3-1-4多人相遇和追及问题_题库

合集下载

追及与相遇问题专题及参考答案

追及与相遇问题专题及参考答案

追及与相遇问题追及问题是运动学中较为综合且有实践意义的一类习题,它经常涉及两个以上物体的运动过程,每个物体的运动规律又不尽相同 . 对此类问题的求解,除了要透彻理解基本物理看法,熟练运用运动学公式外,还应仔细审题,挖掘题文中隐含着的重要条件,并尽可能地画出草图以帮助解析,确认两个物体运动的位移关系、时间关系和速度关系,在脑筋中建立起一幅物体运动关系的图景. 借助于v- t 图象来解析和求解经常可使解题过程简捷了然.知识要点:一、相遇是指两物体分别从相距S 的两地相向运动到同一地址,它的特点是:两物体运动的距离之和等于 S,解析时要注意:(1)、两物体可否同时开始运动,两物体运动至相遇时运动时间可建立某种关系;(2)、两物体各做什么形式的运动;(3)、由两者的时间关系,依照两者的运动形式建立 S=S1+S2方程;二、追及问题(1)、追及问题中两者速度大小与两者距离变化的关系。

若甲物体追赶前面的乙物体,若甲的速度大于乙的速度,则两者之间的距离。

若甲的速度小于乙的速度,则两者之间的距离。

若一段时间内两者速度相等,则两者之间的距离。

2、追及问题的特点及办理方法:“追及”主要条件是:两个物体在追赶过程中处在同一地址,常有的状况有三种:⑴速度小者匀加速追速度大者, 必然能追上,追上前有最大距离的条件:两物体速度,即v甲 v乙。

⑵匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个可否追上的问题。

判断方法是:假设速度相等,从地址关系判断。

①若甲乙速度相等时,甲的地址在乙的后方,则追不上,此时两者之间的距离最小。

②若甲乙速度相等时,甲的地址在乙的前面,则追上。

③若甲乙速度相等时,甲乙处于同一地址,则恰好追上,为临界状态。

解决问题时要注意两者可否同时出发,可否从同一地址出发。

⑶ 速度大者匀减速运动的物体追赶同向的匀速运动的物体时,状况跟⑵近似。

三、解析追及问题的注意点:⑴ 追及物与被追及物的速度恰好相等时临界条件,经常是解决问题的重要条件⑵若被追赶的物体做匀减速运动,必然要注意追上前该物体可否已经停止运动。

广西南宁市数学小学奥数系列3-1-4多人相遇和追及问题(一)

广西南宁市数学小学奥数系列3-1-4多人相遇和追及问题(一)

广西南宁市数学小学奥数系列3-1-4多人相遇和追及问题(一)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共20题;共96分)1. (5分) (2019六下·竞赛) 甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地6千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地4千米处第二次相遇,求两人第5次相遇地点距B多远。

2. (5分) (2019六下·竞赛) 两辆电动小汽车在周长为360米的圆形道上不断行驶,甲车每分行驶20米.甲、乙两车同时分别从相距90米的A,B两点相背而行,相遇后乙车立即返回,甲车不改变方向,当乙车到达B点时,甲车过B点后恰好又回到A点.此时甲车立即返回(乙车过B点继续行驶),再过多少分与乙车相遇?3. (5分) (2019六下·竞赛) 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?4. (5分) (2019六下·竞赛) 从花城到太阳城的公路长12公里.在该路的 2千米处有个铁道路口,是每关闭 3分钟又开放 3分钟的.还有在第 4千米及第 6 千米有交通灯,每亮 2分钟红灯后就亮 3分钟绿灯.小糊涂驾驶电动车从花城到太阳城,出发时道口刚刚关闭,而那两处交通灯也都刚刚切换成红灯.已知电动车速度是常数,小糊涂既不刹车也不加速,那么在不违反交通规则的情况下,他到达太阳城最快需要多少分钟?5. (5分) (2019六下·竞赛) 幸福村小学有一条200米长的环形跑道,冬冬和晶晶同时从起跑线起跑,冬冬每秒钟跑6米,晶晶每秒钟跑4米,问冬冬第一次追上晶晶时两人各跑了多少米,第2次追上晶晶时两人各跑了多少圈?6. (5分) (2019六下·竞赛) 甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米?7. (5分) (2019六下·竞赛) 已知猫跑5步的路程与狗跑3步的路程相同;猫跑7步的路程与兔跑5步的路程相同。

郑州市中牟县数学小学奥数系列3-1-4多人相遇和追及问题(一)

郑州市中牟县数学小学奥数系列3-1-4多人相遇和追及问题(一)

郑州市中牟县数学小学奥数系列3-1-4多人相遇和追及问题(一)姓名:________ 班级:________ 成绩:________小朋友,带上你一段时间的学习成果,一起来做个自我检测吧,相信你一定是最棒的!一、 (共20题;共96分)1. (5分)(2020·成都模拟) 甲乙两车同时从A、B两地出发,相向而行,6小时后在C点相遇。

若甲车的速度不变,乙车每小时多行5千米,且两车仍从A、B两地同时出发,相向而行,则相遇点距离C地12千米;若乙车速度不变,甲车每小时多行5千米,则相遇点距离C地16千米,甲车原来每小时行驶多少千米?2. (5分) (2019五下·普陀期中) 小巧以65米/分的步行速度从家里出发去少年宫.出发16分钟后,妈妈发现小巧把学习资料袋忘在家里了,于是骑车以185米/分的速度去追.已知小巧家与少年宫之间的路程是1800米,妈妈能在小巧到达少年宫之前追上她吗?3. (5分) (2019六下·竞赛) 甲、乙两车分别同时从、两地相对开出,第一次在离地千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离地千米处相遇.求、两地间的距离?4. (5分)甲、乙两辆汽车同时从A、B两站相对开出,第一次在离A站90千米处相遇。

相遇后两车继续以原速前进,到达目的地后又立刻返回,第二次相遇在离A站50千米处。

求A,B两站之间的路程。

5. (5分) (2019六下·竞赛) 如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C点第一次相遇,C离A点80米;在D点第二次相遇,D点离B点60米。

求这个圆的周长。

6. (5分) (2019六下·竞赛) 甲、乙两车同时从同一点出发,沿周长6千米的圆形跑道以相反的方向行驶.甲车每小时行驶65千米,乙车每小时行驶55千米.一旦两车迎面相遇,则乙车立刻调头;一旦甲车从后面追上一车,则甲车立刻调头,那么两车出发后第11次相遇的地点距离有多少米?7. (5分) (2019六下·竞赛) 甲、乙二人沿一周长400米的环形跑道均速前进,甲行一圈4分钟,乙行一圈7分钟,他们同时同地同向出发,甲走10圈,改反向出发,每次甲追上乙或迎面相遇时二人都要击掌。

广西柳州市小学数学小学奥数系列3-1-4多人相遇和追及问题(一)

广西柳州市小学数学小学奥数系列3-1-4多人相遇和追及问题(一)

广西柳州市小学数学小学奥数系列3-1-4多人相遇和追及问题(一)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共20题;共96分)1. (5分) (2019六下·竞赛) 如图,、是一条道路的两端点,亮亮在点,明明在点,两人同时出发,相向而行.他们在离点米的点第一次相遇.亮亮到达点后返回点,明明到达点后返回点,两人在离点米的点第二次相遇.整个过程中,两人各自的速度都保持不变.求、间的距离.要求写出关键的推理过程.2. (5分) (2019六下·竞赛) 甲、乙两人沿 400 米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。

相遇后甲比原来速度增加 2 米/秒,乙比原来速度减少 2 米/秒,结果都用 24 秒同时回到原地。

求甲原来的速度。

3. (5分) (2019六下·竞赛) 甲、乙两车同时从同一点出发,沿周长6千米的圆形跑道以相反的方向行驶.甲车每小时行驶65千米,乙车每小时行驶55千米.一旦两车迎面相遇,则乙车立刻调头;一旦甲车从后面追上一车,则甲车立刻调头,那么两车出发后第11次相遇的地点距离有多少米?4. (5分) (2019六下·竞赛) 从花城到太阳城的公路长12公里.在该路的 2千米处有个铁道路口,是每关闭 3分钟又开放 3分钟的.还有在第 4千米及第 6 千米有交通灯,每亮 2分钟红灯后就亮 3分钟绿灯.小糊涂驾驶电动车从花城到太阳城,出发时道口刚刚关闭,而那两处交通灯也都刚刚切换成红灯.已知电动车速度是常数,小糊涂既不刹车也不加速,那么在不违反交通规则的情况下,他到达太阳城最快需要多少分钟?5. (5分) (2019六下·竞赛) 在一圆形跑道上,甲从 A 点、乙从 B 点同时出发反向而行,6 分后两人相遇,再过4 分甲到达 B 点,又过 8 分两人再次相遇.甲、乙环行一周各需要多少分?6. (5分) (2019六下·竞赛) 甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地7千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求第三次相遇时共走了多少千米。

3 1 3多次相遇和追及问题 题库教师版

3 1 3多次相遇和追及问题   题库教师版

3 1 3多次相遇和追及问题题库教师版3-1-3多次相遇和追及问题-题库教师版3-1-3多次遭遇和问题教学目标1.学会画画和解决旅行问题2.能够利用柳卡图解决多次相遇和追及问题3.能够利用比例解多人相遇和追及问题渊博的知识板块一、由简单行程问题拓展出的多次相遇问题所有的旅行问题都围绕着“距离、速度和时间”的基本关系展开。

虽然多人相遇和追逐的问题是复杂的,但只要我们掌握这个公式,并逐步刻画问题所涉及的人数,问题就可以解决【例1】(难度等级※)甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每跑3.5米/秒,B跑4米/秒。

问:当他们第十次见面时,a需要跑多少米才能回到起点?【解析】从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10倍,为300?10?3000米,因为甲的速度为每秒钟跑3.5米,乙的速度为每秒钟跑4米,所以这段时间内甲共行了3000? 3.5? 1400米,也就是a最后一次离开出发点,继续走了200米。

可以看出a 还需要走3.5米?4300? 200? 100米才能回到起点【巩固】(难度等级※)甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米。

如果他们同时从笔直道路的两端出发,他们在10分钟内会相遇多少次?【解析】17【综合】(难度等级※)甲乙双方同时从400米环形跑道A点出发,8分钟内第五次出发相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点a沿跑道上的最短路程是多少米?[分析]1763-1-3.多次相遇与追及问题.题库教师版page1of14二、利用多重比率关系解决多重遭遇问题【例2】(难度等级※※)上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家四公里的地方赶上了他,然后爸爸马上回家了。

到家后,他立即回去追赶小明。

当他赶上小明时,它离家只有8公里。

几点了?【解析】画一张简单的示意图:从图中可以看出,小明从父亲第一次追上他到第二次,父亲骑了四英里,走了8-4=4公里+8=12(千米).这表明,父亲的摩托车速度是小明自行车速度的12÷4=3倍。

3-1-3多次相遇和追及问题-题库学生版

3-1-3多次相遇和追及问题-题库学生版

1. 学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】 (难度等级 ※)甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】 (难度等级 ※)甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【巩固】 (难度等级 ※)甲、乙两人从400米的环形跑道上一点A 背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A 沿跑道上的最短路程是多少米?知识精讲教学目标3-1-3多次相遇和追及问题二、运用倍比关系解多次相遇问题【例 2】(难度等级※※)上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?【例 3】(难度等级※※)甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离是多少千米?【巩固】(难度级别※※)甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离.【巩固】(难度等级※※)甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地7千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地5千米处第二次相遇,求两次相遇地点之间的距离.【巩固】(难度等级※※)甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地6千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地4千米处第二次相遇,求两人第5次相遇地点距B 多远.【巩固】(难度等级※※)甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地7千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求第三次相遇时共走了多少千米.【巩固】(难度等级※※)甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地3千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地2千米处第二次相遇,求第2000次相遇地点与第2001次相遇地点之间的距离.【巩固】(难度等级※※)甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地18千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地13千米处第二次相遇,求AB两地之间的距离.【例 4】(难度等级※※※)如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【巩固】(难度等级※※※)如图,A、B是圆的直径的两端,小张在A点,小王在B点同时出发反向行走,他们在C点第一次相遇,C离A点80米;在D点第二次相遇,D点离B点6O米.求这个圆的周长.【巩固】A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米?三、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。

小学奥数:多次相遇和追及问题.专项练习-优质

小学奥数:多次相遇和追及问题.专项练习-优质

1. 学会画图解行程题2. 能够利用柳卡图解决多次相遇和追及问题3. 能够利用比例解多人相遇和追及问题板块一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】 甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【巩固】 甲、乙两人从400米的环形跑道上一点A 背向同时出发,8分钟后两人第五次相遇,已知每秒钟甲比乙多走0.1米,那么两人第五次相遇的地点与点A 沿跑道上的最短路程是多少米?【例 2】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。

如果二人的速度各增加1千米/时,那么相遇地点距前一次相遇地点1千米。

问:甲、乙二人的速度各是多少?知识精讲 教学目标3-1-4多次相遇和追及问题板块二、运用倍比关系解多次相遇问题【例 3】上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?【例 4】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。

已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。

问:甲车的速度是乙车的多少倍?【例 5】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【巩固】A、B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米?【巩固】如右图,A,B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D点第二次相遇。

浙江省杭州市小学数学小学奥数系列3-1-4多人相遇和追及问题(二)

浙江省杭州市小学数学小学奥数系列3-1-4多人相遇和追及问题(二)

浙江省杭州市小学数学小学奥数系列3-1-4多人相遇和追及问题(二)姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、 (共19题;共88分)1. (5分)甲、乙两人在长为50米的水池里沿直线来回游泳,甲的速度是40米/分,乙的速度是35米/分,他们同时从水池的两端出发,如果不计转向的时间,他们出发多少分钟后第二次相遇?2. (5分)李军和王亮沿着田岗水库四周的道路跑步,他们从同一地点同时出发,反向而行,李军的速度是235米/分,王亮的速度是265米/分,经过16分钟两人还相距70米.水库四周的道路长多少米?3. (5分)小明和小贝两人同时从相距2千米的两地相向而行,小明每分钟行45米,小贝每分钟行55米,如果一只狗与小明同时同向而行,每分钟行120米,狗遇到小贝后立即返回向小明跑去,遇到小明再返回向小贝跑去。

这样不断往返,直到小明和小贝相遇为止,问这只狗一共跑了多少米?4. (5分)(2018·广东模拟) 一辆汽车和一辆摩托车同时从甲、乙两地相向开出,相遇后两车继续行驶,当摩托车到达甲城。

汽车到达乙城后,立即返回,第二次相遇时汽车距甲城160千米,汽车与摩托车的速度比是2:3,则甲、乙两城相距多少千米?5. (1分)(2018·浙江模拟) 已知甲、乙两人在一个200米的环形跑道上练习跑步,现在把跑道分为相等的4段,即两条直跑道和两条弯道的长度相等。

甲平均每秒跑4米,乙平均每秒跑6米。

若甲、乙两人分别从A、C 处同时出发(如右图),则他们第100次相遇时,在跑道________上。

(填“AB”或“BC”或“DA”或“CD”)。

6. (1分)(2013·成都模拟) 狗跑5步的时间,马能跑6步;马跑4步的距离,狗要跑7步,现在狗已经跑出了154步,马才开始追它,则马跑________步可以追上狗.7. (5分) (2019六下·竞赛) A、B两地相距336千米,有甲、乙、丙3人,甲、乙从A地,丙从B地同时出发相向而行,已知甲每小时行36千米,乙每小时行30千米,丙每小时行24千米,问几个小时后,丙正好处于甲、乙之间的中点?8. (5分)甲乙两车分别从 A, B两地出发,相向而行.出发时,甲、乙的速度比是5∶4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米.问:A,B两地相距多少千米?9. (1分) (2019六下·竞赛) 、两地相距米,甲、乙、丙的速度分别是米/分、米/分、米/分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多人相遇及追及问题1. 能够将学过的简单相遇和追及问题进行综合运用2. 根据题意能够画出多人相遇和追及的示意图3. 能将复杂的多人相遇问题转化多个简单相遇和追及环节进行解题。

二是多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。

所有行程问题都是围绕“=⨯路程速度”这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化.由此还可以得到如下两条关系式: =⨯路程和速度和相遇;=⨯路程差速度差追及;多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.板块一、多人从两端出发——相遇、追及【例 1】 (难度级别 ※※)有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?【解析】 甲、丙6分钟相遇的路程:()1007561050+⨯=(米);甲、乙相遇的时间为:()10508075210÷-=(分钟);东、西两村之间的距离为:()1008021037800+⨯=(米).【巩固】 一条环形跑道长400米,甲骑自行车每分钟骑450米,乙跑步每分钟250米,两人同时从同地同向出发,经过多少分钟两人相遇?【解析】 4004502502÷-=()(分钟).【例 2】 (难度级别 ※※)(2009年四中入学测试题)在公路上,汽车A 、B 、C 分别以80km /h ,70km /h ,50km /h 的速度匀速行驶,若汽车A 从甲站开往乙站的同时,汽车B 、C 从乙站开往甲站,并且在途中,汽车A 在与汽车B 相遇后的两小时又与汽车C 相遇,求甲、乙两站相距多少km ?【解析】 汽车A 在与汽车B 相遇时,汽车A 与汽车C 的距离为:(8050)2260+⨯=千米,此时汽车B 与汽车C 的距离也是260千米,说明这三辆车已经出发了260(7050)13÷-=小时,那么甲、乙两站的距离为:(8070)131950+⨯=千米.【巩固】 (难度等级 ※※)甲、乙、丙三人每分分别行60米、50米和40米,甲从B 地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A ,B 两地的距离.【解析】 甲遇到乙后15分钟,甲遇到了丙,所以遇到乙的时候,甲和丙之间的距离为:(60+40)×15=1500(米),而乙丙之间拉开这么大的距离一共要1500÷(50-40)=150(分),即从出发到甲与乙相遇一共经过了150分钟,所以A 、B 之间的距离为:(60+50)×150=16500(米).教学目标 知识精讲【巩固】(难度级别※※)甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走67.5米,丙每分钟走75米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?【解析】那2分钟是甲和丙相遇,所以距离是(60+75)×2=270米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=270÷(67.5-60)=36分钟,所以路程=36×(67.5+75)=5130米。

【巩固】(难度级别※※)小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【解析】画一张示意图:图中A点是小张与小李相遇的地点,图中再设置一个B点,它是张、李两人相遇时小王到达的地点.5分钟后小王与小李相遇,也就是5分钟的时间,小王和小李共同走了B与A之间这段距离:()54.810.8 1.360+⨯=(千米),这段距离也是出发后小张比小王多走的距离,小王与小张的速度差是(5.4-4.8)千米/小时.小张比小王多走这段距离,需要的时间是:1.3÷(5.4-4.8)×60=130(分钟).这也是从出发到张、李相遇时已花费的时间.小李的速度10.8千米/小时是小张速度5.4千米/小时的2倍.因此小李从A到甲地需要:130÷2=65(分钟).从乙地到甲地需要的时间是:130+65=195(分钟)=3小时15分.小李从乙地到甲地需要3小时15分.【巩固】(难度级别※※)甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走65米,丙每分钟走70米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过1分钟与甲相遇,求东西两镇间的路程有多少米?【解析】那2分钟是甲和丙相遇,所以距离是(60+70)×1=130米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=130÷(65-60)=26分钟,所以路程=26×(65+70)=3510米。

【巩固】(难度级别※※)甲、乙、丙三人行路,甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?【解析】那2分钟是甲和丙相遇,所以距离是(60+70)×2=260米,这距离是乙丙相遇时间里甲乙的路程差所以乙丙相遇时间=260÷(60-50)=26分钟,所以路程=26×(60+70)=3380米。

【巩固】(难度级别※※)甲、乙、丙三人行路,甲每分钟走80米,乙每分钟走90米,丙每分钟走100米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过5分钟与甲相遇,求东西两镇间的路程有多少米?【解析】那5分钟是甲和丙相遇,所以距离是(90+100)×5=950米,这距离是乙丙相遇时间里甲乙的路程差。

所以乙丙相遇时间=950÷(90-80)=95分钟,所以路程=95×(90+100)=18050米。

【巩固】(难度级别※※※※※)小王的步行速度是5千米/小时,小张的步行速度是6千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后30分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【解析】30分钟是小王和小李相遇,所以距离是15+10=7.52⨯()千米,这距离是小王和小李相遇时间里小张和小王的路程差。

所以小李和小张相遇时间=7.5÷(6-5)=7.5小时,所以路程=7.5×(6+10)=120千米。

120÷10=12(小时)【巩固】 甲、乙、丙三人,他们的步行速度分别为每分钟480、540、720米,甲、乙、丙3人同时动身,甲、乙二人从A 地出发,向B 地行时,丙从B 地出发向A 地行进,丙首先在途中与乙相遇,3分钟后又与甲相遇,求甲、乙、丙3人行完全程各用多长时间?【解析】 方法一:乙与丙相遇时,乙比甲多行的距离可供丙、甲相向而行行3分钟的时间,这段距离为()48072033600+⨯=(米),()360054048060÷-=(分),A 、B 之间的距离为()7205406075600+⨯=(米),行完全程甲、乙、丙需要的时间分别如下: 甲 75600480157.5()÷=分乙 75600540140()÷=分丙75600720105()÷=分方法二:丙与乙相遇时,各行了()()480720354048060+⨯÷-=⎡⎤⎣⎦(分),速度与时间成反比,所以,丙行完全程需要5406060105720+⨯=(分);乙行完全程需要720105157.5480⨯=(分). 方法三:丙与乙相遇时,乙比甲多行了()72048033600+⨯=(米);丙比甲多行了720480360014400540480-⨯=-(米),所以A 地与B 地之间的距离为()480540480236001440075600⨯-⨯++=(米).行完全程甲、乙、丙需要的时间分别如下:甲 75600480157.5()÷=分乙 75600540140()÷=分丙 75600720105()÷=分【巩固】 甲乙丙三人沿环形林荫道行走,同时从同一地点出发,甲、乙按顺时针方向行走,丙按逆时针方向行走。

已知甲每小时行7千米,乙每小时行5千米,1小时后甲、丙二人相遇,又过了10分钟,丙与乙相遇,问甲、丙相遇时丙行了多少千米?【解析】 方法一:出发1小时后甲、丙相遇,这时甲领先乙()7512-⨯=千米;10分钟后丙、乙相遇,相向而行共行了2千米,其中乙行了1055606⨯=千米,丙行了57266-=千米,丙每小时行76076010⨯=⨯千米,所以甲、丙相遇时,丙行了717⨯=千米。

方法二:丙1小时10分钟(与乙相遇)行的距离与1小时(与甲相遇)行的距离之差恰好等于甲1小时行的距离之差,所以丙的速度等于7070715176060⎛⎫⎛⎫⨯-⨯÷-= ⎪ ⎪⎝⎭⎝⎭千米/小时,丙与甲相遇时,丙行了717⨯=千米。

【例 3】 (难度等级 ※※※)甲、乙两车的速度分别为 52 千米/时和 40 千米/时,它们同时从 A 地出发到 B 地去,出发后 6 时,甲车遇到一辆迎面开来的卡车,1 时后乙车也遇到了这辆卡车。

求这辆卡车的速度。

【解析】 甲乙两车最初的过程类似追及,速度差×追及时间=路程差;路程差为 72 千米;72 千米就是1 小时的甲车和卡车的路程和,速度和×相遇时间=路程和,得到速度和为 72 千米/时,所以卡车速度为 72-40=32 千米/时。

【巩固】 甲、乙、丙三人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.甲从东村,乙、丙从西村同时出发相向而行,途中甲、乙相遇后3分钟又与丙相遇.求东西两村的距离.【解析】 先画示意图如下:甲(100米/分)东西甲、乙相遇后3分钟,甲、丙相遇.甲、丙在3分钟内共走路程是100753525+⨯=()(米).显然,这就是甲、乙相遇时,乙比丙多走的路程,乙比丙每分钟多走80755-=(米).所以,甲、乙相遇时离出发的时间是5258075105÷-=()(分钟).两村间的距离是:10080[1007538075]1810518900+⨯+⨯÷-=⨯=()()()(米)【巩固】 (难度等级 ※※※)甲、乙、丙三辆车同时从 A 地出发到 B 地去,甲、乙两车的速度分别为60 千米/时和 48千米/时。

相关文档
最新文档