生化酶讲义课件创新
合集下载
生物化学生物化学生物化学酶讲课PPT

对同一种酶来讲,比活力愈高则表示酶的纯度越高(含 杂质越少)。
比活力是评价酶纯度高低的一个指标。
问题?
现有1g淀粉酶制剂,用水稀释1000mL,从中吸取0.5mL 测定该酶的活力,得知5分钟分解0.25g淀粉。计算每 克酶制剂所含的淀粉酶活力单位数。
(淀粉酶活力单位规定为:在最适条件下,每小时分 解1g淀粉的酶量为1个火力单位。)
(五)、 Km和Vmax的测定
双倒数作图法,又称为林-贝氏(Lineweaver- Burk)作图法
Vmax[S]
1/V
V= Km+[S]
两边同时取倒数
Km
1/V=
Vmax
1/[S] + 1/Vmax
-1/Km
(林-贝氏方程)
1/Vmax
1/[S]
二、酶浓度对反应速度的影响
V
*当[S]>>[E],反应 速度与酶浓度成正比。
(一) 、不可逆性抑制作用
*概念:
以共价键与酶活性中心的必需基团相结合,使酶失活,
不能用透析、超滤等方法予以除去。
*举例:
有机磷化合物 羟基酶 解毒 -- -- -- 解磷定(PAM)
重金属离子及砷化合物 巯基酶 解毒 -- -- -- 二巯基丙醇(BAL)
RO X
P + E OH R'O O 有机磷化合物 羟基酶
四、酶的分类
1、氧化还原酶类(oxidoreductases) 2、转移酶类 (transferases ) 3、水解酶类 (hydrolases) 4、裂解酶类 (lyases) 5、异构酶类( isomerases) 6、合成酶类 (ligases,synthetases)
五、酶的活性和活性单位
比活力是评价酶纯度高低的一个指标。
问题?
现有1g淀粉酶制剂,用水稀释1000mL,从中吸取0.5mL 测定该酶的活力,得知5分钟分解0.25g淀粉。计算每 克酶制剂所含的淀粉酶活力单位数。
(淀粉酶活力单位规定为:在最适条件下,每小时分 解1g淀粉的酶量为1个火力单位。)
(五)、 Km和Vmax的测定
双倒数作图法,又称为林-贝氏(Lineweaver- Burk)作图法
Vmax[S]
1/V
V= Km+[S]
两边同时取倒数
Km
1/V=
Vmax
1/[S] + 1/Vmax
-1/Km
(林-贝氏方程)
1/Vmax
1/[S]
二、酶浓度对反应速度的影响
V
*当[S]>>[E],反应 速度与酶浓度成正比。
(一) 、不可逆性抑制作用
*概念:
以共价键与酶活性中心的必需基团相结合,使酶失活,
不能用透析、超滤等方法予以除去。
*举例:
有机磷化合物 羟基酶 解毒 -- -- -- 解磷定(PAM)
重金属离子及砷化合物 巯基酶 解毒 -- -- -- 二巯基丙醇(BAL)
RO X
P + E OH R'O O 有机磷化合物 羟基酶
四、酶的分类
1、氧化还原酶类(oxidoreductases) 2、转移酶类 (transferases ) 3、水解酶类 (hydrolases) 4、裂解酶类 (lyases) 5、异构酶类( isomerases) 6、合成酶类 (ligases,synthetases)
五、酶的活性和活性单位
生物化学之酶ppt课件

非竞争性抑制剂
与酶活性中心以外的部位结合,改变酶的空间构象,使酶活性降低或 丧失,如磺胺类药物对二氢叶酸合成酶的抑制。
酶抑制剂的应用
医学领域
用于治疗疾病,如酶抑制剂作为抗病毒药 物、抗肿瘤药物和抗菌药物等。
生物工程领域
用于改造和优化生物催化剂的性能,提高 生物催化过程的效率和选择性。
农业领域
用于研发新型农药和除草剂,提高农作物 产量和品质。
来调节细胞内酶的含量。
酶抑制剂的分类与作用
不可逆抑制剂
与酶共价结合,使酶永久失活,如有机磷农药对乙酰胆碱酯酶的抑制 。
可逆抑制剂
与酶非共价结合,可通过物理或化学方法去除抑制剂而恢复酶活性, 包括竞争性抑制剂、非竞争性抑制剂和反竞争性抑制剂。
竞争性抑制剂
与底物竞争酶的活性中心,降低酶对底物的亲和力,如丙二酸对琥珀 酸脱氢酶的抑制。
环境领域
用于治理环境污染,如利用酶抑制剂降解 有毒有害物质。
04
酶在生物体内的代谢
酶与生物氧化
酶催化生物氧化反应
生物氧化是在生物体内进行的氧化反 应,酶作为生物催化剂能够加速这些 反应的进行。
酶与抗氧化系统
生物体内存在抗氧化系统以抵抗氧化 应激,酶如超氧化物歧化酶(SOD) 等在此系统中发挥重要作用。
酶的结构与功能
结构
酶分子通常具有复杂的四级结构,包括一级结构(氨基酸序列)、二级结构( α-螺旋、β-折叠等)、三级结构(整体折叠形态)和四级结构(亚基组成)。
功能
酶通过降低化学反应的活化能来加速反应速率,具有高效性、专一性和可调节 性等特点。此外,酶还能参与信号传导、物质运输和能量转换等生物过程。
酶抑制剂筛选方法
基于活性的筛选
与酶活性中心以外的部位结合,改变酶的空间构象,使酶活性降低或 丧失,如磺胺类药物对二氢叶酸合成酶的抑制。
酶抑制剂的应用
医学领域
用于治疗疾病,如酶抑制剂作为抗病毒药 物、抗肿瘤药物和抗菌药物等。
生物工程领域
用于改造和优化生物催化剂的性能,提高 生物催化过程的效率和选择性。
农业领域
用于研发新型农药和除草剂,提高农作物 产量和品质。
来调节细胞内酶的含量。
酶抑制剂的分类与作用
不可逆抑制剂
与酶共价结合,使酶永久失活,如有机磷农药对乙酰胆碱酯酶的抑制 。
可逆抑制剂
与酶非共价结合,可通过物理或化学方法去除抑制剂而恢复酶活性, 包括竞争性抑制剂、非竞争性抑制剂和反竞争性抑制剂。
竞争性抑制剂
与底物竞争酶的活性中心,降低酶对底物的亲和力,如丙二酸对琥珀 酸脱氢酶的抑制。
环境领域
用于治理环境污染,如利用酶抑制剂降解 有毒有害物质。
04
酶在生物体内的代谢
酶与生物氧化
酶催化生物氧化反应
生物氧化是在生物体内进行的氧化反 应,酶作为生物催化剂能够加速这些 反应的进行。
酶与抗氧化系统
生物体内存在抗氧化系统以抵抗氧化 应激,酶如超氧化物歧化酶(SOD) 等在此系统中发挥重要作用。
酶的结构与功能
结构
酶分子通常具有复杂的四级结构,包括一级结构(氨基酸序列)、二级结构( α-螺旋、β-折叠等)、三级结构(整体折叠形态)和四级结构(亚基组成)。
功能
酶通过降低化学反应的活化能来加速反应速率,具有高效性、专一性和可调节 性等特点。此外,酶还能参与信号传导、物质运输和能量转换等生物过程。
酶抑制剂筛选方法
基于活性的筛选
生化·第3章·酶ppt课件

Vmax[S] V=
Km+ [S]
V max 初 速 度 v
a
b 1 /2 V max
V≈Vmax
c
反应速率不再 增加,反应呈 零级反应
0 Km
[S ]
图 5-14 底 物 浓 度 对 酶 促 反 应 速 度 的 影 响
(二) Km和Vmax的意义
1.当反应速率为最大速率一半时,米氏方 程为:
当V =Vmax 时 2
酶:由活细胞合成的以蛋白质 为主的大分子生物催化剂。
大多数为蛋白质 少数为核酸 核酶(RNA)
脱氧核酶(DNA)
底物(S) 酶(E) 产物(P)
第一节 酶的分子结构与功能
单体酶:由一条肽链构成的酶(具有三级结 构)
寡聚酶:由多个相同或不同亚基以非共价键 相连的酶(具有四级结构)
多酶体系或多酶复合体:由几种不同功能的 一个团体 酶聚合形成的多酶复合物。
酶的必需基团在一级结构上可能相距 很远,但在空间结构上彼此靠近,组成 具有特定空间结构的区域,能与底物特 异结合并发挥催化作用,将底物转变为 产物的部位称为酶的活性中心 (active center)或活性部位。
A B
酶活性中心的示意图
活性中心内 结合基团 结合底物
必 需
必需基团
基
催化基团 催化底物
当底物浓度很低时([S]<<Km),分 母中的[S]可忽略不计,此时
Vmax[S] V=
Km+ [S]
Vmax[S] V=
Km
V max
初
c
反应速率与 速
b
[S]呈正比, 度
成一级反应 v
1/2V max
a
0 Km
生物化学之酶化学 教学课件(共103张PPT)

多 种
R=P03+
重 要
二者都是维生素烟酰胺的衍生物,烟酰
胺环上的4位碳具有正碳离子的作用,容
(zhòngyào)
易从底物中夺取电子和质子,所以反应中
脱
传递电子和质子,P89
氢
酶
的
辅
酶
。
可自身合成(héchéng),不缺乏
第二十七页,共一百零三页。
(2) 核黄素(VB2)与辅酶FAD和FMN
化学(huàxué)结构
重要的作用
第三十二页,共一百零三页。
(4) 四氢叶酸(yè suān)
其前体是叶酸VB9(广泛(guǎngfàn)存在于绿叶中,造血维生素)
H2N N N
O
21
87
9
10
N3 4
56 C N
C
N
H2 H
OH
2-氨基(ānjī)-4-羟基-6-亚甲基蝶呤
对氨基苯甲酸
COOH
N CH H
CH2 CH2 COOH
酶催化的反应: 谷氨酸 + 丙酮酸 -酮戊二酸 + 丙氨酸
第六页,共一百零三页。
2. 酶的分类(fēn
lèi)
(1) 水解酶 hydrolase
水解酶催化底物(dǐ wù)的加水分解反应。
主要包括淀粉酶、蛋白酶、核酸酶及脂酶等。
例如,脂肪酶(Lipase)催化的脂的水解反应:
A—B +H2O ←→ AOH + BH
第二十页,共一百零三页。
羧肽酶
Zn 离子
第二十一页,共一百零三页。
3、辅助因子
辅酶(维生素、ATP ,结合松散)
辅基(金属离子,结合紧密)
4、辅酶
生物化学酶优秀课件 (2)

生物化学酶
第一节 酶的概念及化学本质
一、酶的发现和提出
※ 1878年,德国生理学家库恩(Kuhne) 首次提出了酶(Enzyme)这个词,它来自希腊 文,意思就是“在酵母中”。
※ 1897年,德国化学家毕希纳 (Buchner) 兄弟用石英砂磨碎酵母细胞,用其汁液成功实 现了糖的发酵,表明发酵与细胞的活动无关, 从而说明了发酵同酶的作用有关。
第二节 酶的催化特性及分子组成
一、酶的分子组成
据酶分子 组成分类
单纯蛋白质酶类
Байду номын сангаас
(单成分酶)
酶蛋白质
结合蛋白质酶类
(双成分酶)
辅助因子
↓
金属离子
辅酶 辅基
金属有机物 小分子有机物
(一)、单成分酶和双成分酶
1、单成分酶(单纯酶,simple enzyme)
是基本组成单位仅为氨基酸而不含其他成分 的一类酶,它的催化活性仅仅取决于其蛋白质结 构。大多数水解酶,如蛋白酶,脂肪酶、淀粉酶、 纤维素酶、核糖核酸酶等属于此。
二、酶的化学本质
※ 1926年美国生物化学家萨姆纳(J.B.Sumner) 等首次从刀豆的种子中分离、纯化得到了脲酶结 晶,证明其为蛋白质,并提出酶的化学本质就是 蛋白质的基本观点。
绝大多数酶是具有催化能力蛋白质的依据
1、和所有蛋白质一样,酶经酸、碱水解的产物是氨基酸。 2、凡是能够使蛋白质变性的因素也能使酶变性失活。 3、和蛋白质一样,酶同样存在等电点和两性解离的性质。 4、和蛋白质一样,酶也不能透过半透性膜。 5、具有和蛋白质相同的颜色反应。
酶作为生物催化剂的特性
◆ 高效催化性 ◆ 高度专一性 ◆ 反应条件温和 ◆ 活性可调控 ◆ 易失活
(一)、高效催化性
第一节 酶的概念及化学本质
一、酶的发现和提出
※ 1878年,德国生理学家库恩(Kuhne) 首次提出了酶(Enzyme)这个词,它来自希腊 文,意思就是“在酵母中”。
※ 1897年,德国化学家毕希纳 (Buchner) 兄弟用石英砂磨碎酵母细胞,用其汁液成功实 现了糖的发酵,表明发酵与细胞的活动无关, 从而说明了发酵同酶的作用有关。
第二节 酶的催化特性及分子组成
一、酶的分子组成
据酶分子 组成分类
单纯蛋白质酶类
Байду номын сангаас
(单成分酶)
酶蛋白质
结合蛋白质酶类
(双成分酶)
辅助因子
↓
金属离子
辅酶 辅基
金属有机物 小分子有机物
(一)、单成分酶和双成分酶
1、单成分酶(单纯酶,simple enzyme)
是基本组成单位仅为氨基酸而不含其他成分 的一类酶,它的催化活性仅仅取决于其蛋白质结 构。大多数水解酶,如蛋白酶,脂肪酶、淀粉酶、 纤维素酶、核糖核酸酶等属于此。
二、酶的化学本质
※ 1926年美国生物化学家萨姆纳(J.B.Sumner) 等首次从刀豆的种子中分离、纯化得到了脲酶结 晶,证明其为蛋白质,并提出酶的化学本质就是 蛋白质的基本观点。
绝大多数酶是具有催化能力蛋白质的依据
1、和所有蛋白质一样,酶经酸、碱水解的产物是氨基酸。 2、凡是能够使蛋白质变性的因素也能使酶变性失活。 3、和蛋白质一样,酶同样存在等电点和两性解离的性质。 4、和蛋白质一样,酶也不能透过半透性膜。 5、具有和蛋白质相同的颜色反应。
酶作为生物催化剂的特性
◆ 高效催化性 ◆ 高度专一性 ◆ 反应条件温和 ◆ 活性可调控 ◆ 易失活
(一)、高效催化性
《生物化学第四章酶》PPT课件

2×9600 2×56000
第三节 酶的分类和命名
一、酶的分类
1. 氧化还原酶 Oxido-reductase
氧化-还原酶催化氧化-还原反应。主要包括脱氢
酶(dehydrogenase)和氧化酶(Oxidase)。
AH2+B
A+BH2
如: 乳酸脱氢酶催化乳酸的脱氢反应。
CH3CHCOOH NAD+
根据酶蛋白质分子的特点,将酶分为:
单体酶:仅有一个活性中心,由一条或多条共价 相连的肽链组成的酶分子。
牛胰RNase 鸡卵清溶菌酶 胰凝乳蛋白酶
124 aa 129 aa 三条肽链
单链 单链
寡聚酶:由两个或多个相同或不同亚基组成的酶。 单独的亚基一般无活性。
① 含相同亚基的寡聚酶: 苹果酸脱氢酶(鼠肝),2个相同的亚基
二、酶的命名
(1) 国际系统命名法(systematic name)
是以酶所催化的整体反应为基础,规定每一种酶的名 称应当明确标明酶的底物及催化反应的性质。
(2)习惯命名法(recommended name)
根据酶的作用底物及其所催化的反应类型来命名。
如: 谷氨酸 + 丙酮酸 -酮戊二酸 + 丙氨酸 丙氨酸: -酮戊二酸氨基转移酶 谷丙转氨酶
比非催化高108~1020倍,比非生物催化剂高107~1013
2. 倍酶。具有高度专一性
酶对反应的底物和产物都有极高的专一性,几乎没 有副反应发生。
3. 酶易失活
常温、常压,中性pH 环境下反应。
4. 酶的催化活性可被调节控制
酶抑制剂调节、反馈调节、酶原激活、共价修饰、 激素控制等。
三、酶的化学本质
O
生化 第三章 酶

1、氧化还原酶(oxidoreductase) 2、转移酶(transferase) 3、水解酶(hydrolase) 4、裂解酶(或裂合酶lyase) 5、异构酶(isomerase) 6、合成酶(synthease)或连接酶(ligase)
2020/5/26
第03章 酶和维生素
19
二、酶的命名
8
国际单位(IU)
在特定的条件下,在250C每分钟催化1μmol底物
转化为产物所需的酶量为一个国际单位。
催量单位(katal) 1催量(1kat)是指在特定条件下,每秒钟使 1mol底物转化为产物所需的酶量。
kat与IU之间的关系: 1Kat =6107 IU
2020/5/26
第03章 酶和维生素
2020/5/26
第03章 酶和维生素
2
教学大纲对本章的要求
底物浓度对酶促反应影响的米曼氏方程、
Km与Vmax的概念及其意义。抑制剂对酶促
影 响 酶
掌 握
反应的影响,包括不可逆抑制的概念、特点 与常见实例,它与变性的区别。可逆性抑制 的分类,竞争性抑制、非竞争性抑制与反竞
作 用
争性抑制的概念与动力学特点,常见的竞争
1、酶为什么催化效率高?
酶催化效率很高的原因是比一般催化剂更 有效地降低反应的活化能。
活化能:底物分子由初态转变为活化状态
时所需要的能量称为活化能,单位是:卡/克
分子。
2020/5/26
第03章 酶和维生素
24
酶促反应活化能的改变
B
能
量
催化剂
B1 B2
非催化剂 酶
B、B1、 B2分别为 不同的活
化状态
2020/5/26
2020/5/26
第03章 酶和维生素
19
二、酶的命名
8
国际单位(IU)
在特定的条件下,在250C每分钟催化1μmol底物
转化为产物所需的酶量为一个国际单位。
催量单位(katal) 1催量(1kat)是指在特定条件下,每秒钟使 1mol底物转化为产物所需的酶量。
kat与IU之间的关系: 1Kat =6107 IU
2020/5/26
第03章 酶和维生素
2020/5/26
第03章 酶和维生素
2
教学大纲对本章的要求
底物浓度对酶促反应影响的米曼氏方程、
Km与Vmax的概念及其意义。抑制剂对酶促
影 响 酶
掌 握
反应的影响,包括不可逆抑制的概念、特点 与常见实例,它与变性的区别。可逆性抑制 的分类,竞争性抑制、非竞争性抑制与反竞
作 用
争性抑制的概念与动力学特点,常见的竞争
1、酶为什么催化效率高?
酶催化效率很高的原因是比一般催化剂更 有效地降低反应的活化能。
活化能:底物分子由初态转变为活化状态
时所需要的能量称为活化能,单位是:卡/克
分子。
2020/5/26
第03章 酶和维生素
24
酶促反应活化能的改变
B
能
量
催化剂
B1 B2
非催化剂 酶
B、B1、 B2分别为 不同的活
化状态
2020/5/26
生物化学-第四章酶PPT课件

O H
O
2.转移酶 Transferase
转移酶催化基团转移反应,即将一个底物分子的基团或原子转移 到另一个底物的分子上。 例如, 谷丙转氨酶催化的氨基转移反应。
CH3CHCOOH HOOCCH2CH2CCOOH
NH2
O
CH3CCOOH HOOCCH2CH2CHCOOH
O
NH2
3.水解酶 Hydrolase
2.“张力”和“形变”
底物与酶结合诱导酶的分子构象变化,变化的酶分子又使底物分 子的敏感键产生“张力”甚至“形变” ,从而促使酶-底物中间产 物进入过渡态。
3.酸碱催化
酸-碱催化可分为狭义的酸-碱催化和广义的酸-碱催化。酶参 与的酸-碱催化反应一般都是广义的酸-碱催化方式。
广义酸-碱催化是指通过质子酸提供部分质子,或是通过质子 碱接受部分质子的作用,达到降低反应活化能的过程。
丙酮酸 + CO2 草酰乙酸
三. 酶的命名
1.习惯命名法
(1)根据其催化底物来命名; (2)根据所催化反应的性质来命名; (3)结合上述两个原则来命名; (4)有时在这些命名基础上加上酶的来源或其它特点。
2.国际系统命名法
系统名称包括底物名称、构型、反应性质,2个底物,底物 之间“ :”,水解酶水解2字可省略,最后加一个酶字。 例如:(习惯名称:谷丙转氨酶)
第四节 酶分子结构与其生物活性的关系
一.酶分子结构
根据结构不同酶可分为
单体酶:只有单一的三级结构蛋白质构成。 寡聚酶:由多个(两个以上)具有三级结构的亚基聚合而成。 多酶复合体:由几个功能相关的酶嵌合而成的复合体。
二.活性中心
活性中心:酶分子中直接和底物结合 并起催化反应的空间局限(部位)。