标测试卷(含答案)

第五章生活中的轴对称达标测试卷一、选择题(共8小题,每小题3分,计24分,每小题只有一个选项是符合题意的)1.观察下列平面图形,其中轴对称图形共有()A.4个B.3个C.2个D.1个(第1题)(第2题)(第3题)2.如图所示的图形是轴对称图形,点A和点D,点B和点E是对应点.若∠A =50°,∠B=70°,则∠D+∠E的度数为()A.100°B.110°C.120°D.130°3.如图,在3×3的正方形网络中,从空白的小正方形中再选择一个涂黑,使得3个涂黑的正方形构成轴对称图形,则选择的方法有()A.3种B.4种C.5种D.6种4.等腰三角形的一个内角为40°,它的顶角的度数是()A.70°B.100°C.40°或100°D.70°或100°5.将一张正方形纸片依次按图a,图b的方式对折,然后沿图c中的虚线裁剪,最后将图d的纸展开铺平,所看到的图案是()(第5题)(第7题)6.在△ABC中,∠C=90°,BC=16 cm,∠A的平分线AD交BC于D,且CD∶DB=3∶5,则点D到AB的距离等于()A.6 cm B.7 cm C.8 cm D.9 cm7.如图,在△ABC中,DE是AC的垂直平分线,分别交BC,AC于D,E两点,若∠B=80°,∠C=35°,则∠BAD的度数为()A.65°B.35°C.30°D.25°8.如图,在△ABC中,∠ACB=90°,以AC为底边在△ABC外作等腰三角形ACD,作∠ADC的平分线分别交AB,AC于点E,F.若AC=12,BC=5,△ABC的周长为30,点P是直线DE上的一个动点,则△PBC周长的最小值为()(第8题)A.15 B.17 C.18 D.20二、填空题(共5小题,每小题3分,计15分)9.我国传统的木结构房屋,窗子常用各种图案装饰,如图是一种常见的图案,这种图案有________条对称轴.(第9题)(第11题)(第12题)(第13题)10.已知等腰三角形的一个内角为70°,则这个等腰三角形底角的度数为________.11.如图,直线AD是三角形ABC的对称轴,点E、F是AD上的两点,若BD=2,AD=3,则图中阴影部分的面积是________.12.如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O,EF经过点O,分别交AB、AC于点E、F,BE=OE,OF=5 cm,点O到BC的距离为4 cm,则△OFC的面积为________cm2.13.如图,△ABE和△ADC是△ABC分别沿着AB,AC边对折所形成的,若∠1∶∠2∶∠3=13∶3∶2,则∠α的度数为________.三、解答题(共13小题,计81分,解答应写出过程)14.(5分)如图所示的五角星共有几条对称轴?请你在下图中分别画出来.(第14题)15.(5分)以图中的虚线为对称轴画出该图形的另一半.(第15题)16.(5分)如图,四边形ABCD与四边形EFGH关于直线MN对称.(1)线段AD的对应线段是________,CD=________,∠CBA=________,∠ADC=________.(2)连接AE,BF.AE与BF平行吗?为什么?(3)若AE与BF平行,则能说明轴对称图形中对应点的连线一定互相平行吗?(第16题)317.(5分)在植树节活动中,两个班的学生分别在M,N两处植树,现要在道路AB,AC交叉区域内设一个茶水供应点P,使P到两条道路的距离相等,且使PM=PN,请同学们用圆规、直尺在图中画出供应点P的位置,保留画图痕迹,不写作法.(第17题)18.(5分)如图,在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.(第18题) 19.(5分)如图,在△ABC中,AB=AC,D是BC边上的中点,DE⊥AB于点E,DF⊥AC于点F. 试说明DE=DF .(第19题)20.(5分)把两个同样大小的含30度的三角尺像如图所示那样放置,其中M是AD与BC的交点.(第20题)(1)试说明MC的长度等于点M到AB的距离;(2)求∠AMB的度数.521.(6分)如图,已知CE⊥AB于点E,BD⊥AC于点D,BD、CE交于点O且AO平分∠BAC.试说明OB=OC.(第21题)22.(7分)如图,在△ABC中,AB=AC,AD是BC边上的高,过点C作CE∥AB 交AD的延长线于点E.试说明CE=AB.(第22题)23.(7分)如图,在△ABC中,AB=AC,BD⊥AC于点D.试说明∠DBC=12∠BAC.(第23题)24.(8分)如图,在直角三角形ABC中,∠ACB=90°,△CAP和△CBQ都是等边三角形,BQ和CP交于点H,试说明BQ⊥CP .(第24题)25.(8分)如图,已知△ABC,AB=AC,AD是△ABC的角平分线,EF垂直平分AC,与AC,AD,AB分别交于点E,M,F.若∠CAD=20°,求∠MCD的度数.7(第25题)26.(10分)综合与探究:如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(点D与点B,C不重合),连接AD,作∠ADE=40°,DE交线段AC于点E. (1)当∠BDA=115°时,∠EDC=________°,∠DEC=________°;在点D从点B向点C的运动过程中,∠BDA逐渐变______(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE?请说明理由;(3)在点D的运动过程中,何时DA与DE的长度相等?求出此时∠BDA的度数.(第26题)答案一、1.C 2.C 3.C 4.C 5.D 6.A7.C8.C二、9.210.55°或70°11.312.1013.100°三、14.解:如图所示的五角星共有5条对称轴.对称轴如图所示.(第14题)15.解:如图所示.(第15题)16.解:(1)线段EH;GH;∠GFE;∠EHG(2)AE∥BF.理由如下:因为每对对应点连接成的线段被对称轴重直平分,则EA⊥MN,BF⊥MN,所以AE∥BF.(3)AE∥BF不能说明对应点的连线一定互相平行,还有可能共线.17.解:如图所示,点P即为所求.(第17题)18.解:因为AB=AD,所以∠B=∠ADB,因为∠BAD=26°,所以∠B=12(180°-∠BAD)=12×(180°-26°)=12×154°=77°,所以∠ADB=77°,所以∠ADC=103°. 因为AD=CD,所以∠DAC=∠C,所以∠C=12(180°-∠ADC)=38.5°.919.解:连接AD,因为AB=AC,点D是BC边上的中点.所以AD平分∠BAC(三线合一),因为DE、DF分别垂直AB、AC于点E和F.所以DE=DF(角平分线上的点到角两边的距离相等).20.解:(1)过点M作MN⊥AB,易得∠CAD=∠DAB=30°,因为∠C=90°,MN⊥AB,所以MC=MN(角平分线上的点到角两边的距离相等),即MC的长度等于点M到AB的距离.(2)由题意知∠MAB=∠MBA=30°,所以∠AMB=180°-30°-30°=120°.21.解:因为AO平分∠BAC,CE⊥AB于点E,BD⊥AC于点D,所以OE=OD,又因为在直角三角形OBE和直角三角形OCD中,∠BOE=∠COD,∠BEO =∠ODC=90°,所以△OBE≌△OCD,所以OB=OC.22.解:因为AB=AC,AD是BC边上的高,所以BD=CD.因为CE∥AB,所以∠BAE=∠E,∠B=∠ECD,所以△ABD≌△ECD,所以CE=AB.23.解:作∠BAC的平分线AE,与BC,BD分别交于点E,F,则∠CAE=1 2∠BAC.因为AB=AC,所以由等腰三角形的“三线合一”可知AE⊥BC,所以∠AEB=90°.因为BD⊥AC,所以∠ADB=90°.又因为∠BFE=∠AFD,所以∠DBC=∠CAE,故∠DBC=12∠BAC.24.解:因为△CAP和△CBQ都是等边三角形,所以∠ACP=∠CBQ=60°,因为∠ACB=90°,所以∠BCP=∠ACB-∠ACP=30°,在△BCH中,∠BHC=180°-∠BCH-∠CBH=180°-30°-60°=90°,所以BQ⊥CP.25.解:因为AB=AC,AD是△ABC的角平分线,所以AD⊥BC.因为∠CAD=20°,所以∠ACD=70°.因为EF垂直平分AC,所以AM=CM,所以∠ACM=∠CAD=20°,所以∠MCD=∠ACD-∠ACM=70°-20°=50°.26.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:因为∠C=40°,所以∠DEC+∠EDC=140°.因为∠ADE=40°,所以∠ADB+∠EDC=140°,所以∠ADB=∠DEC.在△ABD和△DCE中,因为∠ADB=∠DEC,∠B=∠C,AB=DC=2,所以△ABD≌△DCE.(3)当△ABD≌△DCE时,DA=DE.因为∠ADE=40°,所以∠DAE=∠DEA=70°,所以∠DEC=110°.因为△ABD≌△DCE,所以∠BDA=∠DEC=110°.11。
人教版七年级数学下册第五章测试卷(含答案)

人教版七年级数学下册第五章测试卷(含答案)一、选择题(每小题3分,共18分)1.下列各组图形可以通过平移得到另一个图形的是( ).A. B. C. D. 2.下列作图能表示点A 到BC 的距离的是( ).A .B .C .D .3.下列图形中,∠1和∠2是同位角的是( ).A .B .C .D .4.两条直线被第三条直线所截形成的角中,下列说法不正确的是( ). A .对顶角相等 B .邻补角互补 C .内错角相等 D .如果同位角相等,则内错角也相等5. 如图,已知AB ∥CD ∥EF ,BC ∥AD ,AC 平分∠BAD , 那么图中与∠AGE 相等的角有 ( ). A.5个 B.4个C.3个D.2个6.如图,在下列条件中:①∠1=∠2;②∠BAD =∠BCD ;题号 一 二 三 四 五 六 总分 得分(第5题)③∠ABC =∠ADC 且∠3=∠4;④∠BAD +∠ABC =180° 能判定AB ∥CD 的有( ).A.3个B.2个C.1个D.0个二,填空题(每小题3分,共18分)7.如图,计划在河边建一水厂,过C 点作CD ⊥AB 于D 点.在D 点建水厂,可使水厂到村庄C 的路程最短,这样设计的依据是____________________. 8.如图是一把剪刀,若∠AOB +∠COD =60°,则∠BOD =__ __°.9.如图,把一个三角尺的直角顶点放在直尺的一边上,如果∠1=23°,∠2= . 10.如图,将△ABC 沿BC 方向平移2cm 得到△DEF ,若△ABC 周长为16cm,则四边形ABFD 周长为 .11.如图,已知∠1=∠2,∠A =60°,则∠ADC = .12.若A ∠和B ∠的两条边分别平行,其中(30)A x ∠=+,(310)B x ∠=-,则A ∠的度数是 .12(第7题)(第8题)(第9题)(第6题)(第10题)(第11题)三,解答题(每小题6分,共30分)13.(1)如图所示,直线AB ∥CD ,∠1=75°,求∠2的度数.(2)已知一个角的邻补角比它的对顶角大70°,求这个角度数.14.已知:如图,∠B =∠C ,AE ∥BC ,求证:AE 平分∠CAD .15.如图,直线AB 、CD 相交于O ,OD 平分∠AOF ,OE ⊥CD 于点O ,∠1=50°,求∠COB 、∠BOF 的度数.(第13(1)题)(第14题)(第15题)16.在如图所示的方格纸中,网络中每个小正方形的边长 都是1,点A 、B 、C 均在格点上.(1)画线段BC ,将线段BC 平移,使点B 到A 位置,画出平移后的线段AD ;(2)连接BA 、CD ,则线段BA 和线段CD 的关系是 ; (3)直接写出四边形ABCD 的面积.17.如图所示,一块边长为8米的正方形土地,上面修了两条道路,一条路是宽为1米的长方形,另一条路为平行四边形,其余部分种上各种花草,若种花草的面积为49平方米,请问平行四边形道路的短边长为多少米?四,解答题(每小题8分,共24分)18.如图,已知AC ⊥BC ,CD ⊥AB ,DE ⊥AC ,∠1与∠2互补,判断GF 与AB 的位置关系,并证明.(第16题)(第17题)21FED CABG(第18题)19. 如图∠1+∠2=180°,∠A =∠C ,DA 平分∠BDF . (1)求证:AE ∥ FC .(2)AD 与BC 的位置有怎样的位置关系?请说明理由. (3)BC 平分∠DBE 吗? 请说明理由.20.已知大正方形的边长为4厘米,小正方形的边长为2厘米,状态如图所示.大正方形固定不动,把小正方形以1厘米/秒的速度向大正方形的内部沿直线平移,设平移的时间为t 秒,两个正方形重叠部分的面积为S 厘米2,完成下列问题: (1)平移到1.5秒时,重叠部分的面积为 厘米2. (2)当S =3.6厘米2时,求t 的值.五,解答题(每小题9分,共18分) 21.如图,∠B 和∠D 的两边分别平行.(1)在图1 中,∠B 和∠D 的数量关系是 ,在图2中,∠B 和∠D 的数量关系是 ; (2)用“如果……,那么……”的形式归纳(1)中命题 :___________________ ; (3)应用:若两个角的两边分别互相平行,其中一个角比另一个角的2倍少10°,求这两个角的度数.(第19题)(第20题)(第21题)22、实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b反射.若被b反射出的光线n与光线m平行,且∠1=50°,则∠2= °,∠3= °.(2)在(1)中,若∠1=55°,则∠3= °;若∠1=40°,则∠3= °.(3)由(1)、(2),请你猜想:当两平面镜a、b的夹角∠3= °时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行.你能说明理由吗?六,解答题(12分)23.如图1,AB∥CD,在AB、CD内有一条折线EPF.(1)求证:∠AEP+∠CFP=∠EPF.(2)如图2,已知∠BEP的平分线与∠DFP的平分线相交于点Q,若∠EPF=80°求∠EQF的度数(3)已知∠BEQ=∠BEP,∠DFQ=∠DFP,有∠P与∠Q的关系为.(直接写结论)(第22题)(第23题)参考答案一,选择题(每小题3分,共18分)1.C 2.B 3.D 4.C 5. A 6.C二,填空题(每小题3分,共18分)7. 垂线段最短; 8.150°; 9. 67°;10.20cm ; 11.120°; 12. 5070或.三,解答题(每小题6分,共30分)13.解:(1)如图所示,∵AB∥CD,∠1=75°∴∠3=∠1=75°∴∠2=180°-∠3=180°-75°=105°解:(1)设这个角为x度,则它的对顶角为x度、邻补角为(180-x)度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级测试题(2020.6)【经典资料,保存必备】
第I 卷(选择题 共48分)
一、选择题(本大题共12小题,每小题4分,满分48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.以下四个标志中,是轴对称图形的是( )
A .
B .
C .
D .
2.下列计算正确的是( )
A .743a a a =+
B .236a a a =÷
C .6
2
3)(a a = D .()2
22a b a b -=-
3.新型冠状病毒的直径大约是0.00000006m ~0.00000014m ,将0.00000014m 用科学记数法表示为( )
A .61014.0-⨯m
B .71014.0-⨯m
C .6104.1-⨯m
D .7104.1-⨯m 4. 下列事件是必然事件的是( )
A .乘坐公共汽车恰好有空座
B .购买一张彩票,中奖
C .同位角相等
D .三角形的三条高所在的直线交于一点 5.下列长度的三根木棒首尾相接,不能做成三角形框架的是( ) A .7 cm 、9 cm 、2 cm B .7 cm 、15cm 、10 cm C .7 cm 、9 cm 、15 cm D .7 cm 、10 cm 、13 cm 6.如图,在下列四组条件中,能得到AB ∥CD 的是( )
A .∥1=∥2
B .∥3=∥4
C .∥ADC +∥BC
D =180° D .∥BAC =∥ACD
C B A C 2B 2
A 2
A 1
B 1
C 1
7.如图,AB ∥ED ,CD=BF ,若要说明∥ABC ∥∥EDF ,则不能补充的条件是( ) A .AC=EF
B .AB=ED
C .∥A =∥E
D .AC ∥EF
8. 如果 是完全平方式,则m 的值为( ) A .6 B .±6 C .12 D .±12
9.在下列条件:①A B C ∠+∠=∠;②::1:2:3A B C ∠∠∠=;③2A B C ∠=∠=∠;④1123A B C ∠=
∠=∠;⑤1
2
A B C ∠=∠=∠中,能确定△ABC 为直角三角形的条件有( ) A .5个
B .4个
C .3个
D .2个
10.如图,点C 在∠AOB 的边OB 上,用直尺和圆规作∠BCN =∠AOC ,这个尺规作图
的依据是( ) A .SAS B .SSS C .AAS D .ASA
11.端午节假期的某一天,小明全家上午8时自驾小汽车从家里出发,到某著名旅游景点游玩.该小汽车离家的距离S (千米)与时间t (小时)的关系如图所示.根据图象提供的有关信息,下列说法中错误的是( ) A .景点离小明家180千米
B .小明到家的时间为17点
C .返程的速度为60千米每小时
D .10点至14点,汽车匀速行驶
第10题图 第11题图 第12题图
12.如图,△ABC 的面积为1.第一次操作:分别延长AB ,BC ,CA 至点1A ,1B ,1C ,使1A B AB =,1B C BC =,1C A CA =,顺次连接1A ,1B ,1C ,得到△111A B C .第二
942+-mx x
第6题图 第7题图
次操作:分别延长11A B ,11B C ,11C A 至点2A ,2B ,2C ,使2111A B A B =,2111B C B C =,
2111C A C A =,顺次连接2A ,2B ,2C ,得到△222A B C ,…按此规律,要使得到的三
角形的面积超过2020,最少经过多少次操作( ) A .4
B .5
C .6
D .7
第II 卷(非选择题 共102分)
二、填空题(本大题共6个小题,每小题4分,共24分.把正确答案填在题中横线上) 13. 计算:()=-0
14.3π .
14. 一个等腰三角形两边的长分别是13cm 和6cm ,则它的周长是 cm . 15. 如图,在△ABC 中,AB =10,AC =8,AD 为中线,则△ABD 与△ACD 的周长之差 = .
16. 已知a ∥b ,某学生将一直角三角板如图所示放置,如果∠1=30°,那么∠2的度
为 °. 17. 已知3a b +=,7ab =-,则22a b += .
18. 如图,AD 平分∠BAC ,BD ⊥AD ,垂足为D ,连接CD ,若三角形△ABC 内有一点P ,则点P 落在△ADC 内(包括边界的阴影部分)的概率为 . 三、解答题(本大题共9个小题,共78分.请写出文字说明、证明过程或演算步骤)
19.计算(1)()()7
3
2
5
34x x x ⋅-- ; (2)()
.ab b a b a b
a ⎪⎭
⎫
⎝⎛÷+-234435
421432
20. (本题满分6分)先化简,再求值:()()()()()b a b a b a b a b a +-+-+--222222
,
其中1,2-=-=b a .
21.(本题满分6分)
已知:如图,已知∠B =45°,∠BDC =45°,∠A =∠1. 求证:∠2=∠BDE .
22.(本题满分8分)
在一个不透明的袋中装有3个绿球,5个红球和若干白球,它们除颜色外其他都相同,将球搅匀,从中任意摸出一个球.
(1)若袋内有4个白球,从中任意摸出一个球,求摸出的是白球的概率; (2)如果任意摸出一个球是绿球的概率是1
5
,求袋内有几个白球?
23.(本题满分8分)
已知:如图,线段AD 、BE 相交与点C ,且∥ABC ∥∥DEC ,点M 、N 分别为线段AC 、CD 的中点.
求证:(1)ME=BN ;
(2)ME ∥BN .
第23题图
24.(本题满分10分)
乘法公式的探究及应用.
(1)如图1,可以求出阴影部分的面积是 (写成两数平方差的形式); (2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 , 长是 ,面积是 (写成多项式乘法的形式); (3)比较图1、图2阴影部分的面积,可以得到公式 ; (4)运用你所得到的公式,计算下列各题:
① 20.2×
19.8 ; ②()()p n m p n m +--+22.
25.(本题满分10分)
下表是小颖往表姐家打长途电话的收费记录:
通话时间x(分钟)1234567
电话费y(元)333 3.6 4.2 4.8 5.4
(1)上表的两个变量中,是自变量,是因变量;(2)写出y与x之间的关系式;
(3)若小颖的通话时间是15分钟,则需要付多少电话费?
(4)若小颖有24元钱,则她最多能打多少分钟电话?
26.(本题满分12分)
(1)如图1,AB∥CD,点P在AB、CD外部,若∠B=60°,∠D=30°,则∠BPD= °;(2)如图2,AB∥CD,点P在AB、CD内部,则∠B,∠BPD,∠D之间有何数量关系?证明你的结论;
(3)在图2中,将直线AB绕点B按逆时针方向旋转一定角度交直线CD于点M,如图3,若∠BPD=86°,∠BMD=40°,求∠B+∠D的度数.
图一图二图三
27.(本题满分12分)
CD是经过∠BCA定点C的一条直线,CA=CB,E、F分别是直线CD上两点,且∠BEC=∠CF A=∠β.
(1)若直线CD经过∠BCA内部,且E、F在射线CD上,
①若∠BCA=90°,∠β=90°,例如图1,则BE CF,EF|BE -AF|(填“>”,“<”,“=”);
②若0°<∠BCA<180°,且∠β+∠BCA=180°,例如图2,①中的两个结论还成立吗?并说明理由;
(2)如图3,若直线CD经过∠BCA外部,且∠β=∠BCA,请直接写出线段EF、BE、AF的数量关系(不需要证明).
()=-22020x ()()302021201922=-+-x x
附加题(本大题共3个题,每小题5分,共20分, 得分不计入总分.) 1.已知034101242
2
=+--+y x y x ,则y x +2= .
2.已知 ,则 . 3.如图,MN ∥EF , 点C 为两直线之间一点,若∠CAM 的平分线与∠CBF 的平分线所在的直线相交于点 D ,则∠ACB 与 ∠ADB 之间的数量关系是.
第3题图 第4题图 4.如图,∠A +∠B +∠C +∠D +∠E +∠F 的度数是 .。