九下 相似三角形4种判定方法 知识点+模型+例题+练习 (非常好 分类全面)
相似三角形的判定和判定方法

相似三角形的判定和判定方法1.边长比较法:通过比较两个三角形的各个边长,可以判断它们是否相似。
如果两个三角形的对应边长成比例关系,即每对对应边长之比相等,那么这两个三角形是相似的。
比如,如果一个三角形的边长是另一个三角形的边长的两倍,那么这两个三角形就是相似的。
2.角度比较法:通过比较两个三角形的各个角度,可以判断它们是否相似。
如果两个三角形的对应角度相等(或互为对应角的补角),那么这两个三角形是相似的。
比如,如果一个三角形的一对内角是另一个三角形的一对内角的两倍,那么这两个三角形就是相似的。
3.角边比较法:通过比较两个三角形的一个角和对边的比值,可以判断它们是否相似。
如果两个三角形的一个角相等,并且对应边长之比相等,那么这两个三角形是相似的。
比如,如果一个三角形的一个角是60度,它的对边长是另一个三角形的一个角是30度,它的对边长的两倍,那么这两个三角形就是相似的。
4.比例关系法:通过使用相似三角形的比例关系,可以判断两个三角形是否相似。
根据数学原理,如果两个三角形的对应边长之比相等,那么它们是相似的。
这个比例关系可以表示为:AB/DE=BC/EF=AC/DF其中AB、BC、AC分别是一个三角形的三条边长,DE、EF、DF分别是另一个三角形的对应边长。
如果这个比例关系满足,那么这两个三角形就是相似的。
需要注意的是,相似三角形的判定必须满足两个条件:对应角度相等(或互为对应角的补角),以及对应边长成比例关系。
如果只满足其中一个条件,那么这两个三角形不是相似的。
此外,还可以根据相似三角形的性质解决一些图像类问题,比如计算物体在投影变换下的大小、角度等。
在计算机图形学和计算机视觉领域,相似三角形的概念被广泛应用于图像识别、图像重建等算法中。
总之,判定两个三角形是否相似有多种方法,包括比较边长、角度和使用比例关系。
通过这些方法,可以解决一些几何和图像问题,应用广泛。
九年级数学相似三角形的判定知识点+例题-7页精选文档

相似三角形的判定【学习目标】1、了解相似三角形的概念,掌握相似三角形的表示方法及判定方法;2、进一步探索相似三角形的判定及其应用,提高运用“类比”思想的自觉性,提高推理能力.【要点梳理】要点一、相似三角形在和中,如果我们就说与相似,记作∽.k就是它们的相似比,“∽”读作“相似于”.要点诠释:(1)书写两个三角形相似时,要注意对应点的位置要一致,即∽,则说明点A的对应点是A′,点B的对应点是B′,点C的对应点是C′;(2)对于相似比,要注意顺序和对应的问题,如果两个三角形相似,那么第一个三角形的一边和第二个三角形的对应边的比叫做第一个三角形和第二个三角形的相似比.当相似比为1时,两个三角形全等.要点二、相似三角形的判定定理1.判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.2.判定方法(二):如果两个三角形的三组对应边的比相等,那么这两个三角形相似. 3.判定方法(三):如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.要点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必需是两边的夹角,否则,判断的结果可能是错误的.4.判定方法(四):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.要点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.要点三、相似三角形的常见图形及其变换:【典型例题】类型一、相似三角形1. 下列能够相似的一组三角形为( ).A.所有的直角三角形B.所有的等腰三角形C.所有的等腰直角三角形D.所有的一边和这边上的高相等的三角形举一反三:下列图形中,必是相似形的是().A.都有一个角是40°的两个等腰三角形B.都有一个角为50°的两个等腰梯形C.都有一个角是30°的两个菱形 D.邻边之比为2:3的两个平行四边形类型二、相似三角形的判定2. 如图所示,已知中,E为AB延长线上的一点,AB=3BE,DE与BC相交于F,请找出图中各对相似三角形,并求出相应的相似比.3. 梯形ABCD中,AB∥CD,AB=2CD,E、F分别为AB、BC的中点,EF与BD交于M.(1)求证:△EDM ∽△FBM;(2)若DB=9,求MB的长.4. 已知:如图,△ABC中,AB=AC,AD是中线,P是AD上一点,过C作CF∥AB,延长BP交AC于E,交CF 于F.求证:BP2=PE·PF.举一反三:1、如图,AD、CE是△ABC的高,AD和CE相交于点F,求证:AF·FD=CF·FE.2、如图,F是△ABC的AC边上一点,D为CB延长线一点,且AF=BD,连接DF, 交AB于E.求证:DE AC EF BC.3、已知:如图正方形ABCD中,P是BC上的点,且BP=3PC,Q是CD的中点.求证:△ADQ∽△QCP.4、如图,弦和弦相交于内一点,求证:.4、如图,小正方形边长均为1,则图中的三角形(阴影部分)与相似的是哪一个?图(1)图(2)图(3)图(4)5、如图,正方形ABCD和等腰Rt,其中,G是CD与EF的交点.(1)求证:≌.(2)若,,,求的值.【巩固练习一】一、选择题1. 下列判断中正确的是( ).A.全等三角形不一定是相似三角形B.不全等的三角形一定不是相似三角形C.不相似的三角形一定不全等D.相似三角形一定不是全等三角形2.已知△ABC的三边长分别为、、 2, △A′B′C′的两边长分别是1和, 如果△ABC与△A′B′C′ 相似, 那么△A′B′C′ 的第三边长应该是 ( ).A. B. C. D.3.如图,在大小为4×4的正方形网格中,是相似三角形的是().①②③④A.①和②B.②和③C.①和③D.②和④4.在△ABC和△DEF中,①∠A=35°,∠B=100°,∠D=35°,∠F=45°;②AB=3cm,BC=5cm,∠B=50°,DE=6cm,DF=10cm,∠D=50°;其中能使△ABC与以D、E、F为顶点的三角形相似的条件( ).A.只有①B.只有②C.①和②分别都是D.①和②都不是5.在矩形ABCD中,E、F分别是CD、BC上的点,若∠AEF=90°,则一定有().A.ΔADE∽ΔAEF B.ΔECF∽ΔAEF C.ΔADE∽ΔECF D.ΔAEF ∽ΔABF6. 如图所示在平行四边形ABCD中,EF∥AB,DE:EA=2:3,EF=4,则CD的长为( ).A. B.8 C.10 D.16二、填空题7.如图所示,D、E两点分别在AB、AC上,且DE和BC不平行,请你填上一个你认为合适的条件_______使△ADE∽△ACB.8如图所示,∠C=∠E=90°,AD=10,DE=8,AB=5,则AC=________.9.如图所示,在直角坐标系中有两点A(4,0),B(0,2),如果点C在x轴上(C与A不重合),当点C的坐标为________或________时,使得由点B、O、C组成的三角形与△AOB 相似(至少找出两个满足条件的点的坐标).10.如图,已知AB⊥BD,ED⊥BD,C是线段BD的中点,且AC⊥CE,ED=1,BD=4,那么AB=__________.11.如图,CD∥AB,AC、BD相交于点O,点E、F分别在AC、BD上,且EF∥AB,则图中与△OEF相似的三角形为_________.12.如图,点E是平行四边形ABCD的边BC延长线上一点,连接AE交CD于点F,则图中相似三角形共有_________对.三.解答题13. 如图,在△ABC中,DE∥BC,AD=3,AE=2,BD=4,求的值及AC、EC的长度.14. 如图在梯形ABCD中,AD∥BC,∠A=90°,且,求证:BD⊥CD.15. 已知在Rt△ABC中,∠C=90°,AB=10,BC=6.在Rt△EDF中,∠F=90°,DF=3,EF=4,则△ABC和△EDF相似吗?为什么?【巩固练习二】一、选择题1. 已知△A1B1C1与△A2B2C2的相似比为4:3,△A2B2C2与△A3B3C3的相似比为4:5,则△A1B1C1与△A3B3C3的相似比为( ).A.16:15B.15:16C.3:5D.16:15或15:162.如图,P是RtΔABC的斜边BC上异于B、C的一点,过点P做直线截ΔABC,使截得的三角形与ΔABC相似,满足这样条件的直线共有().A.1条B.2条C.3条D.4条3.如图,在△ABC中,M是AC边中点,E是AB上一点,且AE=AB,连结EM并延长,交BC的延长线于D,此时BC:CD为( ) .A. 2:1B. 3:2C. 3:1D. 5:24. 如图,在平行四边形ABCD中,E是AD上的一点,连接CE并延长交BA的延长线于点F,则下列结论中错误的是().A.∠AEF=∠DEC B.FA∶CD=AE∶BC C.FA∶AB=FE∶EC D.AB=DC5.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,则图中相似三角形有().A.4对B.3对 C.2对 D.1对6. 如图,ABCD是正方形,E是CD的中点,P是BC边上的一点,下列条件中,不能推出△ABP与△ECP相似的是( ) .A.∠APB=∠EPCB.∠APE=90°C.P是BC的中点D.BP:BC=2:3二、填空题7.如图, ∠1=∠2=∠3, 则图中与△CDE相似三角形是________和________.8. 如图,P为线段AB上一点,AD与BC交于E,∠CPD=∠A=∠B,BC交PD于F,AD交PC于G,则图中相似三角形有_________对.9.如图,是正方形ABCD的外接圆,点F是AB的中点,CF的延长线交于点E,则CF:EF的值是________________.10.如图,点M在BC上,点N在AM上,CM=CN,AM BMAN CM,则①△ABM∽△ACB,②△ANC∽△AMB,③△ANC∽△ACM,④△CMN∽△BCA中正确的有___________.11.如图,在平行四边形ABCD中,M,N为AB的三等分点,DM,DN分别交AC于P,Q两点,则AP:PQ:QC=____________.12.如图,正方形ABCD的边长为2,AE=EB,MN=1.线段MN的两端在CB,CD边上滑动,当CM=______时,△AED与以M、N、C为顶点的三角形相似.三、解答题13. 如图,和都是等边三角形,且B、C、D共线,BE分别和AC、AD相交于点M、G,CE和AD相交于点N.求证:(1)CG平分.(2)∽.14. 如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=CE,AD与BE相交于点F.(1)试说明△ABD≌△BCE;(2)△EAF与△EBA相似吗?说说你的理由.15.已知点P在线段AB上,点O在线段AB的延长线上.以点O为圆心,OP为半径作圆,点C 是圆O上的一点.(1)如图,如果AP=2PB,PB=BO.求证:△CAO∽△BCO;(2)如果AP=m(m是常数,且),BP=1,OP是OA、OB的比例中项.当点C在圆O上运动时,求的值(结果用含m的式子表示);(3)在(2)的条件下,讨论以BC为半径的圆B和以CA为半径的圆C的位置关系,并写出相应m的取值范围.。
(完整版)相似三角形基本知识点+经典例题(完美打印版)

相似三角形知识点与经典题型知识点1 有关相似形的概念(1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.(2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数).知识点2 比例线段的相关概念(1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nmb a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。
(2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b=.②()a ca b c d b d==在比例式::中,a 、d 叫比例外项,b 、c 叫比例内项, a 、c 叫比例前项,b 、d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2b ad =。
(3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即2AC AB BC =⋅,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB.即AC BC AB AC ==简记为:12长短==全长注:黄金三角形:顶角是360的等腰三角形。
黄金矩形:宽与长的比等于黄金数的矩形知识点3 比例的性质(注意性质立的条件:分母不能为0)(1) 基本性质:①bc ad d c b a =⇔=::;②2::a b b c b a c =⇔=⋅.注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.(2) 更比性质(交换比例的内项或外项):()()()a bc d a c d cb db a d bc a ⎧=⎪⎪⎪=⇔=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b da c=⇔=.(4)合、分比性质:a c abcd b d b d±±=⇔=.注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a c cd a a b d c b a 等等.(5)等比性质:如果)0(≠++++====n f d b nm f e d c b a ΛΛ,那么b an f d b m e c a =++++++++ΛΛ.注:①此性质的证明运用了“设k 法”(即引入新的参数k )这样可以减少未知数的个数,这种方法是有关比例计算变形中一种常用方法.②应用等比性质时,要考虑到分母是否为零.③可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:ba f db ec a f ed c b a fe d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b . 知识点4 比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE ∥BC 可得:ACAEAB AD EA EC AD BD EC AE DB AD ===或或注:①重要结论:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边......与原三角形三边......对应成比例.②三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. 已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DE AC DF DE EF=====或或或或等.注:平行线分线段成比例定理的推论:平行线等分线段定理:两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。
初三数学九下相似所有知识点总结和常考题型练习题

相似知识点一、比例的性质二、相似三角形:1.相似三角形定义: 对应角相等,对应边成比例的三角形,叫做相似三角形。
2.相似三角形的表示方法:用符号“∽〞表示,读作“相似于〞。
3.相似三角形的相似比: 相似三角形的对应边的比叫做相似比。
4.相似三角形的预备定理:平行于三角形一边的直线与其他两边〔或两边的延长线〕相交,所截成的三角形与原三角形相似。
5.相似三角形的判定定理:(1)三角形相似的判定方法与全等的判定方法的联系列表如下:类型 斜三角形直角三角形全等三角形的判定 SAS SSSAAS 〔ASA 〕 HL相似三角形的判定两边对应成比例夹角相等三边对应成比例两角对应相等一条直角边与斜边对应成比例6.直角三角形相似:(1)直角三角形被斜边上的高分成两个直角三角形与原三角形相似。
(2)如果一个直角三角形的斜边与一条直角边与另一个直角三角形的斜边与一条cd a b = db c a a c b d ==或 合比性质:ddc b b a ±=±⇒=⇔=bc ad dcb a 〔比例根本定直角边对应成比例,那么这两个直角三角形相似。
7.相似三角形的性质定理:(1)相似三角形的对应角相等。
(2)相似三角形的对应边成比例。
(3)相似三角形的对应高线的比,对应中线的比与对应角平分线的比都等于相似比。
(4)相似三角形的周长比等于相似比。
(5)相似三角形的面积比等于相似比的平方。
8.相似三角形的传递性 如果△ABC ∽△A 1B 1C 1,△A 1B 1C 1∽△A 2B 2C 2,那么△ABC ∽A 2B 2C 2相似练习一. 选择题1.如图,DE ∥BC ,AD :DB=2:1,那么△ADE 与△ABC 的相似比为 ( )A .12B .23C .14D .22.如图,AB ∥CD ,AD 与BC 相交于点O ,那么在以下比例式中,正确的选项是 ( ) A .AB OA CD AD = B .OA OB OD BC = C .AB OB CD OC =D .BC OBAD OD = 3.以下表达中,不正确的选项是( )A .在Rt △ABC 中,∠C=90°,∠B=20°,在Rt △A ′B ′C ′中,∠C ′=90°,∠A ′=20°,那么△ABC ∽△A ′B ′C ′B .△ABC 的两个角分别是35°与100°,△A ′B ′C ′的两个角分别是45°与35°,那么这两个三角形相似C.等腰△ABC与等腰△A′B′C′都有一个角为90°,那么△ABC与△A′B′C′相似D.等腰△ABC与等腰△A′B′C′都有一个角为105°,那么△ABC与△A′B′C′相似4.如图,AB∥CD,AD与BC相交于点P,AB=3,CD=6,AP=4,那么DP 的长为( )A.3 B.4 C.6 D.8 5.如图,AB∥CD∥EF,那么图中相似的三角形共有( )A.4对B.3对C.2对D.1对6. 如图,AB、CD、EF都与BD垂直,垂足分别是B、D、F,且AB=1,CD=3,那么EF的长是( ) A.13B.23C.34D.457. 如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为31,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为〔〕A.(2,1) B.(2,0)C.(3,3) D.(3,1)8. 如图,在四边形ABCD中,DC∥AB,CB⊥AB,AB=AD,CD=AB,点E、F分别为AB、AD的中点,那么△AEF与多边形BCDFE的面积之比为〔〕A.B.C.D.二、填空题6.如图,△ADE ∽△ABC ,那么AD :DB=__________.7.在△ABC 中,∠A=40°,∠B=75°,那么在如下图的三角形中,与△ABC 相似的是_______.8.如图,D 、E 分别是△ABC 的边AC 、AB 上的点,请你添加一个条件,使△ADE 与△ABC 相似.你添加的条件是_______________.9.如图,DE ∥BC ,假设AD=3,BD=2.AE=6,那么AC=__________.10. 如果kf e d c b a ===〔0≠++f d b 〕,且)(3f d b e c a ++=++,那么k =_11. 在□ABCD 中,M ,N 是AD 边上的三等分点,连接BD ,MC 相交于O 点,那么S △MOD :S △COB = . 三、解答题11.如图,D 、E 分别是△ABC 的边AC 、AB 上的点,假设∠A=38°,∠C=82°,∠1=60°,那么AD ABAE AC=成立吗为什么 12.请设计三种不同的分法,将如下图的直角三角形分割成四个小三角形,使得每个小三角形与原三角形都相似(要求画出分割线段,标出能够说明分法的必要记号,不要求写出画法,不要求说明理由).13.如图,在△ABC 中,DE ∥BC , EF ∥AB ,说明:△ADE ∽△EFC .14.:bc c a ba --=。
九下 相似三角形的重心、位似、应用题 知识点+例题+练习(非常好 分类全面)

A.B.66C.72D.84
2.在△ABC中,DE∥BC,DE与边AB相交于点D,与边AC相交于点E.如果DE过重心G点,且DE=4,那么BC的长是( )
A.5B.6C.7D.8
3.如图,△ABC中,D是△ABC的重心,连接AD并延长,交BC于点E,若BC=6,则EC=( )
A.8B.4 C.12D.14
16.如图,△ABC中,G为重心,DF∥BC,求 .
四、位似
1.如图所示,以点O为位似中心,将五边形ABCDE放大后得到五边形A′B′C′D′E.已知OA=10 cm,OA′=20 cm,则五边形ABCDE的周长与五边形A′B′C′D′E′的周长的比值是________.
2、已知为了测量路灯CD的高度,把一根长1.5m的竹竿AB竖直立在水平地面上.测得竹竿的影子长为1m,然后拿竹竿向远处路灯的方向走了4m.再把竹竿竖直立在地面上,竹竿的影长为1.8m,求路灯的高度.
3、小华同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后的影子顶部刚好触到AC的底部,当他向前再步行12m到达Q点时,发现身前的影子的顶端接触到路灯BD的底部.已知小华身高为1.6m,两个路灯的高度都是9.6m.
B.C. 1:5 D.1:6
3、如图,△ABC ∽△DEF,且△ABC和△DEF的相似比为k.点M、N与点P、Q分别在AB、AC与DE、DF上,且AB:AM=DE:DP,AC:AN=DF:DQ试说明:MN:PQ=k.
4、有一块三角形铁片ABC,BC=12 cm.高AH=8 cm,按图(1)、(2)两种设计方案把它加工成一块矩形铁片DEFG,且要求矩形的长是宽的2倍,为了减少浪费,加工成的矩形铁片的面积应尽量大些.请你通过计算判断(1)、(2)两种设计方案哪个更好.
初中数学相似三角形知识点、常见结论、解题技巧

初中数学相似三角形知识点、常见结论、解题技巧一、相似三角形的概念对应角相等,对应边成比例的三角形叫做相似三角形。
相似用符号“∽”来表示,读作“相似于”。
相似三角形对应边的比叫做相似比(或相似系数)。
二、相似三角形的基本定理平行于三角形一边的直线与其他两边(或两边的延长线)相交,形成一个类似于原三角形的三角形。
三、三角形相似的判定1、三角形相似的判定方法①、定义法:对应角相等,对应边成比例的两个三角形相似②、平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似③、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。
④、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。
⑤、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似2、直角三角形相似的判定方法①、以上各种判定方法均适用②、定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似③、垂直法:直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
相似常见类型二、相似常见结论1若DE//AB,则DG/AF=GE/BF2若AD平分∠BAC,则AB/AC=BD/CD3若四边形ABCD是平行四边形,则AE⊃2;=EF·FG4若∠DAC=∠DBC,则△ADE~△BCE ,可推导出△AEB~△DEC即上下相似可得左右相似同理,左右相似可得上下相似相似三角形常见解题技巧1、三角形叉叉图这类题目经常考察寻找线段的比例或长度。
图中四对线段比AE/ED、AF/BF、CD/BD、CE/EF,知二求二。
常用辅助线做法:过点作三角形边的平行线遵循原则:所做辅助线不能破坏原有线段比例2、三角形的可解性一个三角形,必然有三角形、三边、三高、周长、面积等十一个量。
九下 相似三角形的模型 知识点+例题+练习(非常好 分类全面)

教学主题 相似模型教学目标掌握相似模型重 要 知识点 1.相似模型 2. 3. 易错点教学过程相似三角形模型(一)A 字型、反A 字型平行 不平行 由A 字型旋转1、如图,已知在△ABC 中,点D ,E ,F 分别是边AB ,AC ,BC 上的点,DE ∥BC ,EF ∥AB ,且AD ∶DB =3∶5,求CF ∶CB 的值C BA D E ABC DE2、已知:在ABC ∆中,BD AD 21=,延长BC 到F ,使13CF BC =,连接FD 交AC 于点E 求证:①DE EF = ②2AE CE =(二)8字型、反8字型J OADBCAB CD(平行) (不平行)(蝴蝶型) 8字型拓展1、如图,在正方形ABCD 中,G 为CD 边的中点,连接AG 并延长交BC 边的延长线于点E ,对角线BD 交AG 于点F ,已知FG=2,则线段AE 的长度为 。
ABCDFE2、如图,已知△ABC 和△ADE 均为等边三角形,D 在BC 上,DE 与AC 相交于点F ,AB=9cm ,BD=3cm ,则CF 等于3、如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证:111c a b=+.(三)母子型ABCDCAD1、如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ⋅=2.FE DCBA2、已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠.求证:(1)DA DE DB ⋅=2; (2)DAC DCE ∠=∠.3、已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ⋅=2.(四)一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景A C DE BCADB EF1、如图,等边△ABC 中,边长为6,D 是BC 上动点,∠EDF=60° (1)求证:△BDE ∽△CFD(2)当BD=1,FC=3时,求BE(五)一线三直角型:1、如图,在矩形ABCD 中,AB=4,BC=6,M 是BC 的中点,DE ⊥AM 于点E . (1)求证:△ADE ∽△MAB ; (2)求DE 的长.DEA BC2、如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,点D 为边CB 上的一个动点(点D 不与点B 重合),过D 作DO ⊥AB ,垂足为O ,点B ′在边AB 上,且与点B 关于直线DO 对称,连接DB ′,AD .(1)求证:△DOB ∽△ACB ;(2)若AD 平分∠CAB ,求线段BD 的长;(3)当△AB ′D 为等腰三角形时,求线段BD 的长.(六)双垂型:CAD1、如图,在△ABC 中,∠A=60°,BD 、CE 分别是AC 、AB 上的高 求证:(1)△ABD ∽△ACE ;(2)△ADE ∽△ABC ;(3)BC=2EDAB CD E 2、如图,Rt △ABC 中,∠ACB=90°,∠ABC=60°,BC=2cm ,D 为BC 的中点,若动点E 以1cm/s 的速度从A 点出发,沿着A →B →A 的方向运动,设E 点的运动时间为t 秒(0≤t <6),连接DE ,当△BDE 是直角三角形时,求t 的值(八)共享型CB EDAGABCEF1、△ABC 是等边三角形,D 、B 、C 、E 在一条直线上,∠DAE= 120,已知BD=1,CE=3,,求等边三角形的边长.2、如图,把△ABC沿边BA平移到△DEF的位置,它们重叠部分(即图中阴影部分)的面积是△ABC面积的49,若AB=2,求△ABC移动的距离BE的长.。
(完整版)相似三角形知识点及典型例题,推荐文档

相似三角形知识点及典型例题知识点归纳:1、三角形相似的判定方法(1)定义法:对应角相等,对应边成比例的两个三角形相似。
(2)平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
(3)判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
简述为:两角对应相等,两三角形相似。
(4)判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。
简述为:两边对应成比例且夹角相等,两三角形相似。
(5)判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。
简述为:三边对应成比例,两三角形相似。
(6)判定直角三角形相似的方法:①以上各种判定均适用。
②如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
③直角三角形被斜边上的高分成的两个直角三角形与原三角形相似。
#直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。
如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下: (1)(AD)2=BD·DC, (2)(AB)2=BD·BC , (3)(AC)2=CD·BC 。
注:由上述射影定理还可以证明勾股定理。
即(AB)2+(AC)2=(BC)2。
典型例题:例1 如图,已知等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ‖AB ,BG 分别交AD ,AC 于E 、 F ,求证:BE 2=EF·EG证明:如图,连结EC ,∵AB =AC ,AD ⊥BC ,∴∠ABC =∠ACB ,AD 垂直平分BC∴BE =EC ,∠1=∠2,∴∠ABC-∠1=∠ACB-∠2,即∠3=∠4,又CG ∥AB ,∴∠G =∠3,∴∠4=∠G又∵∠CEG =∠CEF ,∴△CEF ∽△GEC ,∴EG CE =CEEF∴EC 2=EG· EF ,故EB 2=EF·EG 【解题技巧点拨】本题必须综合运用等腰三角形的三线合一的性质,线段的垂直平分线的性质和相似三角形的基本图形来得到证明.而其中利用线段的垂直平分线的性质得到BE=EC ,把原来处在同一条直线上的三条线段BE ,EF ,EC 转换到相似三角形的基本图形中是证明本题的关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。
则,,,…AB BC DE EF AB AC DE DF BC AC EF
DF
===
②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
③定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。
○4推论:如果一条直线平行于三角形的一条边,截其它两边(或其延长线),那么所截得的三角形与原三角形相似.推论○4的基本图形有三种情况,如图其符号语言:∵DE ∥BC ,∴△ABC ∽△ADE ;
知识点二、相似三角形的判定
判定定理1:两角对应相等,两三角形相似.
符号语言:
拓展延伸: (1)有一组锐角对应相等的两个直角三角形相似。
(2)顶角或底角对应相等的两个等腰三角形相似。
例题1.如图,直线DE 分别与△ABC 的边AB 、AC 的反向延长线相交于D 、E ,由ED ∥BC 可以推出
AD AE
BD CE
=
吗?请说明理由。
(用两种方法说明)
例题2.(射影定理)已知:如图,在△ABC 中,∠BAC=90°,AD ⊥BC 于D.
求证:(1)2AB BD BC =⋅;(2)2AD BD CD =⋅;(3)CB CD AC ⋅=2
例题3.如图,AD 是Rt ΔABC 斜边BC 上的高,DE ⊥DF ,且DE 和DF 分别交AB 、AC 于E 、F.则
BD
BE
AD AF =例题精讲
A
E
D
B
C
A
B
C
D
吗?说说你的理由.
例题4.如图,在平行四边形ABCD 中,已知过点B 作BE ⊥CD 于E,连接AE ,F 为AE 上一点,且∠BFE=∠C
(1) 求证:△ABF ∽△EAD ;
(2)若AB=4,∠BAE=30°,求AE 的长;3分之8倍根号3 (3)在(1)(2)条件下,若AD=3,求BF 的长。
2分之3倍根号3 随练: 一、选择题
1.如图,△ABC 经平移得到△DEF ,AC 、DE 交于点G ,则图中共有相似三角形( )D A . 3对 B . 4对 C . 5对 D . 6对
2.如图,已知DE ∥BC ,EF ∥AB ,则下列比例式中错误的是( )C
A
D
C
B
E
F G F E D
C
B
A。