五年级小数的运算定律与简便计算重知识点归纳 (1)
小数知识点归纳

小数知识点归纳一、小数的意义和性质。
1. 小数的意义。
- 小数是基于整数的十进制计数系统进一步细分得到的。
把整数“1”平均分成10份、100份、1000份……这样的一份或几份是十分之几、百分之几、千分之几……可以用小数表示。
例如,把1米平均分成10份,每份是0.1米;把1元平均分成100份,每份是0.01元。
- 小数的计数单位是十分之一(0.1)、百分之一(0.01)、千分之一(0.001)……每相邻两个计数单位之间的进率是10。
2. 小数的性质。
- 小数的末尾添上“0”或去掉“0”,小数的大小不变。
例如,3.20 = 3.2。
利用这个性质可以对小数进行化简(去掉小数末尾的0)和改写(在小数的末尾添上0)。
3. 小数的大小比较。
- 先比较整数部分,整数部分大的那个小数就大;如果整数部分相同,就比较十分位,十分位上数字大的那个小数就大;如果十分位相同,就比较百分位,依次类推。
例如,3.14和2.98比较,因为3>2,所以3.14>2.98;3.14和3.08比较,整数部分相同,十分位1>0,所以3.14 > 3.08。
4. 小数点移动引起小数大小的变化。
- 小数点向右移动一位,小数就扩大到原数的10倍;向右移动两位,小数就扩大到原数的100倍;向右移动三位,小数就扩大到原数的1000倍……例如,3.25的小数点向右移动一位得到32.5,32.5是3.25的10倍。
- 小数点向左移动一位,小数就缩小到原数的(1)/(10);向左移动两位,小数就缩小到原数的(1)/(100);向左移动三位,小数就缩小到原数的(1)/(1000)……例如,32.5的小数点向左移动一位得到3.25,3.25是32.5的(1)/(10)。
5. 小数与单位换算。
- 低级单位的单名数改写成高级单位的单名数:除以进率。
例如,50厘米 = 50÷100 = 0.5米。
- 高级单位的单名数改写成低级单位的单名数:乘进率。
人教版小学五年级数学上册知识点归纳总结(最新最全)

小学五年级数学上册复习知识点归纳总结第一单元小数乘法1.小数乘法计算方法:按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
2、一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
3、求积的近似数:先求出积,在根据需要求近似数。
求近似数的方法一般有三种:⑴四舍五入法 (常用) ;⑵进一法;⑶去尾法。
后两种多用于解决实际问题求近似数中。
4、计算钱数,保留两位小数,表示精确到分。
保留一位小数,表示精确到角。
5、小数四则运算顺序跟整数四则运算顺序是一样的。
(只有同级运算,从左到右依次计算;两级都有,先乘除后加减;有括号,先算括号里面。
)6、运算定律和性质:方法1、看(观察算式)2、想(思考能否简便计算)3、做(确定定律按运算律简便计算。
)整数乘法的交换律、结合律和分配律,同样适用于小数乘法。
常见乘法计算(敏感数字):25×4=100 125×8=1000加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法:乘法交换律:a×b=b×a乘法结合律:三个数相乘,先把前两个数相乘,再和最后一个数相乘,或先把后两个数相乘,再和第一个数相乘,积不变. (a×b)×c=a×(b×c) 乘法分配律:两个数的和(或者差)同一个数相乘,可以先把这两个数(或者被减数与减数)分别同这个数相乘,再相加(或者再相减)。
(a+b)×c=a×c+b×c或 (a-b)×c=a×c-b×c减法性质:从一个数里连续减去两个数,我们可以减去两个减数的和,或者交换两个减数的位置。
a-b-c=a-(b+c) a-b-c=a-c-b 除法性质:从一个数里连续除数两个数,我们可以除以两个除数的积,或者交换两个除数的位置。
人教版五年级数学知识点归纳总结

五年级数学知识点总结第一单元小数乘法1、小数乘整数:意义——求几个一样加数的和的简便运算。
如:1.5×3表示1.5的3倍是多少或3个1.5的和的简便运算。
2、小数乘小数:意义——就是求这个数的几分之几是多少。
如:1.5×0.8就是求1.5的十分之八是多少。
注意:计算结果中,小数局部末尾的0要去掉,把小数化简;小数局部位数不够时,要用0占位。
3、规律:一个数〔0除外〕乘大于1的数,积比原来的数大;一个数〔0除外〕乘小于1的数,积比原来的数小。
4、小数四那么运算顺序跟整数是一样的。
〔有括号的先算括号内的,先惩罚后加减〕5、运算定律和性质:加法:加法交换a+b=b+a加法结合律(a+b)+c=a+(b+c)减法:减法性质a-b-c=a-(b+c)a-(b-c)=a-b+c乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c(a-b)×c=a×c-b×c除法:除法性质a÷b÷c=a÷(b×c)第二单元位置数对〔a,b〕a表示第几列b表示第几行列横数行竖数第三单元小数除法1、小数除以整数的计算方法:小数除以整数,按整数除法的方法去除,商的小数点要和被除数的小数点对齐。
整数局部不够除,商0,点上小数点。
如果有余数,要添0再除。
2、除数是小数的除法的计算方法:先将除数和被除数扩大一样的倍数,使除数变成整数,再按“除数是整数的小数除法〞的法那么进展计算。
注意:如果被除数的位数不够,在被除数的末尾用0补足。
3、循环小数:一个数的小数局部,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。
4、小数局部的位数是有限的小数,叫做有限小数。
小数局部的位数是无限的小数,叫做无限小数。
五年级小数与简便计算

47.8
-7.45+8.8
0.398+0.36+3.64
15.75+3.59-0.59+14.25 42.5-
(6.07+1.13)
4.2÷3.5
320÷1.25÷8
18.76×9.9+
18.76
3.52÷2.5÷0.4
4.78÷0.2+3.44
3.9-4.1+
6.1-5.9
0.49÷1.4
1.25×2.5×32
(3)6.58+9.97
随堂练习:计算下式,怎么简便怎么计算
(1)7.35+8.95+1.65
(2)8.24+4.76+2.8
(3)9-4.56-
2.44
(4)8.9+9.97
(5)10.76-2.58-4. 76
(6)4.58+9.96
(7)8.76-5.8+2.2
(8)9.97+8.42+2.58
(2)1.25×3.3×0.8
(3)3.2×2.5×1.25
(4)2.4×2.5×12.5
(5)4.8×12.5×63
(6)2.5×1.5×16
3.乘法分配律
定义:两个数的和与一个数相乘,可以先把它们与这个数分别相
乘,再相加。
字母表示:,或者是
简便计算中乘法分配律及其逆运算是运用最广泛的一个,一个要掌
36.8-3.9-6.1 2
5.48-
(9.4-0.52)
4.8×7.8+78×0.52
3.6×102
6.4×0.25+
3.6÷4
32+4.9-0.9
4.8-4.8×0.5
小学五年级上册数学 小数乘法简便计算常见形式

1、乘法交换律:a×b=b×a
2、乘法结合律:(a×b)×c=a×(b题步骤:
1、看 算式特点和数字特点
2、想 符合哪个运算定律
3、算 出准确答案
类型一:连乘(三个或三个以上因数相乘或两个数相乘,转化后为三个因数或三个以上因数相乘)
=4.6×101-4.6×1
=4.6×(101-1)
=4.6×100
=460
注:也可以从算式的意义入手:如4.6×99+4.6就是99个4.6再加上1个4.6,一共是100个4.6相加;如4.6×101-4.6就是101个4.6减去1个4.6,还剩100个4.6。
类型六:利用积不变的规律进行转化后,用乘法分配律进行简算
=10+8.8
=18.8
类型四:乘积的和(或差) (标准分配律:a×c+b×c,算式特点为几部分乘积的和或差,并且每一部分都有相同的因数,其余的因数可以凑整)
例6:2.4×1.6+2.4×8.4
=2.4×(1.6+8.4)
=2.4×10
=24
例7:3.7×65.5+3.7×36.5-3.7×2(三部分乘积的和或差同样适用分配律)
=3.7×(65.5+36.5-2)
=3.7×100
=370
类型五:不完全分配律形式 (先转化成标准分配律形式再简算)
例8:4.6×99+4.6
=4.6×99+4.6×1 (把4.6转化成4.6×1的形式就符合标准的分配律)
=4.6×(99+1)
=4.6×100
=460
例9: 4.6×101-4.6
例1:1.25×42×8
=(1.25×8)×42 (乘法交换律和结合律)
=10×42
=420
人教版小学五年级数学上册复习教学知识点归纳总结1

小学五年级数学上册复习教学知识点归纳总结第一单元:小数乘法1.小数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
如:1.2×5表示5个1.2是多少。
也可以表示1.2的5倍是多少。
2.一个数乘以小数的意义是求这个数的十分之几、百分之几、千分之几…是多少。
如1.2×0.5表示求1.2的十分之五是多少。
3.小数乘法的计算法则:计算小数乘法,先按整数乘法算出积,再看因数中一共有几位小数,就从积的右边起数出几位,点上小数点。
小数部分末尾的0要去掉乘得的积得小数位数不够,要在前面用零补足。
再点上小数点。
4. 规律:(1)一个数(零除外)乘1,积等于原来的数。
(2)一个因数扩大多少倍,另一个因数缩小相同的倍数,积不变。
一个数(零除外)乘大于1的数,积比原来的数大。
一个数(零除外)乘小于1的数,积比原来的数小。
一个因数不变,另一个因数扩大(缩小)多少倍,积也扩大(缩小)多少倍。
5.整数乘法的交换律、结合律、分配律,对于小数乘法也使用。
6.运算定律和性质:加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c 乘法:乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c 【(a-b)×c=a×c - b×c】除法:除法性质:a÷b÷c=a÷(b×c)第二单元小数除法1.小数除法的意义与整数除法的意义相同,是已知两个因数的积与其中的一个因数,求另一个因数的运算或者被除数里面有多少个除数。
如:2.4÷1.6表示已知两个因数的积是2.4,其中一个因数是1.6,求另一个因数是多少。
五年级小数的运算定律与简便计算重知识点归纳

一、小数的加减法运算定律:1.定位法:小数位数相同的小数相加或相减时,从小数点对齐,按列相加或相减。
2.零位法:小数位数不同的小数相加或相减时,将小数点对齐后,补齐小数位数,然后按列相加或相减。
例1:0.21+0.035=0.245例2:0.72-0.15=0.57二、小数的乘法运算定律:1.先把小数乘数和被乘数的数字按乘法运算,然后从右往左,逢十进一,保留小数点后与被乘数和乘数小数位数之和相同的位数。
例3:0.25×0.4=0.1例4:0.68×0.02=0.0136三、小数的除法运算定律:1.先将除数小数转化为整数,再进行整数除法运算,在商的末尾加上小数点,并在被除数的左边补零,使商的位数和余数小数位数相同。
然后把商转化为小数,即除法结果。
例5:0.72÷0.06=12例6:0.35÷0.07=5四、小数的转化与简便计算方法:1.小数转为分数:将小数去掉小数点,分数的分子是小数的数字,分母是10的幂次方。
例7:0.32=32/100=8/25例8:0.025=25/1000=1/402.分数转为小数:将分数的分子除以分母得到小数。
例9:3/5=0.6例10:7/8=0.8753.分数的四舍五入:当分数的小数部分大于或等于5时,进位;小于5时,舍去。
例11:6/7≈0.857例12:8/9≈0.8894.百分数转换为小数:将百分数去掉百分号,除以100得到小数。
例13:45%=45/100=0.45例14:75%=75/100=0.755.小数与整数的运算:每个整数位上的数加减小数点后的数时,不动小数点。
例15:2.3×4=9.2例16:1.25+6=7.25小数的运算定律与简便计算对于五年级学生来说是非常重要的知识点。
通过掌握以上知识点,学生能够准确地进行小数的加减乘除运算,并能够将小数与分数、百分数相互转化。
此外,简便计算方法可以帮助学生在进行小数运算时快速得到近似结果,提高计算效率。
五年级上册数学重点知识

小学五年级数学上册复习知识点归纳总结第一单元小数乘法1.小数乘法计算方法:按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。
注意:(1)计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。
(2)计算小数加减法先把小数点对齐,再把相同数位上的数相加。
(3)计算小数乘法末尾对齐,按整数乘法法则进行计算。
(4)计算整数因数末尾有0的小数乘法时,要把整数数位中不是0的最右侧数字与小数因数末尾对齐。
2、一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。
比如:3、求积的近似数:先求出积,在根据需要求近似数。
求近似数的方法一般有三种:⑴四舍五入法 (常用) ;⑵进一法;⑶去尾法。
后两种多用于解决实际问题求近似数中。
4、计算钱数,保留两位小数,表示精确到分。
保留一位小数,表示精确到角。
5、小数四则运算顺序跟整数四则运算顺序是一样的。
(只有同级运算,从左到右依次计算;两级都有,先乘除后加减;有括号,先算括号里面。
)6、运算定律和性质:方法1、看(观察算式)2、想(思考能否简便计算)3、做(确定定律按运算律简便计算。
)整数乘法的交换律、结合律和分配律,同样适用于小数乘法。
常见乘法计算(敏感数字):25×4=100 125×8=1000(1)加法交换律:a+b=b+a(2)加法结合律:(a+b)+c=a+(b+c)(3)乘法:乘法交换律:a×b=b×a(4)乘法结合律:三个数相乘,先把前两个数相乘,再和最后一个数相乘,或先把后两个数相乘,再和第一个数相乘,积不变.(a×b)×c=a×(b×c)(5)乘法分配律:两个数的和(或者差)同一个数相乘,可以先把这两个数(或者被减数与减数)分别同这个数相乘,再相加(或者再相减)。
(a+b)×c=a×c+b×c或 (a-b)×c=a×c-b×c(6)减法性质:从一个数里连续减去两个数,我们可以减去两个减数的和,或者交换两个减数的位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级小数的运算定律与简便计算重知识点归纳 (1)
(一)加减法运算定律
1.加法交换律
定义:两个加数交换位置,和不变
字母表示:a b b a +=+
例如:0.1+0.2=0.2+0.1 0.6+0.4=0.4+0.6
2.加法结合律
定义:先把前两个数相加,或者先把后两个数相加,和不变。
字母表示:)()(c b a c b a ++=++
注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好能够减少小数位数的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。
例1.用简便方法计算下式:
(1)6.3+1.6+8.4 (2)7.6+1.5+2.4 (3)1.4+6.39+8.6
举一反三:
(1)4.6+6.7+5.4 (2)6.8+4.85+1.2 (3)1.55+6.57+2.45
3.减法的性质
注:这些都是由加法交换律和结合律衍生出来的。
减法性质①:如果一个数连续减去两个数,那么后面两个减数的位置可以互换。
字母表示:b c a c b a --=--
例2.简便计算:1.98-7.5-0.98
减法性质②:如果一个数连续减去两个数,那么相当于从这个数当中减去后面两个数的和。
字母表示:)(c b a c b a +-=--
例3.简便计算:(1)3.69-4.5-1.55 (2)8.96-5.8-1.2
4.拆分、凑整法简便计算
拆分法:当一个小数比整数稍微大一些的时候,我们可以把这个数拆分成整数与一个小数的和,然后利用加减法的交换、结合律进行简便计算。
例如:1.03=100+0.3,10.06=10+0.06,…
凑整法:当一个小数比整数稍微小一些的时候,我们可以把这个数写成一个整数减去一个小数的形式,然后利用加
减法的运算定律进行简便计算。
例如:9.7=10-0.3,9.98=10-0.02,…
注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。
例4.计算下式,能简便的进行简便计算:
(1)8.9+10.6 (2)5.6+9.8 (3)6.58+9.97
随堂练习:计算下式,怎么简便怎么计算
(1)7.35+8.95+1.65 (2)8.24+4.76+2.8 (3)9-4.56-2.44
(4)8.9+9.97 (5)10.76-2.58-4. 76 (6)4.58+9.96
(7)8.76-5.8+2.2 (8)9.97+8.42+2.58 (9)9.56—1.97-0.56
(二)乘除法运算定律
1.乘法交换律
定义:交换两个因数的位置,积不变。
字母表示:a b b a ⨯=⨯
例如:2.5 ×0.2=0.2×2.5 1.5×5.6=5.6×1.5
2.乘法结合律
定义:先乘前两个数,或者先乘后两个数,积不变。
字母表示:)()(c b a c b a ⨯⨯=⨯⨯
乘法结合律的应用基于要熟练掌握一些相乘后积为整十、整百、整千的数。
例如:25×4=100, 2.5×4=10 , 25×0.4=10, 2.5×0.4=1
125×8=1000, 12.5×8=100, 125×0.8=100, 1.25×0.8=1
例5.简便计算:(1)2.5×0.9×4 (2)2.5×1.2 (3)1.25×5.6
举一反三:简便计算
(1)2.5×1.7×0.4 (2)1.25×3.3×0.8 (3)3.2×2.5×1.25
(4)2.4×2.5×12.5 (5)4.8×12.5×63 (6)2.5×1.5×16
3.乘法分配律
定义:两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。
字母表示:c b a c b c a ⨯+=⨯+⨯)(,或者是c b c a c b a ⨯+⨯=⨯+)(
简便计算中乘法分配律及其逆运算是运用最广泛的一个,一个要掌握它和它的逆运算。
例6.简便计算:(1)1.25×(0.8+1.6) (2)1.5×0.63+0.36×1.5+1.50 (3)1.2×99+1.2
(4)3.3×101-3.3 (5)9.8×99 (6)68×1.02
随堂练习:简便计算
(1)6.3+7.1+3.7+2.9 (2)8.5-1.7+1.5-3.3 (3)3.+72-43-57+28
(4)9.9×8.5 (5)10.3×2.6 (6)9.7×1.5+1.5×0.3
(7)2.5×3.2×1.25 (8)6.4×0.25×0.125 (9)2.6×(0.5+0.8)
(10)2.2×0.46+2.2×0.59-0.22×2 (11)1.75×0.463+1.75×0.547-1.75
(1)3.6×0.84+3.6×0.15+3.6 (2)0.69×1.7+1.7×0.28+1.7×0.3
(3)71×15+15×22+15×12 (4)26×19+26×56+27×26
4.除法的性质(连除)
类似于加减法的运算定律,除法的交换律和结合律是由乘法的运算定律率衍生出来的。
除法的性质①:从被除数里面连续除以两个数,交换这两个除数的位置商不变。
字母表示:b c a c b a ÷÷=÷÷
例13.简便计算:1000÷25÷8
除法的性质②:从被除数里面连续除以两个数,等于被除数除以这两个数的积。
字母表示:)(c b a c b a ⨯÷=÷÷
例14.简便计算:1000÷25÷4
举一反三:简便计算
(1)80÷5÷4 (2)1000÷125÷8 (3)1000÷4÷25
课后作业:
用简便方法计算
(1)(155+356)+(345+144) (2)978-156-244
(3)24×25 (4)99×37 (5)103×37
(6)125×(100-8)(7)300÷25÷4 (8)6000÷8÷125
(9)13×57+13×32+13×13 (10)103×45-958-142
(11)125×88 (12)4200÷35 (13) 102×85 (14)78×12+89×78-78 (15)99×87 (16)125×72 (17)493-138-262 (18)2700÷45÷2 (19)53×101-53 (20)55×12。