(完整)四年级+相遇问题与追及问题
小学四年级奥数题专题讲义:相遇问题与追击问题

行程问题之两大基本问题:相遇和追击相遇问题(一)相遇问题是研究相向运动中的速度、时间和路程三者之间关系的问题,解答这类问题,要求大家理解和掌握下面的基本数量关系:相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间例1 东西两地间有一条公路长217.5千米,甲车以每小时25千米的速度从东到西地,1.5小时后,乙车从西地出发,再经过3小时两车还相距15千米。
乙车每小时行多少千米?分析:从图中可以看出,要求乙车每小时行多少千米,关键要知道乙车已经行了多少路程和行这段路程所用的时间。
解:(1)甲车一共行多少小时?1.5+3=4.5(小时)(2)甲车一共行多少千米路程?25×4.5=112.5(千米)(3)乙车一共行多少千米路程?217.5-112.5=105(千米)(4)乙车每小时行多少千米?(105-15)÷3=30(千米)答:乙车每小时行30千米。
【边学边练】AB两地间有一条公路长2800米,甲车从A地出发5分钟后,乙车从B地出发,又经过10分钟两车相遇。
已知乙车每分钟行100米,甲车每分钟行多少米?例2 兄妹二人同时从家里出发到学校去,家与学校相距1400米。
哥哥骑自行车每分钟行200米,妹妹每分钟走80米。
哥哥刚到学校就立即返回来在途中与妹妹相遇。
从出发到相遇,妹妹走了几分钟?相遇处离学校有多少米?分析:从图中可以看出,哥与妹妹相遇时他们所走的路程的和相当于从家到学校距离的2倍。
因此本题可以转化为“哥哥妹妹相距2800米,两人同时出发,相向而行,哥哥每分钟行200米,妹妹每分钟行80米,经过几分钟相遇?”的问题,解答就容易了。
解:(1)从家到学校的距离的2倍:1400×2=2800(米)(2)从出发到相遇所需的时间:2800÷(200+80)=10(分)(3)相遇处到学校的距离:1400-80×10=600(米)答:从出发到相遇,妹妹走了10分钟,相遇处离学校有600米。
四、追及问题和相遇问题

§4 追及问题【考点提示】重点:掌握追及问题的分析方法,知道“追及”过程中的临界条件难点:“追及”过程中的临界分析【知识要点】一、运动学中的追赶问题1、匀减速运动物体追赶同向匀速运动物体时,追上或恰好追不上的临界条件:即将追及时,追赶者速度等于被追赶者速度。
2、初速为零的匀加速运动物体追赶同向匀速运动物体时,追上之前两者具有最大距离的条件:追赶者与被追赶者的速度相同。
3、被追的物体作匀减速运动,一定要注意追上前该物是否已停止运动。
二,解题要点1.两个关系:即时间关系和位移关系2.一个条件:即两者速度相等,它往往是物体间能否追上、追不上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
3.解题思路和方法【典型例题】例1 汽车以加速度a由静止出发,在车后与车相距s处的人同时以速度v沿车行驶方向匀速地追赶汽车,则a、v、s三者满足什么条件时,人追不上汽车?且在这种情况下,人、车间的最小距离为多少?例2 从离地面高度为h处有自由下落的甲物体,同时在它正下方的地面上有乙物体以初速度v0竖直上抛,要使两物体在空中相碰,则做竖直上抛运动物体的初速度v0应满足什么条件?(不计空气阻力,两物体均看作质点).若要乙物体在下落过程中与甲物体相碰,则v0应满足什么条件?例 3 在平直的轨道上甲、乙两物体相距为s,它们同时沿同方向开始运动,甲在前面做初速度为零,加速度为a1的匀加速直线运动,乙在后面作初速度为v0,加速度为a2的匀加速度直线运动,假设乙从甲旁边通过而互不影响,下列情况可能发生的是()A、当a1 = a2 时,则物体可能相遇一次B、当a1 > a2 时,则物体可能相遇两次C、当a1 < a2 时,则物体可能相遇两次D、当a1 > a2 时,则物体可能相遇一次可能不相遇例4 一辆值勤的警车停在公路旁,当警员发现从他旁边以v = 8m/s的速度匀速行驶的货车有违章行为时,决定前去拦截,经2.5s,警车发动起来,以a = 2m/s2加速度匀加速开出,警车以a = 2m/s2维持匀速运动能达到的最大速度为126km/h,试问:1)、警车要多长时间才能追上违章的货车?2)、在警车追上货车之前,两车间的最大距离是多少?例5 羚羊从静止开始奔跑,经过50m能加速到最大速度25m/s,并能维持一段较长时间;猎豹从静止开始奔跑,经过60m能加速到最大速度30m/s,以后只能维持这速度4.0s。
追及和相遇问题

例题一 一小汽车从静止开始以3m/s 静止开始以 一小汽车从静止开始以3m/s2 的加速度行驶时 行驶时, 的加速度行驶时,恰有一自行车 以6m/s的速度从车边匀速驶过, (1)汽车追上自行车之前经过多 长时间两者相距最远? 长时间两者相距最远?此距离是 多少?( 何时追上自行车, ?(2 多少?(2)何时追上自行车,追 上自行车时汽车的速度是多少? 上自行车时汽车的速度是多少?
物理情景图 解法一: 解法一: (1)开始时,自行车比汽车速度大,两者相距 (1)开始时,自行车比汽车速度大, 越来越远,当速度相等时,两车距离最大。 越来越远,当速度相等时,两车距离最大。 V汽=at = V自 , t= V自/a= 6/3 =2 (s) 6( △Xmax= V自t - at2/2= 6(m)
(m/s)
1
2
3
4 T/S
解法三 (利用二次函数求极值) 利用二次函数求极值) 设汽车追上自行车之前经时间t (1)设汽车追上自行车之前经时间t相 距最远。 距最远。 △x=x自-x汽 =v自t-at2/2 t-3 =6t-3t2/2 最大。 t=-b/2 当t=-b/2a=2s时,△x最大。 此时, △xmax=6m 此时, (2)同上(略) 同上(
如何处理追及问题
1、认清两个关系(位移关系、时间关系), 认清两个关系(位移关系、时间关系), 画出运动情况示意图。 画出运动情况示意图。 抓住一个条件:极值条件或临界条件; 2、抓住一个条件:极值条件或临界条件; 要注意挖掘隐含条件, 刚好” 要注意挖掘隐含条件,如“刚好”、 恰好” 最多” 至少” “恰好”、“最多”、“至少” 等,它 们往往对应某个临界条件。 们往往对应某个临界条件。 列方程求解( 3、列方程求解(根据位移关系或时间关 系)。
追及与相遇问题

见全品练习册,20页的13题
方法一:设:经过时间t,人与车速度相等,
因
人追不上车。人车间的最小距离为
方法二:设:经过时间t,人与车相距S,
则S= S0+S车 - S人=25 + 0.5 t2 - 6 t 令S=0,既假设人能追上车,0.5 t2 - 6 t+25=0 因b2-4ac = (-6)2 -4×0.5×25=-14<0,方程无 解,故人追不上车 当t=人车间的最小距离为 s =25 + 0.5×62 - 6× 6=7m 时,s有最小值
追及与相遇问题
一、追及问题:二者速度相等时相距最远 (或者最近) 1、后面加速,前面匀速,二者相距x 。一定 能追上,二者速度相等时相距最远 。
2、后面匀速,前面从静止加速,二者相距x 。 不一定能追上,二者速度相等时相距最远近。
2 例6、车从静止开始以1m/s 的加
速度前进,车后相距s0为25m处, 某人同时开始以6m/s的速度匀速 追车,能否追上?若追不上,求 人、车间的最小距离。
(完整版)相遇问题与追及问题

相遇与追及问题一、学习目标1.理解相遇与追及的运动模型,掌握相遇与追及这两种情况下路程、时间、速度这三个基本量之间的关系.会利用这个关系来解决一些简单的行程问题.2.体会数形结合的数学思想方法.二、主要内容1.行程问题的基本数量关系式:路程二时间X速度;速度二路程F时间;时间二路程F速度.2.相遇问题的数量关系式:相遇路程二相遇时间X速度和;速度和二相遇路程F相遇时间;相遇时间二相遇路程F速度和.3.追及问题的数量关系式:追及距离二追及时间X速度差;速度差二追及距离F追及时间;追及时间二追及距离F速度差.4.能熟练运用路程、时间、速度这三个基本量的关系,结合图形分析,解决一些简单的行程问题.三、例题选讲例1两辆汽车同时分别从相距500千米的A,B两地出发,相向而行,速度分别为每小时40千米和每小时60千米.求几小时后两车相遇.例2甲车在乙车前200千米,同时出发,速度分别为每小时40千米与60千米.问多少小时后,乙车追上甲车.例3一辆公共汽车和一辆小轿车同时从相距598千米的两地相向而行.公共汽车每小时行40千米,小轿车每小时行52千米,问几小时后两车相距138千米?例4甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇.求东、西两地相距多少千米?例6一辆卡车和一辆摩托车同时从A、B两地相对开出,两车在途中距A地60千米处第一次相遇•然后,两车继续前进,卡车到达B地,摩托车到达A地后都立即返回,两车又在途中距B地30千米处第二次相遇.求A、B两地相距多少千米?例7甲、乙、丙三人进行100米赛跑•当甲到达终点时,乙离终点还有20米,丙离终点还有40米.如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多远?例8小明步行上学,每分行75米,小明离家12分后,爸爸骑单车去追,每分行375米.问爸爸出发多少分后能追上小明?例9解放军某部快艇追击敌舰,追到A岛时,敌舰已逃离该岛15分钟,已测出敌舰每分钟行驶1000米,解放军快艇每分钟行驶1360米,在距离敌舰600米处可开炮射击.问解放军快艇从A岛出发经过多少分钟就可以开炮射击敌舰?例10甲、乙两人在环形跑道上以各自的不变速度跑步,如果两人同时从同地相背而行乙跑4分钟后两人第一次相遇,已知甲跑一周需6分钟,那么乙跑一周需要多少分钟?例11两名运动员在湖周围环形道上练习长跑,甲每分跑250米,乙每分跑200米,两人同时从两地同向出发,经过45分甲追上乙,如果两人同时同地反向出发,经过多少分两人相遇?例12甲、乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米,如果她们同时分别从直路两端点出发,跑了6分,那么,这段时间内,两人共迎面相遇了多少次?巩固练习:1、甲、乙两站相距980千米,两列火车由两站相对开出,快车每小时行50千米,慢车每小时行多少千米,两车经10小时能相遇?2、甲车每小时行60千米,1小时后,乙车紧紧追赶,速度为每小时80千米,几小时后乙车可追上甲车?3、早晨6时,有一列货车和一列客车同时从相距360千米的甲、乙两城相对开出,中途相遇,这期间,货车停车一次60分钟,客车停车两次各30分钟,已知货车每小时行42千米,客车每小时行78千米,问两车在几点钟相遇?4、东、西两镇相距240千米,一辆客车从上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12点,两车恰好在两镇间的中点相遇,如果两车都从上午8时由两地相向开出,速度不变,到上午10时,两车还相距多少千米?5、骑单车从甲地到乙地,以每小时10千米的速度行进,下午1点到,以每小时15千米的速度行进,上午11点到.如果希望中午12点到,那么应以怎样的速度行进呢?6、某人由甲地去乙地,如果他从甲地先骑摩托车行了12小时,再换骑自行车行9小时,恰好到达乙地.如果他从甲地先骑自行车行了21小时,再换骑摩托车行8小时,也恰好到达乙地.问:全程骑摩托车需要多少小时才能到达乙地?7、兄妹两人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门口时,发现忘了带课本,立即沿原路返回去取,行至离校门口180米处与妹妹相遇,他们家离学校多少米?8、兄妹两人在周长300米的圆形水池边玩.从同一地点同时背向饶水池而行.哥哥每分钟走13米,妹妹每分钟走12米.他们第5次相遇时,哥哥共走了多长的路?课后作业:1.甲以每小时4千米的速度步行去学校,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙多少小时可追上甲?2.小张从家到公园,原打算每分钟走50米,为了提早10分钟到,他把速度加快,每分钟走75米.小张家到公园有多少米?3.父亲和儿子都在某厂工作,他们从家里出发步行到工厂,父亲用40分钟,儿子用30分钟.如果父亲比儿子早5分钟离家,问儿子用多少分钟可赶上父亲?4.解放军某部小分队,以每小时6千米的速度到某地执行任务,途中休息30分后继续前进,在出发5.5小时后,通讯员骑摩托车以56千米的速度追赶他们。
四年级行程问题、相遇问题和追及问题的解题技巧

行程问题、相遇问题和追及问题的解题技巧相遇问题两个物体从两地出发,相向而行,经过一段时间,必然会在途中相遇,这类题型就把它称为相遇问题。
相遇问题是研究速度,时间和路程三者数量之间关系的问题。
它和一般的行程问题区别在:不是一个物体的运动,所以,它研究的速度包含两个物体的速度,也就是速度和。
相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间相遇路程=甲走的路程+乙走的路程甲的速度=相遇路程÷相遇时间 -乙的速度甲的路程=相遇路程-乙走的路程解答这类问题,要弄清题意,按照题意画出线段图,分析各数量之间的关系,选择解答方法.。
相遇问题除了要弄清路程,速度与相遇时间外,在审题时还要注意一些重要的问题:是否是同时出发,如果题目中有谁先出发,就把先行的路程去掉,找到同时行的路程。
驶的方向,是相向,同向还是背向.不同的方向解题方法就不一样。
是否相遇.有的题目行驶的物体并没有相遇,要把相距的路程去掉;有的题目是两者错过,要把多行的路程加上,得到同时行驶的路程.。
追击问题两物体在同一直线或封闭图形上运动所涉及的追及、相遇问题,通常归为追及问题。
这类常常会在考试考到。
一般分为两种:一种是双人追及、双人相遇,此类问题比较简单;一种是多人追及、多人相遇,此类则较困难。
追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间一、行程问题、相遇问题和追及问题的核心公式:行程问题最核心的公式“速度=路程÷时间”。
由此可以演变为相遇问题和追及问题。
其中:相遇时间=相遇距离÷速度和,追及时间=追及距离÷速度差。
速度和=快速+慢速速度差=快速-慢速二、相遇距离、追及距离、速度和(差)及相遇(追及)时间的确定第一:相遇时间和追及时间是指甲乙在完成相遇(追及)任务时共同走的时间。
第二:在甲乙同时走时,它们之间的距离才是相遇距离(追及距离)分为:相遇距离——甲与乙在相同时间内走的距离之和;S=S1+S2甲︳→ S1 →∣← S2 ←︳乙A C B追及距离——甲与乙在相同时间内走的距离之差甲︳→ S1 ←∣乙→ S2 ︳A B C在相同时间内S甲=AC , S乙=BC 距离差 AB =S甲- S乙第三:在甲乙同时走之前,不管是甲乙谁先走,走的方向如何?走的距离是多少?都不影响相遇时间和追及时间,只是引起相遇距离和追及距离的变化,具体变化都应视情况从开始相距的距离中加减。
小学数学常考相遇问题、追及问题(附例题、解题思路)

小学数学常考相遇问题、追及问题(附例题、解题思路).DOC【含义】两个运动的物体同时由两地出发相向而行,在途中相遇。
这类应用题叫做相遇问题。
【数量关系】相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式。
例1南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?解392÷(28+21)=8(小时)答:经过8小时两船相遇。
例2小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?解“第二次相遇”可以理解为二人跑了两圈。
因此总路程为400×2相遇时间=(400×2)÷(5+3)=100(秒)答:二人从出发到第二次相遇需100秒时间。
例3甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。
解“两人在距中点3千米处相遇”是正确理解本题题意的关键。
从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,相遇时间=(3×2)÷(15-13)=3(小时)两地距离=(15+13)×3=84(千米)答:两地距离是84千米。
追及问题【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。
这类应用题就叫做追及问题。
【数量关系】追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。
小学数学常考相遇问题、追及问题(附例题、解题思路)

相遇问题【含义】两个运动的物体同时由两地出发相向而行,在途中相遇.这类应用题叫做相遇问题.【数量关系】相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式.例1南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?解392÷(28+21)=8(小时)答:经过8小时两船相遇.例2小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?解“第二次相遇”可以理解为二人跑了两圈.因此总路程为400×2相遇时间=(400×2)÷(5+3)=100(秒)答:二人从出发到第二次相遇需100秒时间.例3甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离.解“两人在距中点3千米处相遇”是正确理解本题题意的关键.从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,相遇时间=(3×2)÷(15-13)=3(小时)两地距离=(15+13)×3=84(千米)答:两地距离是84千米.追及问题【含义】两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体.这类应用题就叫做追及问题.【数量关系】追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式.例1好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?解(1)劣马先走12天能走多少千米?75×12=900(千米)(2)好马几天追上劣马?900÷(120-75)=20(天)列成综合算式75×12÷(120-75)=900÷45=20(天)答:好马20天能追上劣马.例2小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑.小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米.解小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(500-200)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间.又知小明跑200米用40秒,则跑500米用[40×(500÷200)]秒,所以小亮的速度是(500-200)÷[40×(500÷200)]=300÷100=3(米)答:小亮的速度是每秒3米.例3我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击.已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?解敌人逃跑时间与解放军追击时间的时差是(22-16)小时,这段时间敌人逃跑的路程是[10×(22-6)]千米,甲乙两地相距60千米.由此推知追及时间=[10×(22-6)+60]÷(30-10)=220÷20=11(小时)答:解放军在11小时后可以追上敌人.例4一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离.解这道题可以由相遇问题转化为追及问题来解决.从题中可知客车落后于货车(16×2)千米,客车追上货车的时间就是前面所说的相遇时间,这个时间为16×2÷(48-40)=4(小时)所以两站间的距离为(48+40)×4=352(千米)列成综合算式(48+40)×[16×2÷(48-40)]=88×4=352(千米)答:甲乙两站的距离是352千米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简单的相遇与追及问题
一、学习目标
1. 理解相遇与追及的运动模型,掌握相遇与追及这两种情况下路程、时间、速度这三个基本量之间的关系.会利用这个关系来解决一些简单的行程问题.
2. 体会数形结合的数学思想方法.
二、主要内容
1. 行程问题的基本数量关系式:
路程=时间×速度;速度=路程÷时间;时间=路程÷速度.
2.相遇问题的数量关系式:
相遇路程=相遇时间×速度和;
速度和=相遇路程÷相遇时间;
相遇时间=相遇路程÷速度和.
3.追及问题的数量关系式:
追及距离=追及时间×速度差;
速度差=追及距离÷追及时间;
追及时间=追及距离÷速度差.
4. 能熟练运用路程、时间、速度这三个基本量的关系,结合图形分析,解决一些简单的行程问题.
三、例题选讲
例1两辆汽车同时分别从相距500千米的A,B两地出发,相向而行,速度分别为每小时40千米和每小时60千米.求几小时后两车相遇.
例2甲车在乙车前200千米,同时出发,速度分别为每小时40千米与60千米.问多少小时后,乙车追上甲车.
例3一辆公共汽车和一辆小轿车同时从相距598千米的两地相向而行.公共汽车每小时行40千米,小轿车每小时行52千米,问几小时后两车相距138千米?
例4 甲、乙两辆汽车同时从东、西两地相向开出,甲车每小时行56千米,乙车每小时行48千米,两车在离中点32千米处相遇.求东、西两地相距多少千米?
例5甲、乙两人同时从相距18千米的两地相向而行,甲每小时行4千米,乙每小时行5千米.甲带着一只狗,每小时走20千米,狗走得比人快,同甲一起出发,碰到乙后,它往甲方向奔走;碰到甲后,它又往乙方向奔走,直到甲、乙两人相遇为止,这只狗一共奔走了多少千米?
例6一辆卡车和一辆摩托车同时从A、B两地相对开出,两车在途中距A地60千米处第一次相遇.然后,两车继续前进,卡车到达B地,摩托车到达A地后都立即返回,两车又在途中距B地30千米处第二次相遇.求A、B两地相距多少千米?
例7甲、乙、丙三人进行100米赛跑.当甲到达终点时,乙离终点还有20米,丙离终点还有40米.如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多远?
例8小明步行上学,每分行75米,小明离家12分后,爸爸骑单车去追,每分行375米.问爸爸出发多少分后能追上小明?
例9解放军某部快艇追击敌舰,追到A岛时,敌舰已逃离该岛15分钟,已测出敌舰每分钟行驶1000米,解放军快艇每分钟行驶1360米,在距离敌舰600米处可开炮射击.问解放军快艇从A岛出发经过多少分钟就可以开炮射击敌舰?
例10甲、乙两人在环形跑道上以各自的不变速度跑步,如果两人同时从同地相背而行,乙跑4分钟后两人第一次相遇,已知甲跑一周需6分钟,那么乙跑一周需要多少分钟?
例11两名运动员在湖周围环形道上练习长跑,甲每分跑250米,乙每分跑200米,两人同时从两地同向出发,经过45分甲追上乙,如果两人同时同地反向出发,经过多少分两人相遇?
例12甲、乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米,如果她们同时分别从直路两端点出发,跑了6分,那么,这段时间内,两人共迎面相遇了多少次?
四、练习题
1、甲、乙两站相距980千米,两列火车由两站相对开出,快车每小时行50千米,慢车每小时行多少千米,两车经10小时能相遇?
2、甲车每小时行60千米,1小时后,乙车紧紧追赶,速度为每小时80千米,几小时后乙车可追上甲车?
3、早晨6时,有一列货车和一列客车同时从相距360千米的甲、乙两城相对开出,中途相遇,这期间,货车停车一次60分钟,客车停车两次各30分钟,已知货车每小时
行42千米,客车每小时行78千米,问两车在几点钟相遇?
4、东、西两镇相距240千米,一辆客车从上午8时从东镇开往西镇,一辆货车在上午9时从西镇开往东镇,到正午12点,两车恰好在两镇间的中点相遇,如果两车都从上午8时由两地相向开出,速度不变,到上午10时,两车还相距多少千米?
5、骑单车从甲地到乙地,以每小时10千米的速度行进,下午1点到,以每小时15千米的速度行进,上午11点到.如果希望中午12点到,那么应以怎样的速度行进呢?
6、A、B两地相距480千米.甲、乙两车同时从两站相对出发,甲车每小时行35千米,乙车每小时行45千米,一只燕子以每小时行50千米的速度和甲车同时出发向乙车飞去,遇到乙车又折回向甲车返飞去,遇到甲车又返飞向乙车,这样一直飞下去,燕子飞了多少米两车才相遇?
7、某人由甲地去乙地,如果他从甲地先骑摩托车行了12小时,再换骑自行车行9小时,恰好到达乙地.如果他从甲地先骑自行车行了21小时,再换骑摩托车行8小时,也恰好到达乙地.问:全程骑摩托车需要多少小时才能到达乙地?
8、兄妹两人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60米,哥哥到校门口时,发现忘了带课本,立即沿原路返回去取,行至离校门口180米处与妹妹相遇,他们家离学校多少米?
9、兄妹两人在周长300米的圆形水池边玩.从同一地点同时背向饶水池而行.哥哥每分钟走13米,妹妹每分钟走12米.他们第5次相遇时,哥哥共走了多长的路?。