高中物理相遇和追及问题(完整版)

合集下载

(完整版)高中物理相遇和追及问题(完整版)

(完整版)高中物理相遇和追及问题(完整版)

、考点、热点回顾一、追及问题1. 类型图象 说明匀加速追匀速①t=t 0 以前,后面物体与 前面物体间距离增大②t=t 0 时,两物体相距最 远为 x 0+Δx③t=t 0 以后,后面物体与前面物体间距离减小④能追及且只能相遇一 次匀速追匀减速匀加速追匀减速2. 速度大者追速度小者度大者追速度小者 开始追及时, 后面物体与 前面物体间的距离在减小, 当 两物体速度相等时,即 t=t0 时刻:① 若Δ x=x0, 则恰能追 及,两物体只能相遇一次, 这相遇追及问题匀减速追匀速也是避免相撞的临界条件② 若Δ x<x0, 则不能追 及,此时两物体最小距离为x0- Δ x③ 若Δ x>x0, 则相遇两次,设t1 时刻Δ x1=x0, 两物体第一次相遇 ,则 t2 时刻两物体第 二次相遇① 表中的Δ x 是开始追及以后,后面物体因速度大而比前面物体多运动的位移; ② x 0是开始追及以前两物体之间的距离; ③ t 2-t 0=t 0-t 1;④ v 1 是前面物 体的速度, v 2是后面物体的速度 . 二、相遇问题这一类 : 同向运动的两物体的相遇问题 , 即追及问题 .第二类 : 相向运动的物体 , 当各自移动的位移大小之和等于开始时两物体的距离时相遇 . 解此类问题首先应注意先画示意图 , 标明数值及物理量 ; 然后注意当被追赶的物体做匀 减速运动时 , 还要注意该物体是否停止运动了 .求解追及问题的分析思路(1) 根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物 体运动时间之间的关系.(2) 通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追 及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等 时有最大距离; 速度大者减速追赶速度小者, 在两物体速度相等时有最小距离,等等. 利用 这些临界条件常能简化解题 过程.(4)求解此类问题的方法, 除了以上所述根据追及的主要条件和临界条件解联立方程外, 还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:匀速追匀加速匀减速追匀加速相遇问题分为追及相遇和相向运动相遇两种情形, 其主要条件是两物体在相遇处的位置 坐标相同.(1) 列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2) 利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4) 与追及中的解题方法相同.【例 1】物体 A 、B 同时从同一地点, 沿同一方向运动, A 以 10m/s 的速度匀速前进, B 以2m/s 2 的加速度从静止开始做匀加速直线运动,求 A 、 B 再次相遇前两物体间的最大距离.【 解析一 】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度 a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内, A 的速度大于 B 的速度,它们间的距离逐渐变大,当 B 的速度加速到大于 A 的速度后,它们间的距离又逐渐变小; A 、B 间距离有最大值的临界条 件是 υA = υB .①设两物体经历时间 t 相距最远,则 υA = at ② 把已知数据代入①②两式联立得 t =5 s 在时间 t 内, A 、B 两物体前进的距离分别为 s A = υA t =10×5 m = 50 m1 2 1 2s B = at 2= ×2×52 m = 25 m22A 、B 再次相遇前两物体间的最大距离为Δ s m = s A - s B = 50 m -25 m = 25 m解析二 】 相对运动法因为本题求解的是 A 、B 间的最大距离,所以可利用相对运动求解.选 B 为参考系,则 A2 相对 B 的初速度、末速度、加速度分别是 υ0=10 m/s 、υt =υA -υB =0、a =- 2 m/s .22 根据 υt 2-υ0=2as .有 0- 102=2× (-2) ×s AB 解得A、 B 间的最大距离为 s AB =25 m . 解析三 】 极值法11物体 A 、 B 的位移随时间变化规律分别是 s A =10t ,s B =2at 2=2×2×t 2 =t 5.B 间 的 距 离 Δs =10t -t 2, 可 见 ,4×( -1)×0- 102 4×(-1) m =25 m【解析四 】 图象法根据题意作出 A 、B 两物体的 υ-t 图象,如图 1-5-1 所示.由图可知,B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得 t 1=5 s A 、 B 间 距 离 的 最 大 值 数 值 上 等 于 ΔO υA P 的 面 积 , 1 Δs m = 2×5×10 m = 25 m .【答案 】25 m【点拨 】相遇问题的常用方法(1) 物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,典型例题且最大值为按(解法一)中的思Δ s m = A 、即设甲、乙两车行驶的总路程分别为 s 、 s ′,则有路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3) 极值法:设相遇时间为 t ,根据条件列方程,得到关于 t 的一元二次方程,用判别 式进行讨论,若△> 0,即有两个解,说明可以相遇两次;若△= 0,说明刚好追上或相碰;若△< 0,说明追不上或不能相碰.(4) 图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解.拓展如图 1-5-2 所示是甲、乙两物体从同一地点,沿同一方向做直线运动的 υ- t 图象,由图象可以看出 ( 〕A .这两个物体两次相遇的时刻分别是 1s 末和 4s 末B .这两个物体两次相遇的时刻分别是 2s 末和 6s 末C .两物体相距最远的时刻是 2s 末D . 4s 末以后甲在乙的前面【解析 】从图象可知两图线相交点 1s 末和 4s 末是两物速度相等时刻,从 4s 末两物相距最远,到 6s 末追上乙.故选 B . 答案 】 B的加速度大小减小为原来的一半。

高中物理运动学追及相遇问题

高中物理运动学追及相遇问题
间tA的关系,两种情况: • ①t≤ tA ,AB运动时间相等 , • ② t > tA ,AB运动时间不等,易错点
v1 v A B
v2
0

v
v1 A v2
t tA t
BБайду номын сангаас
例3、小光准备去车站乘车去广州, 0 ② tA t t
当小光到达车站前的流沙大道时,发现汽车在离自己
10m处正以10m/s匀速行驶,小光立即示意司机停车
1)警车要多长时间才能追上违 章的货车?(10s)
2)在警车追上货车之前,两车 间的最大距离是多大?(36m)
引导探究
• 2、A匀减速追B匀速:(B在A前S处) • VA=VB时,若 • ① △x=S, 恰能追上(或恰不相碰)
v1 v A △x v2
B
• ② △x>S, 相遇两次
• ③ △x<S,追不上(相距最近)

否相等;同时出发或一先一后)

2)位移关系 (特别注意是同一地点出

发,或是一前一后)
引导探究
基本类型
v △x A
• 1、A匀加速追B匀速:(同时同地出发) v1
• ①一定能追上;
v2
B
• ②v相等时相距最远; • ③只相遇一次。
0
tt
例1:一辆执勤的警车停在公路边。当警员发现从他旁边以 v0=8m/s的速度匀速行驶的货车有违章行为时,决定前去追赶。 警车以加速度a=2m/s2做匀加速运动。试问:
强化补清
完成对应练习。
• 由题可得:x1=x2

• 联立以上方程可解得:

t= 2v0 /a
• 代入数值得:t=8s
• 2)由题可得:当警车与货车速度相等时 两车相距最远,设需时间为t’,距离为

人教版高中物理追及与相遇问题

人教版高中物理追及与相遇问题

在两个物体速度相等时,有最大距离;
⑵速度大者减速追速度小者(匀速),追上前 在两个物体速度相等时,有最小距离,即必 须在此之前追上,否则就不能追上;若追及 时追者速度仍大于被追者速度,则被追者 还有一次追上追者的机会,其间速度相等 时二者的距离有一个较大值。
2、同向避碰的条件:当两者的位置坐标相同 时,两者的速度也恰好相同。
一、追及与避碰问题的分析方法: 根据两个物体的运动性质,选择同一参
照物, 找出两个物体的位移方程; 找出两个物体在运动时间上的关系; 找出两个物体在位移上的关联方程。
二、追及与避碰问题的条件: 1、能够追上的条件:当两者的位置坐标相同 时,追者的速度大于或等于被追者的速度。 ⑴速度小者加速追速度大者(匀速),追上前
(1)2s,6m (2)4s,12m/s
2.火车以速度v1匀速行驶,司机发现 前方同轨道上相距s处有另一火车沿
同方向以速度v2做匀速运动,已知v1 >v2司机立即以加速度a紧急刹车, 要使两车不相撞,加速度a的大小应
满足什么条件?
a≥
(v2 v1 ) 2 2s
3、一车处于静止状态,车后距车 S0=25m处有一个人,当车以1m/s2 的加速度开始起动时,人以6m/s 的速度匀速追车,能否追上?若追 不上,人车之间最小距离是多少?
1.一辆汽车在十字路口等候绿灯, 当绿灯亮时汽车以3m/s2的加速度 开始行驶,恰好此时一辆自行车以6 m/s速度驶来,从后边超越汽车.试 求: (1)汽车从路口开动后,追上自行车 之前经过多长时间两车相距最远?最 远距离是多少? (2)经过多长时间汽车追上自行车, 此时汽车的速度是多少?
方法一:速度关系,位移关系 方法二:极值法 (二次函数的极 值条件 ) 方法三:用相对运动求解 方法四:图象求解

高中物理追击、追及和相遇问题

高中物理追击、追及和相遇问题

高中物理追击、追及和相遇问题一、追击问题追和被追的两物体的速度相等(同向运动)是能追上、追不上,两者距离有极值的临界条件:1、做匀减速直线运动的物体追赶同向做匀速直线运动的物体.(1)两物体的速度相等时,追赶者仍然没有追上被追者,则永远追不上,这种情况下当两者的速度相等时,它们间的距离最小.(2)两物体的速度相等时,如它们处在空间的同一位置,则追赶者追上被追者,但两者不会有第二次相遇的机会.(3)若追赶者追上被追者时,其速度大于被追者的速度,则被追者还可以再追上追赶者,两者速度相等时,它们间的距离最大.2、初速度为零的匀加速直线运动追赶同向做匀速直线运动的物体.(1)追上前,两者的速度相等时,两者间距离最大.(2)后者与前者的位移大小之差等于它们初始位置间的距离时,后者追上前者.二、相遇问题1、同向运动的两物体追及即相遇.2、相向运动的物体,当各自发生位移大小之和等于开始时两物体间的距离时即相遇.例1、两辆车同时同地同向做直线运动,甲以4m/s的速度做匀速运动,乙由静止开始以2m/s2的加速度做匀加速直线运动. 求:(1)它们经过多长时间相遇?相遇处离原出发地多远?(2)相遇前两物体何时距离最大?最大距离多少?解析:(1)经过t时间两物体相遇,位移为s,根据各自的运动规律列出方程:代入数据可得t=4s,s=16m.(2)甲乙经过时间t'它们之间的距离最大,则从上面分析可知应该满足条件为:,,解得:此时它们之间最大距离为什么当时,两车间的距离最大?这是因为在以前,两车间距离逐渐变大,当以后,,它们间的距离逐渐变小,因此当时,它们间的距离最大.例2、羚羊从静止开始奔跑,经过50m的距离能加速到最大速度为25m/s,并能保持一段较长的时间;猎豹从静止开始奔跑,经过60m的距离能加速到最大速度30m/s,以后只能维持这一速度4.0s. 设猎豹距羚羊x时开始攻击,羚羊在猎豹开始攻击后1.0s才开始奔跑,假定羚羊和猎豹在加速阶段分别做匀加速运动,且均沿同一直线奔跑,则:(1)猎豹要在减速前追到羚羊,x值应在什么范围?(2)猎豹要在其加速阶段追到羚羊,x值应在什么范围?解析:解决这类题目,关键是要读懂题目,比如:猎豹在减速前一共用了多长时间,减速前的运动是何种运动等等.(1)由下图可知,猎豹要在减速前追到羚羊:对猎豹:,对羚羊同理可得:,即;当x≤55m时,猎豹能在减速前追上羚羊(2)猎豹要在其加速阶段追到羚羊,则:对猎豹:对羚羊:则:即:当x≤31.9m时,猎豹能在加速阶段追上羚羊.。

高中物理必修一专题三 追击相遇问题

高中物理必修一专题三 追击相遇问题
10.A、B 两列火车,在同一轨道上同向行驶,A 车在前,其速度 vA=10m/s,B 车在后,速度 vB=30m/s。因大雾 能见度很低,B 车在距 A 车△s=75m 时才发现前方有 A 车,这时 B 车立即刹车,但 B 车要经过 180m 才能够停 止。问: (1)B 车刹车后的加速度是多大? (2)若 B 车刹车时 A 车仍按原速前进,请判断两车是否相撞?若会相撞,将在 B 车刹车后何时?若不会相撞, 则两车最近距离是多少? (3)若 B 车在刹车的同时发出信号,A 车司机经过△t=4s 收到信号后加速前进,则 A 车的加速度至少多大才 能避免相撞?
8.某汽车在高速公路上行驶的速度是 108km/h,若驾驶员发现前方 80m 处发生了交通事故,马上紧急刹车,汽车 以恒定的加速度经过 4s 才停下来. (1)该汽车是否会有安全问题? (2)如果驾驶员看到交通事故时的反应时间是 0.5s,该汽车是否会有安全问题?
9.A、B 两车在同一直线上向右匀速运动,B 车在 A 车前,A 车的速度大小为 v1=8m/s,B 车的速度大小为 v2= 20m/s,如图所示。当 A、B 两车相距 x0=28m 时,B 车因前方突发情况紧急刹车(已知刹车过程的运动可视为 匀减速直线运动),加速度大小为 a=2m/s2,从此时开始计时,求: (1)A 车追上 B 车之前,两者相距的最大距离; (2)A 车追上 B 车所用的时间; (3)从安全行驶的角度考虑,为避免两车相撞,在题设条件下,A 车在 B 车刹车的同时也应刹车的最小加速度。
五、追及相遇问题常见情景
(1)速度大者追速度小者
追及类型
ห้องสมุดไป่ตู้图像描述
匀加速 追匀速
匀速追 匀减速
匀加速追 匀减速
相关结论

高中物理追及和相遇问题ylh

高中物理追及和相遇问题ylh
不上,此时有最小间距; 速度相等时,恰好追上,则相遇一次;速度相
等也是避免碰撞的条件; 速度相等之前追上,则会反追,有两次相遇。
五.注意事项:
(1)认真审题,关注关键的字眼,挖掘题中隐含条件, 如“恰好” “恰巧”“最多”“至少”等,往往对应 着临界条件,满足相应的临界条件。 (2)速度相等时二者间距的关系:
四.两类追及问题
第一类:速度小的追速度大的
例1.初速度为零的匀加速追匀速 分析:给足够的时间,一定能追上;
速度相等之前,被追者的速度大于追者,相等 的时间内被追者的位移大于追者的位移,间距在增 大;
速度相等之后,追者的速度大于被追者的速 度,相等的时间内追者的位移大于被追者的位移, 间距在减小;
速度相等时,间距最大。
追及和相遇问题
学益学区
一、追及相遇的特征:同时到达空间同一位置。
二、关注:一个条件,两个关系:
一个条件:速度相等是追上、追不上、能否 避免相碰及两者距离有极值的条 件。
两个关系:时间关系和位移关系。
Hale Waihona Puke 三、解题思路: (1)分析运动过程,画示意图;
(2)找关系,根据运动性质列方程;
(3)求解,分析结果。
为零后。
第二类:速度大的追及速度小的
例3.匀速追初速度为零的匀加速(匀减速追匀速) 分析:速度相等之前,追者的速度大于被追者的速
度,相等的时间内,追者的位移大于被追者的位 移,间距在减小; 速度相等之后,被追者的速度大于追者的速
度,相等的时间内,被追者的位移大于追者的位 移,间距在增大; 相遇情况:速度相等时,若没有追上,再也追
若能追上,则追上前,速度相等时有最大间距; 若追不上,则速度相等时有最小间距。 (3)若被追赶的物体做匀减速,要注意追上前该物体 是否已经停止运动。

(完整版)高中物理追击和相遇问题专题(含详解)

(完整版)高中物理追击和相遇问题专题(含详解)

直线运动中的追及和相遇问题一、相遇和追及问题的实质研究的两物体能否在相同的时刻到达相同的空间位置的问题。

二、 解相遇和追及问题的关键1.画出物体运动的情景图2.理清三大关系(1)时间关系 :0t t t B A ±= (2)位移关系:0A B x x x =±(3)速度关系:v A =vB两者速度相等往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。

三、追及、相遇问题的分析方法: A. 画出两个物体运动示意图,根据两个物体的运动性质,选择同一参照物,列出两个物体的位移方程; B. 找出两个物体在运动时间上的关系 C. 找出两个物体在运动位移上的数量关系 D. 联立方程求解.说明:追及问题中常用的临界条件:⑴速度小者加速追速度大者,速度在接近,但距离在变大。

追上前两个物体速度相等时,有最大距离; ⑵速度大者减速追赶速度小者, 速度在接近,但距离在变小。

追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上. 四、典型例题分析:(一).匀加速运动追匀速运动的情况(开始时v 1< v 2): 1.当v 1< v 2时,两者距离变大; 2.当v 1= v 2时,两者距离最大;3.v 1>v 2时,两者距离变小,相遇时满足x 1= x 2+Δx ,全程只相遇(即追上)一次。

【例1】一小汽车从静止开始以3m/s 2的加速度行驶,恰有一自行车以6m/s 的速度从车边匀速驶过.求:(1)小汽车从开动到追上自行车之前经过多长时间两者相距最远?此时距离是多少? (2)小汽车什么时候追上自行车,此时小汽车的速度是多少?(二).匀速运动追匀加速运动的情况(开始时v 1> v 2): 1.当v 1> v 2时,两者距离变小;2.当v 1= v 2时,①若满足x 1< x 2+Δx ,则永远追不上,此时两者距离最近;②若满足x 1=x 2+Δx ,则恰能追上,全程只相遇一次; ③若满足x 1> x 2+Δx ,则后者撞上前者(或超越前者),此条件下理论上全程要相遇两次。

高中物理专题复习【追及、相遇问题】

高中物理专题复习【追及、相遇问题】

高中物理专题复习【追及、相遇问题】1.xt图象中两图线交点表示相遇、vt图象在已知出发点的前提下,可由图象面积判断相距最远、最近及相遇.2.“慢追快”型(如:匀加速追匀速、匀速追匀减速、匀加速追匀减速):两者间距先增加,速度相等时达到最大,后逐渐减小,相遇一次.追匀减速运动的物体时要注意判断追上时是否已停下.3.“快追慢”型(如:匀减速追匀速、匀速追匀加速、匀减速追匀加速):两者间距先减小,速度相等时相距最近,此时追上是“恰好不相撞”.此时还没追上就追不上了.若在此之前追上,则此后还会相遇一次.1.(多选)A、B两辆汽车在平直公路上朝同一方向运动,如图所示为两车运动的vt图象,下列对阴影部分的说法不正确的是( )A.若两车从同一点出发,它表示两车再次相遇前的最大距离B.若两车从同一点出发,它表示两车再次相遇前的最小距离C.若两车从同一点出发,它表示两车再次相遇时离出发点的距离D.表示两车出发时相隔的距离2.如图所示,直线a和曲线b分别是在平行的平直公路上行驶的汽车a和b的速度—时间(vt)图线,在t1时刻两车刚好在同一位置(并排行驶),在t1到t3这段时间内,下列说法正确的是( )A.在t2时刻,两车相距最远B.在t3时刻,两车相距最远C.a车加速度均匀增大D.b车加速度先增大后减小3.甲、乙两物体同时开始运动,它们的xt图象如图所示,下列说法正确的是( )A.乙物体做曲线运动B.甲、乙两物体从同一地点出发C.当甲、乙两物体两次相遇时,二者的速度大小相等D.从第一次相遇到第二次相遇,二者的平均速度相同4.甲、乙两车从同一地点沿相同方向由静止开始做直线运动,它们运动的加速度随时间变化的图象如图所示,关于两车的运动情况,下列说法正确的是( ) A.在0~4 s内甲车做匀加速直线运动,乙车做匀减速直线运动B.在0~2 s内两车间距逐渐增大,2~4 s内两车间距逐渐减小C.在t=2 s时甲车速度为3 m/s,乙车的速度为4.5 m/sD.在t=4 s时甲车恰好追上乙车5.甲、乙两辆汽车沿同一方向做直线运动,两车在某一时刻刚好经过同一位置,此时甲的速度为5 m/s,乙的速度为10 m/s,甲车的加速度大小恒为1.2 m/s2.以此时作为计时起点,它们的速度随时间变化的关系如图所示,根据以上条件可知( )A.乙车做加速度先增大后减小的变加速运动B.在前4 s的时间内,甲车运动位移为29.6 mC.在t=4 s时,甲车追上乙车D.在t=10 s时,乙车又回到起始位置6.树德中学运动会上,4×100 m接力赛是最为激烈的比赛项目,有甲、乙两运动员在训练交接棒的过程中发现,甲短距离加速后能保持9 m/s的速度跑完全程为了确定乙起跑的时机,甲在接力区前s0处作了标记,当甲跑到此标记时向乙发出起跑口令,乙在接力区的前端听到口令时立即起跑(忽略声音传播的时间及人的反应时间),先做匀加速运动,速度达到最大后,保持这个速度跑完全程,已知接力区的长度为L=20 m.(1)若s0=13.5 m,且乙恰好在速度达到与甲相同时被甲追上,完成交接棒,则在完成交接棒时乙离接力区末端的距离为多大?(2)若s0=16 m.乙的最大速度为8 m/s,要使甲、乙能在接力区完成交接棒,且比赛成绩最好,则乙在加速阶段的加速度应为多少?答案与解析1.BCD 在vt图象中,图线与时间轴所包围的图形的“面积”表示位移,两条线的交点表示二者速度相等,若两车从同一点出发,则图中阴影部分的“面积”就表示两车再次相遇前的最大距离,故A正确,B、C、D错误.2.B 在t1~t3时间段内,b车速度都小于a车速度,两者间距一直增大,所以在t3时刻,两车相距最远,选项B正确,选项A错误.a车做匀加速直线运动,a车加速度不变,选项C错误,根据速度—时间图象的斜率表示加速度可知,b车加速度一直在增大,选项D 错误.3.D 乙物体的位移一直为正,并且在增大,所以乙物体一直朝着正方向运动,做直线运动,A错误;甲从坐标原点出发,乙从x0处开始出发,不是从同一地点出发,B错误;图象的斜率表示物体运动的速度,两者在相遇时,斜率不同,所以两者的运动速度不同,C 错误;从第一次相遇到第二次相遇,两者发生的位移相同,所用时间相同,根据公式v=Δx可得两者的平均速度相同,D正确.Δt4.C 根据图象可知,甲车的加速度不变,乙车的加速度减小,即在0~4 s 内甲车做匀加速直线运动,乙车做加速度逐渐减小的变加速直线运动,选项A错误;根据at图线与时间轴所围图形的面积表示速度变化量可知,在t =2 s 时甲车速度为3 m/s ,乙车速度为4.5 m/s ,选项C 正确;在0~2 s 内两车的速度差逐渐增大,2~4 s 内两车的速度差逐渐减小,4 s 末两车速度相等,故两车间距一直在增大,4 s 末间距最大,乙车在前,选项B 、D 错误.5.B 速度—时间图象的斜率代表加速度,据此判断乙的运动过程加速度先减小再增大最后减小,选项A 错误.速度—时间图象与时间轴围成的面积代表位移,0~4 s 内,乙图象面积大于甲图象面积,所以乙的位移大于甲的位移,在t =4 s 时甲不可能追上乙车,选项C 错误.前10秒,乙图象面积一直在增大,位移在增大,速度一直沿同一方向,所以乙不可能回到初始位置,选项D 错误.在前4 s 的时间内,甲车运动位移x =v 0t +12at 2=5 m/s ×4 s +12×1.2 m/s 2×(4 s)2=29.6 m ,选项B 正确. 6.解析 (1)设经过时间t ,甲追上乙,根据题意有vt -vt 2=s 0, 将v =9 m/s ,s 0=13.5 m 代入得t =3 s ,此时乙离接力区末端距离为Δs =L -vt 2=6.5 m.(2)因为甲、乙的最大速度v 甲>v 乙,所以在完成交接棒时甲跑过的距离越长,成绩越好,故应在接力区的末端完成交接,且乙达到最大速度v 乙,设乙的加速度为a ,加速的时间t 1=v 乙a,在接力区的运动时间t =L +s 0v 甲,L =12at 21+v 乙(t -t 1) 联立以上式子,代入数据解得a =83m/s 2. 答案 (1)6.5 m (2)83m/s 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相遇追及问题一、考点、热点回顾一、追及问题1.速度小者追速度大者类型图象说明匀加速追匀速①t=t0以前,后面物体与前面物体间距离增大②t=t0时,两物体相距最远为x0+Δx③t=t0以后,后面物体与前面物体间距离减小匀速追匀减速④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者度大者追速度小者匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即t=t0时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件匀速追匀加速②若Δx<x0,则不能追及,此时两物体最小距离为x0-Δx③若Δx>x0,则相遇两次,设t1时刻Δx1=x0,两物体第一次相遇,则t2时刻两物体第二次相遇匀减速追匀加速①表中的Δx是开始追及以后,后面物体因速度大而比前面物体多运动的位移;②x0是开始追及以前两物体之间的距离;③t2-t0=t0-t1;④v1是前面物体的速度,v2是后面物体的速度.二、相遇问题这一类:同向运动的两物体的相遇问题,即追及问题.第二类:相向运动的物体,当各自移动的位移大小之和等于开始时两物体的距离时相遇.解此类问题首先应注意先画示意图,标明数值及物理量;然后注意当被追赶的物体做匀减速运动时,还要注意该物体是否停止运动了.求解追及问题的分析思路(1)根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系.(2)通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式.追及的主要条件是两个物体在追上时位置坐标相同.(3)寻找问题中隐含的临界条件.例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等.利用这些临界条件常能简化解题过程.(4)求解此类问题的方法,除了以上所述根据追及的主要条件和临界条件解联立方程外,还有利用二次函数求极值,及应用图象法和相对运动知识求解.相遇问题相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.(1)列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件.(4)与追及中的解题方法相同.二、典型例题【例1】物体A 、B 同时从同一地点,沿同一方向运动,A 以10m/s 的速度匀速前进,B 以2m/s 2的加速度从静止开始做匀加速直线运动,求A 、B 再次相遇前两物体间的最大距离. 【解析一】 物理分析法A 做 υA =10 m/s 的匀速直线运动,B 做初速度为零、加速度a =2 m/s 2的匀加速直线运动.根据题意,开始一小段时间内,A 的速度大于B 的速度,它们间的距离逐渐变大,当B 的速度加速到大于A 的速度后,它们间的距离又逐渐变小;A 、B 间距离有最大值的临界条件是υA =υB . ① 设两物体经历时间t 相距最远,则υA =at ② 把已知数据代入①②两式联立得t =5 s 在时间t 内,A 、B 两物体前进的距离分别为 s A =υA t =10×5 m=50 ms B =12at 2=12×2×52m =25 mA 、B 再次相遇前两物体间的最大距离为 Δs m =s A -s B =50 m -25 m =25 m 【解析二】 相对运动法因为本题求解的是A 、B 间的最大距离,所以可利用相对运动求解.选B 为参考系,则A 相对B 的初速度、末速度、加速度分别是υ0=10 m/s 、υt =υA -υB =0、a =-2 m/s 2. 根据υt 2-υ0=2as .有0-102=2×(-2)×s AB 解得A、B 间的最大距离为s AB =25 m . 【解析三】 极值法物体A 、B 的位移随时间变化规律分别是s A =10t ,s B =12at 2=12×2×t 2 =t 5.则A 、B 间的距离Δs =10t -t 2,可见,Δs 有最大值,且最大值为Δs m =4×(-1)×0-1024×(-1) m =25 m【解析四】 图象法根据题意作出A 、B 两物体的υ-t 图象,如图1-5-1所示.由图可知,A 、B 再次相遇前它们之间距离有最大值的临界条件是υA =υB ,得t 1=5 s . A 、B 间距离的最大值数值上等于ΔOυA P 的面积,即Δs m =12×5×10 m=25 m .【答案】25 m【点拨】相遇问题的常用方法(1)物理分析法:抓好“两物体能否同时到达空间某位置”这一关键,按(解法一)中的思路分析.(2)相对运动法:巧妙地选取参考系,然后找两物体的运动关系.(3)极值法:设相遇时间为t ,根据条件列方程,得到关于t 的一元二次方程,用判别式进行讨论,若△>0,即有两个解,说明可以相遇两次;若△=0,说明刚好追上或相碰;若△<0,说明追不上或不能相碰.(4)图象法:将两者的速度时间图象在同一个坐标系中画出,然后利用图象求解. 拓展如图1-5-2所示是甲、乙两物体从同一地点,沿同一方向做直线运动的υ-t 图象,由图象可以看出 ( 〕A .这两个物体两次相遇的时刻分别是1s 末和4s 末B .这两个物体两次相遇的时刻分别是2s 末和6s 末C .两物体相距最远的时刻是2s 末D .4s 末以后甲在乙的前面【解析】从图象可知两图线相交点1s 末和4s 末是两物速度相等时刻,从0→2s,乙追赶甲到2s 末追上,从2s 开始是甲去追乙,在4s 末两物相距最远,到6s 末追上乙.故选B . 【答案】B【实战演练1】(2011·新课标全国卷)甲乙两辆汽车都从静止出发做加速直线运动,加速度方向一直不变。

在第一段时间间隔内,两辆汽车的加速度大小不变,汽车乙的加速度大小是甲的两倍;在接下来的相同时间间隔内,汽车甲的加速度大小增加为原来的两倍,汽车乙的加速度大小减小为原来的一半。

求甲乙两车各自在这两段时间间隔内走过的总路程之比。

【思路点拨】解答本题时可由运动学公式分别写出两汽车的速度和位移方程,再根据两车加速度的关系,求出两车路程之比。

【精讲精析】设汽车甲在第一段时间间隔末(时刻t 0)的速度为v ,第一段时间间隔内行驶的路程为s 1,加速度为a ,在第二段时间间隔内行驶的路程为s 2,由运动学公式有, v=a t 0 ① s 1=12 a t 02② s 2=v t 0+122a t 02③设汽车乙在时刻t 0的速度为v ′,在第一、二段时间间隔内行驶的路程分别为s 1′、s 2′,同理有,v′=2a t 0 ④ s 1′=12 2a t 02⑤s 2′=v′ t 0+12a t 02⑥设甲、乙两车行驶的总路程分别为s 、s ′,则有s= s 1+s 2 ⑦ s′= s 1′+s 2′ ⑧联立以上各式解得,甲、乙两车各自行驶路程之比为 s s′ =57答案:57【实战演练2】(2011·安徽省级示范高中名校联考)甲、乙两辆汽车,同时在一条平直的公路上自西向东运动,开始时刻两车平齐,相对于地面的v -t 图象如图所示,关于它们的运动,下列说法正确的是( )A .甲车中的乘客说,乙车先以速度v 0向西做匀减速运动,后向东做匀加速运动B .乙车中的乘客说,甲车先以速度v 0向西做匀减速运动,后做匀加速运动C .根据v -t 图象可知,开始乙车在前,甲车在后,两车距离先减小后增大,当乙车速度增大到v 0时,两车恰好平齐D .根据v -t 图象可知,开始甲车在前,乙车在后,两车距离先增大后减小,当乙车速度增大到v 0时,两车恰好平齐【答案】A【详解】甲车中的乘客以甲车为参考系,相当于甲车静止不动,乙车以初速度v 0向西做减速运动,速度减为零之后,再向东做加速运动,所以A 正确;乙车中的乘客以乙车为参考系,相当于乙车静止不动,甲车以初速度v 0向东做减速运动,速度减为零之后,再向西做加速运动,所以B 错误;以地面为参考系,当两车速度相等时,距离最远,所以C 、D 错误.考点2 相遇问题相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同.(1)列出两物体运动的位移方程、注意两个物体运动时间之间的关系. (2)利用两物体相遇时必处在同一位置,寻找两物体位移间的关系. (3)寻找问题中隐含的临界条件. (4)与追及中的解题方法相同.【例2】甲、乙两物体相距s ,同时同向沿同一直线运动,甲在前面做初速度为零、加速度为a 1的匀加速直线运动,乙在后做初速度为υ0,加速度为a 2的匀加速直线运动,则 ( )图1-5-3 A .若a 1=a 2,则两物体可能相遇一次 B .若a 1>a 2,则两物体可能相遇二次 C .若a 1<a 2,则两物体可能相遇二次 D .若a 1>a 2,则两物体也可相遇一次或不相遇【解析】 设乙追上甲的时间为t ,追上时它们的位移有υ0t +12a 2t 2-12a 2t 2=s上式化简得:(a 1-a 2)t 2-2υ0t +2s =0 解得:t =2υ0±4υ02-8s (a 1-a 2)2(a 1-a 2)(1)当a 1>a 2时,差别式“△”的值由υ0、a 1、a 2、s 共同决定,且△<2υ0,而△的值可能小于零、等于零、大于零,则两物体可能不相遇,相遇一次,相遇两次,所以选项B 、D 正确.(2)当a 1<a 2时,t 的表达式可表示为t =-2υ0±4υ02-8s (a 2-a 1)2(a 2-a 1)显然,△一定大于零.且△>2υ0,所以t 有两解.但t 不能为负值,只有一解有物理意义,只能相遇一次,故C 选项错误.(3)当a 1=a 2时,解一元一次方程得t =s /υ0,一定相遇一次,故A 选项正确. 【答案】A 、B 、D【点拨】注意灵活运用数学方法,如二元一次方程△判别式.本题还可以用v —t 图像分析求解。

拓展A 、B 两棒均长1m,A 棒悬挂于天花板上,B 棒与A 棒在一条竖直线上,直立在地面,A 棒的下端与B 棒的上端之间相距20m,如图1-5-3所示,某时刻烧断悬挂A 棒 的绳子,同时将B 棒以v 0=20m/s的初速度竖直上抛,若空气阻力可忽略不计,且g =10m/s 2,试求:(1)A 、B 两棒出发后何时相遇?(2)A 、B 两棒相遇后,交错而过需用多少时间?【解析】本题用选择适当参考系,能起到点石成金的效用。

相关文档
最新文档