相遇及追及问题(有答案)

合集下载

(完整版)追及与相遇问题(含答案)

(完整版)追及与相遇问题(含答案)

追及与相遇问题1、追及与相遇的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。

2、理清两大关系:时间关系、位移关系。

3、巧用一个条件:两者速度相等;它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。

4、三种典型类型(1)同地出发,初速度为零的匀加速直线运动A 追赶同方向的匀速直线运动B①当 B A v v =时,A 、B 距离最大;②当两者位移相等时, A 追上B ,且有B A v v 2=(2)异地出发,匀速直线运动B 追赶前方同方向的初速度为零的匀加速直线运动A判断B A v v =的时刻,A 、B 的位置情况①若B 在A 后面,则B 永远追不上A ,此时AB 距离最小②若AB 在同一处,则B 恰能追上A③若B 在A 前,则B 能追上A ,并相遇两次(3)异地出发,匀减速直线运动A 追赶同方向匀速直线运动B①当B A v v =时,A 恰好追上B ,则A 、B 相遇一次,也是避免相撞刚好追上的临界条件;②当B A v v =时,A 未追上B ,则A 、B 永不相遇,此时两者间有最小距离;③当B A v v >时,A 已追上B ,则A 、B 相遇两次,且之后当两者速度相等时,两者间有最大距离。

5、解追及与相遇问题的思路(1)根据对两物体的运动过程分析,画出物体运动示意图(2)根据两物体的运动性质,(巧用“速度相等”这一条件)分别列出两个物体的位移方程,注意要将两物体的运动时间的关系反映在方程中(3)由运动示意图找出两物体位移间的关联方程(4)联立方程求解注意:仔细审题,充分挖掘题目中的隐含条件,同时注意t v -图象的应用【典型习题】【例1】在十字路口,汽车以0.5m/s 2的加速度从停车线启动做匀加速运动,恰好有一辆自行车以5m/s 的速度匀速驶过停车线与汽车同方向行驶,求:(1)汽车追上自行车之前,什么时候它们相距最远?最远距离是多少?(2)在什么地方汽车追上自行车?追到时汽车的速度是多大?【练习1】一辆值勤的警车停在公路边,当警员发现从他旁边以s m v 80=的速度匀速行驶的货车有违章行为时,决定前去追赶。

相遇及追及问题(含答案)

相遇及追及问题(含答案)

.相遇及追击问题(一)一.填空题(共12小题)1.五羊公共汽车公司的555路车在A,B两个总站间往返行驶,来回均为每隔x分钟发车一次.小宏在大街上骑自行车前行,发现从背后每隔6分钟开过来一辆555路车,而每隔3分钟则迎面开来一辆555路车.假设公共汽车与小宏骑车速度均匀,忽略停站耗费时间,则x= _________ 分钟.2.在一条街AB上,甲由A向B步行,乙骑车由B向A行驶,乙的速度是甲的速度的3倍,此时公共汽车由始发站A开出向B行进,且每隔x分发一辆车,过了一段时间,甲发现每隔10分有一辆公共汽车追上他,而乙感到每隔5分就碰到一辆公共汽车,那么在始发站公共汽车发车的间隔时间x= _________ 分钟.3.小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车.假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是_________ 分钟.4.小锋骑车在环城路上匀速行驶,每隔5分钟有一辆公共汽车从对面向后开过,每隔20分钟又有一辆公共汽车从后向前开过,若公共汽车也匀速行驶,不计中途耽误时间,则公交车车站每隔_________ 分钟开出一辆公共汽车.5.某人在公共汽车上发现一个小偷向反方向步行,10秒钟后他下车去追小偷,如其速度比小偷快一倍,比汽车慢,则追上小偷要(_________ )秒.6.某人沿电车路线行走,每12分钟有一辆电车从后面赶上,每4分钟有一辆电车迎面开来,若行人与电车都是匀速前进的,则电车每隔_________ 分钟从起点开出一辆.7.某公交公司停车场内有15辆车,从上午6时开始发车(6时整第一辆车开出),以后每隔6分钟再开出一辆.第一辆车开出3分钟后有一辆车进场,以后每隔8分钟有一辆车进场,进场的车在原有的15辆车后依次再出车.问到_________ 点时,停车场内第一次出现无车辆?8.通讯员从队伍末尾追赶至队伍前头时用全速进行,其速度为队伍的3倍,当他从队伍前面返回队伍末尾时每分钟减少100米.在队伍前进过程中,通讯员连续三次往返执行任务,途中花费时间共1小时,其中三次往返队伍末尾时间比三次追赶队伍前头时间共少用12分钟,则队伍的长为_________ .9.男女运动员各一名,在环行跑道上练习长跑,男运动员比女运动员速度快,如果他们从同一起跑点沿相反方向同时出发,那么每隔25秒相遇一次,现在他们从同一起跑点沿相同方向同时出发,男运动员经过15分钟追上女运动员,并且比女运动员多跑了16圈,女运动员跑了_________ 圈.10.有甲、乙两辆小汽车模型,在一个环形轨道上匀速行驶,甲的速度大于乙.如果它们从同一点同时出发沿相反方向行驶,那么每隔1分钟相遇一次.现在,它们从同一点同时出发,沿相同方向行驶,当甲第一次追上乙时,乙已经行驶了4圈,此时它们行驶了_________ 分钟.11.一路电车的起点和终点分别是甲站和乙站,每隔5分钟有一辆电车从甲站发车开往乙站,全程要走15分钟,有一个人从乙站出发沿电车路线骑车前往甲站,他出发的时候,恰好有一辆电车到达乙站,在路上他又遇到了10辆迎面开来的电车,才到达甲站,到甲站时恰好又有一辆电车从甲站开出,问他从乙站到甲站用了_________ 分钟.12.如图,在矩形ABCD中,AB=4cm,AD=12cm,点P从点A向点D以每秒1cm的速度运动,Q以每秒4cm 的速度从点C出发,在B、C两点之间做往返运动,两点同时出发,点P到达点D为止,这段时间内线段PQ有_________ 次与线段AB平行.13.(巴蜀初2012级第一次月考16题)某人从甲地走往乙地,甲、乙两地之间有定时的公共汽车往返,且两地发车的时间间隔都相等。

第12讲 追及和相遇问题(解析版)

第12讲 追及和相遇问题(解析版)

第12讲 追及和相遇问题甲、乙两人沿平直的公路进行自行车追逐比赛,他们初始在同一位置A ,某时刻甲以12m/s 的速度从A 位置开始匀速运动,经过时间2s 后,乙再从A 位置出发追赶甲,乙先做初速度为零的匀加速直线运动,加速度大小为23m/s ,速度达到15m/s 后做匀速直线运动。

(1)求乙追上甲之前,甲、乙间的最大距离; (2)经过多少时间乙才能追上甲?【答案】(1)4s ;(2)20.5s 【解析】(1)乙出发时,甲运动的位移1124m x vt ==乙追上甲之前,当甲、乙速度相等时,它们间距离最大,设乙运动的时间为2t ,有2v at =解得24s t =甲乙相距的最大距离122m 48m 2vs x vt t =+-=(2)乙加速到最大速度所用的时间为m35s v t a== 设乙运动4t 时间追赶上甲,则()2143m 4312x vt at v t t +=+- 解得420.5st1.追及相遇问题两物体在同一直线上一前一后运动,速度相同时它们之间可能出现距离最大、距离最小或者相遇(碰撞)的情况,这类问题称为追及相遇问题.2.分析追及相遇问题的思路和方法(1)讨论追及相遇问题的实质是分析两物体能否在同一时刻到达同一位置,注意抓住一个条件、用好两个关系.一个条件速度相等这是两物体是否追上(或相撞)、距离最大、距离最小的临界点,是解题的切入点两个关系时间关系和位移关系通过画示意图找出两物体位移之间的数量关系,是解题的突破口(2)常用方法物理分析法抓住“两物体能否同时到达同一位置”这一关键,认真审题,挖掘题中的隐含条件,建立物体运动关系的图景,并画出运动情况示意图,找出位移关系图像法将两者的v-t图像画在同一坐标系中,然后利用图像分析求解数学分析法设从开始到相遇的时间为t,根据条件列位移关系方程,得到关于t的一元二次方程,用判别式进行讨论.若Δ>0,即有两个解,说明可以相遇两次;若Δ=0,说明刚好追上或相遇;若Δ<0,说明追不上或不能相碰例题1.平直公路上有甲、乙两辆汽车,甲以0.5 m/s2的加速度由静止开始行驶,乙在甲的前方200 m处以5 m/s的速度做同方向的匀速运动,问:(1)甲何时追上乙?甲追上乙时的速度为多大?此时甲离出发点多远?(2)在追赶过程中,甲、乙之间何时有最大距离?这个距离为多少?【答案】(1)40 s20 m/s400 m(2)10 s225 m【解析】(1)设甲经过时间t 追上乙,则有x 甲=12a 甲t 2,x 乙=v 乙t ,根据追及条件,有12a 甲t 2=x 0+v 乙t ,代入数据解得t =40 s 和t =-20 s(舍去) 这时甲的速度v 甲=a 甲t =0.5×40 m/s =20 m/s 甲离出发点的位移x 甲=12a 甲t 2=12×0.5×402 m =400 m.(2)在追赶过程中,当甲的速度小于乙的速度时,甲、乙之间的距离仍在继续增大;但当甲的速度大于乙的速度时,甲、乙之间的距离便不断减小;当v 甲=v 乙,甲、乙之间的距离达到最大值.由a 甲t ′=v 乙,得t ′=v 乙a 甲=50.5 s =10 s ,即甲在10 s 末离乙的距离最大.x max =x 0+v 乙t ′-12a 甲t ′2=200 m +5×10 m -12×0.5×102 m =225 m.对点训练1. 汽车以20 m/s 的速度在平直公路上行驶时,制动后40 s 停下来.现在同一平直公路上以20 m/s 的速度行驶时发现前方200 m 处有一货车以6 m/s 的速度同向匀速行驶,司机立即制动,则:(1)求汽车刹车时的加速度大小;(2)是否发生撞车事故?若发生撞车事故,在何时发生?若没有撞车,两车最近距离为多少? 【答案】(1)0.5 m/s 2 (2)不会相撞 4 m 【解析】(1)汽车制动加速度大小a =v At =0.5 m/s 2(2)当汽车减速到与货车共速时t 0=v A -v Ba =28 s汽车运动的位移x 1=v A 2-v B 22a =364 m此时间内货车运动的位移为x 2=v B t 0=168 m Δx =x 1-x 2=196 m <200 m ,所以两车不会相撞.此时两车相距最近,最近距离Δs =x 0-Δx =200 m -196 m =4 m.例题2. 甲、乙两汽车在同一条平直公路上同向运动,其速度-时间图像分别为如图所示的甲、乙两条图线。

一般行程问题(相遇与追击问题)-含答案

一般行程问题(相遇与追击问题)-含答案

一.一般行程问题(相遇与追击问题)1.行程问题中的三个基本量及其关系:路程=速度×时间 时间=路程÷速度 速度=路程÷时间2.行程问题基本类型(1)相遇问题: 快行距+慢行距=原距(2)追及问题: 快行距-慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲、乙两地相距x 千米,则列方程为 。

解:等量关系 步行时间-乘公交车的时间=3.6小时 列出方程是:6.3408=-x x 2、某人从家里骑自行车到学校。

若每小时行15千米,可比预定时间早到15分钟;若每小时行9千米,可比预定时间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系 ⑴ 速度15千米行的总路程=速度9千米行的总路程⑵ 速度15千米行的时间+15分钟=速度9千米行的时间-15分钟 提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程。

方法一:设预定时间为x 小/时,则列出方程是:15(x -0.25)=9(x +0.25)方法二:设从家里到学校有x 千米,则列出方程是:60159601515-=+x x 3、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。

等量关系:快车行的路程+慢车行的路程=两列火车的车长之和设客车的速度为3x 米/秒,货车的速度为2x 米/秒,则 16×3x +16×2x =200+2804、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。

行人的速度是每小时3.6km ,骑自行车的人的速度是每小时10.8km 。

如果一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的时间是26秒。

小学数学 基本的相遇与追及问题 课件+作业(带答案)

小学数学 基本的相遇与追及问题 课件+作业(带答案)

练习5:一辆客车和一辆货车分别从相距1200千米的甲、乙两城出发。客车的速度是货车的2 倍。若两车
同时出发,相向而行,则10小时后两车可以相遇。若两车同时出发,同向而行,经过多长时间,客车可以 从后面追上货车?
相遇路程和:1200千米 相遇时间:10小时
速度和:1200÷10=120(千米/时) 货车速度:120÷(1+2)=40(千米/时)
知识点二:基本追及问题
例题4:一天早晨,小芳以每分钟90米的速度步行去上学。 出发5分钟后,妈妈发现小芳忘记带作业本,
于是以每分钟140米的速度骑车去追小芳。经过多少分钟,妈妈可以追上小芳?
小芳 家
妈妈
分析:
路程差:5×90=450(米) 速度差:140-90=50(米/分钟) 追及时间:450÷50=9(分钟) 答:经过9分钟,妈妈可以追上小芳。
总结:追及时间=路程差÷速度差
练习4:下午放学后,小新从学校出发步行去体育场。小东放学后因为要值日,15分钟后才从学
校出发骑车去体育场。小新的步行速度为每分钟60米,小东的骑车速度为 每分钟160米。经过多少分 钟,小东可以追上小新?
路程差:60×15=900(米) 速度差:160-60=100(米/分钟) 追及时间:900÷100=9(分钟) 答:经过9分钟,小东可以追上小新。
客车前2小时先行驶:80×2=160(千米) 客车和货车共同行驶:460-160=300(千米)
速度和:80+70=150(千米/小时) 相遇时间:300÷150=2(小时)
答:货车行驶2小时后可以与客车相遇。
知识点二:基本追及问题
例题3:甲、乙两列火车从相距150千米的A、B 两地同时出发,同向而行。乙车在前,甲车在后

相遇及追及问题

相遇及追及问题

相遇及追及问题(含答案)相遇及追击问题(一)一•填空题(共12小题)1.五羊公共汽车公司的555路车在A, B两个总站间往返行驶,来回均为每隔x分钟发车一次.小宏在大街上骑自行车前行,发现从背后每隔6分钟开过来一辆555 路车,而每隔3分钟则迎面开来一辆555路车.假设公共汽车与小宏骑车速度均匀,忽略停站耗费时间,则x= ____________ 分钟.2 .在一条街AB上,甲由A向B步行,乙骑车由B向A行驶,乙的速度是甲的速度的3倍,此时公共汽车由始发站A开出向B行进,且每隔x分发一辆车,过了一段时间,甲发现每隔10分有一辆公共汽车追上他,而乙感到每隔5分就碰到一辆公共汽车,那么在始发站公共汽车发车的间隔时间x= _______ 分钟.3•小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车. 假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是—____________ 分钟.4小锋骑车在环城路上匀速行驶,每隔5分钟有一辆公共汽车从对面向后开过,每隔20分钟又有一辆公共汽车从后向前开过,若公共汽车也匀速行驶,不计中途耽误时间,则公交车车站每隔分钟开出一辆公共汽车.5 •某人在公共汽车上发现一个小偷向反方向步行,10秒钟后他下车去追小偷,如其速度比小偷快一倍,比汽车慢;,则追上小偷要( ________________________ )秒・6 •某人沿电车路线行走,每12分钟有一辆电车从后面赶上,每4分钟有一辆电车迎面开来,若行人与电车都是匀速前进的,则电车每隔 _________________ 分钟从起点开出一辆.7.某公交公司停车场内有15辆车,从上午6时开始发车(6时整第一辆车开出),以后每隔6分钟再开出一辆. 第一辆车开出3分钟后有一辆车进场,以后每隔8分钟有一辆车进场,进场的车在原有的15辆车后依次再出车.问到______________ 点时,停车场内第一次出现无车辆?8.通讯员从队伍末尾追赶至队伍前头时用全速进行,其速度为队伍的3倍,当他从队伍前面返回队伍末尾时每分钟减少100米.在队伍前进过程中,通讯员连续三次往返执行任务,途中花费时间共1小时,其中三次往返队伍末尾时间比三次追赶队伍前头时间共少用12分钟,则队伍的长为 _________________ .9.男女运动员各一名,在环行跑道上练习长跑,男运动员比女运动员速度快,如果他们从同一起跑点沿相反方向同时出发,那么每隔25秒相遇一次,现在他们从同一起跑点沿相同方向同时出发,男运动员经过15分钟追上女运动员,并且比女运动员多跑了16圈,女运动员跑了圈. |10 •有甲、乙两辆小汽车模型,在一个环形轨道上匀速行驶,甲的速度大于乙.如果它们从同一点同时出发沿相反方向行驶,那么每隔您分钟相遇一次.现在,它们从同一点同时出发,沿相同方向行驶,当甲第一次追上乙时,乙已经行驶了4圈,此时它们行驶了 _________________________________________________ 分钟.11. 一路电车的起点和终点分别是甲站和乙站,每隔5分钟有一辆电车从甲站发车开往乙站,全程要走15分钟,有一个人从乙站出发沿电车路线骑车前往甲站,他出发的时候,恰好有一辆电车到达乙站,在路上他又遇到了10辆迎面开来的电车,才到达甲站,到甲站时恰好又有一辆电车从甲站开出,问他从乙站到甲站用了_ _ 分钟.占 ’ 八\、4cm 两 12•如图,在矩形 ABCD 中,AB=4cm , AD=12cm P 从点A 向点D 以每秒1cm 的速度运动,Q 以每秒 的速度从点C 出发,在B 、C 两点之间做往返运动, 点同时出发,点P 到达点D 为止,这段时间内线段 有 次与线段AB 平行.13.(巴蜀初2012级第一次月考16题)某人从甲地走往 乙地,甲、乙两地之间有定时的公共汽车往返,且两地 发车的时间间隔都相等。

高中物理相遇和追及问题(完整版)

高中物理相遇和追及问题(完整版)

相遇追及问题一、考点、热点回忆一、追及问题1.速度小者追速度大者类型图象说明匀加速追匀速①t=t0以前,后面物体与前面物体间距离增大②t=t0时,两物体相距最远为x0+Δx③t=t0以后,后面物体与前面物体间距离减小匀速追匀减速④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者度大者追速度小者匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①假设Δx=x0,则恰能追及,两物体只能相遇一次,这也是防止相撞的临界条件匀速追匀加速②假设Δx<x0,则不能追及,此时两物体最小距离为x0-Δx③假设Δx>x0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇匀减速追匀加速①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.二、相遇问题这一类:同向运动的两物体的相遇问题,即追及问题.第二类:相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.求解追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.〔1)列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4)与追及中的解题方法相同.二、典型例题【例1】物体A 、B 同时从同一地点,沿同一方向运动,A 以10m/s 的速度匀速前进,B 以2m/s 2的加速度从静止开始做匀加速直线运动,求A 、B 再次相遇前两物体间的最大距离. 【解析一】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内,A 的速度大于B 的速度,它们间的距离逐渐变大,当B 的速度加速到大于A 的速度后,它们间的距离又逐渐变小;A 、B 间距离有最大值的临界条件是υA =υB . ① 设两物体经历时间t 相距最远,则υA =at ② 把已知数据代入①②两式联立得t =5 s 在时间t 内,A 、B 两物体前进的距离分别为 s A =υA t =10×5 m=50 ms B =12at 2=12×2×52m =25 mA 、B 再次相遇前两物体间的最大距离为 Δs m =s A -s B =50 m -25 m =25 m 【解析二】 相对运动法因为此题求解的是A 、B 间的最大距离,所以可利用相对运动求解.选B 为参考系,则A 相对B 的初速度、末速度、加速度分别是υ0=10 m/s 、υt =υA -υB =0、a =-2 m/s 2. 根据υt 2-υ0=2as .有0-102=2×(-2)×s AB 解得A、B 间的最大距离为s AB =25 m . 【解析三】 极值法物体A 、B 的位移随时间变化规律分别是s A =10t ,s B =12at 2=12×2×t 2 =t 5.则A 、B 间的距离Δs =10t -t 2,可见,Δs 有最大值,且最大值为Δs m =4×(-1)×0-1024×(-1) m =25 m【解析四】 图象法根据题意作出A 、B 两物体的υ-t 图象,如图1-5-1所示.由图可知,A 、B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得t 1=5 s . A 、B 间距离的最大值数值上等于ΔOυA P 的面积,即Δs m =12×5×10 m=25 m .【答案】25 m【点拨】相遇问题的常用方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按〔解法一〕中的思路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3)极值法:设相遇时间为t ,根据条件列方程,得到关于t 的一元二次方程,用判别式进行讨论,假设△>0,即有两个解,说明可以相遇两次;假设△=0,说明刚好追上或相碰;假设△<0,说明追不上或不能相碰.(4)图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解. 拓展如图1-5-2所示是甲、乙两物体从同一地点,沿同一方向做直线运动的υ-t 图象,由图象可以看出 〔 〕A .这两个物体两次相遇的时刻分别是1s 末和4s 末B .这两个物体两次相遇的时刻分别是2s 末和6s 末C .两物体相距最远的时刻是2s 末D .4s 末以后甲在乙的前面【解析】从图象可知两图线相交点1s 末和4s 末是两物速度相等时刻,从0→2s,乙追赶甲到2s 末追上,从2s 开始是甲去追乙,在4s 末两物相距最远,到6s 末追上乙.故选B . 【答案】B【实战演练1】〔2011·新课标全国卷〕甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。

小学奥数专题——相遇问题和追及问题(带答案)

小学奥数专题——相遇问题和追及问题(带答案)
27.甲乙两人分别以每小时6千米,每小时4千米的速度从相距30千米的两地向对方的出发地前进.当两人之间的距离是l 0千米时,他们走了多少小时?
28.一辆公共汽车和一辆小轿车同时从相距 千米的两地相向而行,公共汽车每小时行 千米,小轿车每小时行 千米,问几小时后两车相距 千米?
29.两列火车从相距 千米的两城相向而行,甲列车每小时行 千米,乙列车每小时行 千米, 小时后,甲、乙两车还相距多少千米?
25.孙悟空在花果山,猪八戒在高老庄,花果山和高老庄中间有条流沙河,一天,他们约好在流沙河见面,孙悟空的速度是200千米/小时.猪八戒的速度是150千米/小时,他们同时出发2小时后还相距500千米,则花果山和高老庄之间的距离是多少千米?
26.两列货车从相距450千米的两个城市相向开出,甲货车每小时行38千米,乙货车每小时行40千米,同时行驶4小时后,还相差多少千米没有相遇?
15.两列城铁从两城同时相对开出,一列城铁每小时走 千米,另一列城铁每小时走 千米,在途中每列车先后各停车 次,每次停车 分钟,经过 小时两车相遇,求两城的距离?
16.甲、乙两架飞机同时从一个机场起飞,向同一方向飞行,甲机每小时行 千米,乙机每小时行 千米,飞行 小时后它们相隔多少千米?这时候甲机提高速度用 小时追上乙机,甲机每小时要飞行多少千米?
17.南辕与北辙两位先生对于自己的目的地s城的方向各执一词,于是两人都按照自己的想法驾车同时分别往南和往北驶去,二人的速度分别为50千米/时,60千米/时,那么北辙先生出发5小时他们相距多少千米?
18.南辕与北辙两位先生对于自己的目的地 城的方向各执一词,于是两人都按照自己的想法驾车同时分别往南和往北驶去,二人的速度分别为 千米/时, 千米/时,那么北辙先生出发 小时他们相距多少千米?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题:相遇及追及问题一.相遇及追及问题1.特点:追及问题是两个物体运动的问题。

两个物体的速度相等往往是解题的关键,此时两物体间的距离可能最大,也可能最小。

2.解题方法:选同一坐标原点、同一正方向、同一计时起点,分别列出两个物体的位移方程及速度方程。

解题的关键是找出两物体间位移关系、速度关系。

当位移相等时,两物体相遇;两物体速度相等时,两物体相距最远或最近。

这类问题如能选择好参照物,可使解题过程大大简化。

巧用运动图象亦可使解题过程大大简化。

例1、车从静正开始以1m/s2的加速度前进,车后相距s为25m处,某人同时开始以6m/s的速度匀速追车,能否追上?如追不上,求人、车间的最小距离。

解析:依题意,人与车运动的时间相等,设为t。

当人追上车时,两者之间的位关系为:s人+s=s车即: v人t+ s= at2/2由此方程求解t,若有解,则可追上;若无解,则不能追上。

代入数据并整理得:t2-12t+50=0△=b2-4ac=122-4×50×1=-56<0所以,人追不上车。

在刚开始追车时,由于人的速度大于车的速度,因此人车间的距离逐渐减小;当车速当于人的速度时,人车间的距离逐渐增大。

因此,当人车速度相等时,两者间距离最小。

at′=6 t′=6s在这段时间里,人、车的位移分别为:s人=v人t=6×6=36ms车=at′2/2=1×62/2=18m△s=s0+s车-s人=25+18-36=7m例2、甲车在前以15m/s的速度匀速行驶,乙车在后以9m/s的速度行驶。

当两车相距32m时,甲车开始刹车,加速度大小为1m/s2。

问经多少时间乙车可追上甲车?分析:乙此追上甲车可能有两种不同情况:甲车停止前被追及和甲车停止后被追及。

究竟是哪一种情况,应根据解答结果,由实际情况判断。

解答:设经时间t追上。

依题意:v甲t-at2/2+L=v乙t15t-t2/2+32=9tt=16s t=-4s(舍去)甲车刹车的时间t′=v/a=15s显然,甲车停止后乙再追上甲。

甲车刹车的位移s甲=v2/2a=152/2=112.5m乙车的总位移s乙=s甲+32=144.5mt=s乙/v乙=144.5/9=16.06s三.求解追击问题的常用方法1、通过运动过程的分析,找到隐含条件,从而顺利列方程求解,例如:⑴、匀减速物体追赶同向匀速物体时,能追上或恰好追不上的临界条件:即将靠近时,追赶者速度等于被追赶者速度(即当追赶者速度大于被追赶者速度时,能追上;当追赶者速度小于被追赶者速度时,追不上)⑵、初速为零的匀加速物体追赶同向匀速物体时,追上前两者具有最大距离的条件:追赶者的速度等于被追赶者的速度。

2.利用二次函数求极值的数学方法,根据物理现象,列方程求解。

3.在追击问题中还常常用到求“面积”的方法,它可以达到化繁为简,化难为易,直观形象的效果。

例3、甲乙两车同时同向从同一地点出发,甲车以v1=16m/s的初速度,a1=-2m/s2的加速度作匀减速直线运动,乙车以v2=4m/s的速度,a2=1m/s2的加速度作匀加速直线运动,求两车再次相遇前两车相距最大距离和再次相遇时两车运动的时间。

解法一:两车同时同向出发,开始一段由于甲车速度大于乙车速度,将使两车距离拉开,由于甲车作匀减速运动,乙车作加速运动,总有某一时刻两车速度相同,此时两车相距最远,随着甲车进一步减速,乙车进一步加速,动车速度大于甲车速度,使两车距离变小,当乙车追上甲车时.两车运动位移相同。

当两车速度相同时,两车相距最远,此时两车运动时间为t1,两车速度为v对甲车: v=v1+a1t1对乙车: v=v2+a2t1两式联立得 t1=(v1-v2)/(a1-a2)=4s此时两车相距△s=s1-s2=(v1t1+a1t12/2)- (v2t1+a2t12/2)=24m当乙车追上甲车时,两车位移均为s,运动时间为t.则:v1t+a1t2/2=v2t2+a2t2/2得 t=8s 或t=0(出发时刻,舍去。

)解法二:甲车位移 s 1= v 1t+a 1t 2/2 乙车位移 s 2= v 2t 2+a 2t 2/2 某一时刻两车相距为△s△s=s 1-s 2= (v 1t+a 1t 2/2)-(v 2t 2+a 2t 2/2) =12t-3t 2/2当t=-b/2a 时,即t=4s 时,两车相距最远 △s=12×4-3×42/2=24m 当两车相遇时,△s=0,即12t-3t 2/2=0 ∴ t=8s 或t=0(舍去)例4、一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s 2的加速度开始行驶,恰在这时一辆自行车以6m/s 的速度匀速驶来,从后边超过汽车。

试求:汽车从路口开动后,在追上自行车之前经过多长时间两车相距最远?此时距离是多少?解法一、利用二次函数极值法求解设经过时间t 汽车和自行车之间的距离ΔS ,由如图1可得 ΔS = S 自 - S 汽 =v 自t - 21at 2 =6t -23t 2二次函数求极值的条件可知:当t= -a b 2=36(s )= 2(s )时两车之间的距离有极大值,且ΔS ma x =6×2 -23×22=6(m )解法二、利用分析法求解自行车在追击汽车的前一阶段过程中,由于汽车的速度小于自行车的速度,汽车与自行车之间的距离越来越大;当汽车的速度大于自行车的速度以后,汽车与自行车之间的距离便开始缩小,很显然,当汽车的速度与自行车的速度相等时,两车之间的距离最大。

由上述分析可知当两车之间的距离最大时有v 汽 =at = v 自 ∴ t =a v 自=36(s )=2(s )∵ΔS ma x = S 自 - S 汽∴ΔS ma x = v 自t - 21at 2 =6×2 -23×22 =6(m )解法三、利用图象求解在同一V---t 图中画出自行车和汽车的速度图线,如图2所示,其中Ⅰ表示自行车的速度图线,Ⅱ表示汽车的速度图线,自行车的位移S 自等于图线Ⅰ与时间轴围成的矩形的面积,而汽车的位移S 汽 则等于图线Ⅱ与时间轴围成的三角形的面积。

两车之间的距离则等于图中矩形的面积与三角形面积的差,不难看出,当t =t 0时矩形与三角形的面积之差最大,即: ΔS ma x =6t 0 - 21t 0×6 (1)因为汽车的速度图线的斜率等于汽车的加速度大小∴tg θ=06t =a∴ t 0 =a 6=36(s )=2(s ) (2)由上面(1)、(2)两式可得ΔS ma x =6 (m ) 解法四、利用相对运动求解 选自行车为参照物,则从开始运动到两车相距最远这段过程中,汽车相对此参照物的各个物理量的分别为:v 相初 = 6m/s ,a 相 = -3 m/s 2, v 相末 = 0 。

由公式 2a 相S 相 = v 相末2- v 相初2 得 S 相 =相相初相末a v v 222-=)3(2602-⨯- =6(m )例5、A 、B 两列火车在同一轨道上同向行驶, A 在前, 速度为v A =10m/s, B 车在后速度 v B =30m/s. 因大雾能见度低, B 车在距A 车500m 时, 才发现前方有A 车. 这时B 车立即刹车, 但要经过1800m B 车才能停止. 问:(1) A 车若仍按原速前进, 两车是否会相撞? 若会相撞, 将在何时何地发生?(2) B 车在刹车的同时发出信号, A 车司机在收到信号1.5s 后加速前进, 求A 车的加速度多大时, 才能避免事故发生(1) B 车开始刹车经31s 在距开始刹车处810m 两车相撞.(2) A 车做匀加速运动, 加速度至少为0.15m/s 2时, 才能避免相撞.练习:1、在一条公路上并排停着A 、B 两车,A 车先启动,加速度a 1=20m/s 2,B 车晚3s 启动,加速度a 2=30m/s 2,以A 启动为计时起点,问:在A 、B 相遇前经过多长时间两车相距最远?这个距离是多少?解一、两车速度相等时,相距最远。

a 1t=a 2(t-3) 得 t=9s∴ △s=a 1t 2/2-a 2(t-3)2/2=270m解二、 △s=a 1t 2/2-a 2(t-3)2/2=-5t 2+90t-135=-5(t 2-18t+27) 二次项系数为负,有极大值。

△s=-5(t-9)2+270 当t=9s 时,△s 有极大值 △s=270m 解三、用图象法求。

作出v —t 图如图。

由图可知,在t=9s△s 即为图中斜三角形的面积。

△s=3×180/2=270m2、A 、B 两车在一条水平直线上同向匀速行驶,B 车在前,车速v 2=10m/s ,A 车在后,车速72km/h ,当A 、B 相距100m 时,A 车用恒定的加速度a 减速。

求a 为何值时,A 车与B 车相遇时不相撞。

解一:作物理情景示意图如图所示。

对A : s 1=v 1t-at 2/2 ① v 2=v 1-at ② 对B : s 2=v 2t ③ 且 s 1-s 2=100m由①、③得 100=20t-at 2/2-10t=10t-at 2/2 ④ 由②、④得 t=20s a=0.5m/s 2 解二、利用平均速度公式。

s 1=(v 1+v 2)t/2=15t s 2=v 2t=10ts 1-s 2=15t-10t=100∴ t=20s由v 2=v 1-at 得 a=0.5m/s 2解三、作出v —t 图,如图。

图中三角形面积表示A 车车速由20m/s 到10m/s 时,A比B 多之的位移,即s 1-s 2=100m 。

100=10×t/2 ∴ t=20s |a|=tg θ=1/2=0.5m/s 2解四、以B车为参照物,用相对运动求解。

A相对于B车的初速度为10m/s,A以a减速,行驶100m后“停下”,跟B 相遇而不相撞。

vt 2=v2-2as0=102-2a100 a=0.5m/s2v 2=v1-at得 t=20s3.甲车以3m/s2的加速度,由静止开始做匀加速直线运动,乙车在甲车运动2s后从同一在点由静止出发,以4m/s2的加速度做匀加速直线运动,两车运动方向一致,在乙车追上甲之前,两车距离最大值是A.18m B.23.5m C.24m D.28m4.经检测汽车A的制动性能:以标准速度20m/s在平直公路上行使时,制动后40s停下来。

现A在平直公路上以20m/s的速度行使发现前方180m处有一货车B以6m/s的速度同向匀速行使,司机立即制动,能否发生撞车事故?。

相关文档
最新文档