2018一轮北师大版(理)数学训练:选修4-4 第1节 课时分层训练67 坐标系

合集下载

新北师大版高中数学高中数学选修4-4第一章《坐标系》检测题(含答案解析)(1)

新北师大版高中数学高中数学选修4-4第一章《坐标系》检测题(含答案解析)(1)

一、选择题1.点P 对应的复数为33i -+,以原点为极点,实轴正半轴为极轴建立极坐标系,则点P 的极坐标为( ) A .332,4π⎛⎫ ⎪⎝⎭B .532,4π⎛⎫- ⎪⎝⎭C .53,4π⎛⎫ ⎪⎝⎭D .33,4π⎛⎫- ⎪⎝⎭2.已知点P 的极坐标是1,2π⎛⎫⎪⎝⎭,则过点P 且垂直极轴的直线方程是( ) A .12ρ=B .1cos 2ρθ=C .12cos ρθ=-D .2cos ρθ=-3.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42a πρθ⎛⎫+= ⎪⎝⎭,曲线2C 的参数方程为cos sin x y θθ=⎧⎨=⎩(θ为参数,0θπ).若1C 与2C 有且只有一个公共点,则实数a 的取值范围是( )A .2±B .(2,2)-C .[1,1)-D .[1,1)-或24.已知三个不同的点,,E F G 在圆22(1)9x y -+=上运动,且GE GF ⊥,若点Q 的坐标为()4,4,则QE QF QG ++的取值范围是( ) A .[23,32]B .[]1,6C .[]2,9D .[]12,185.如图所示,极坐标方程sin (0)a a ρθ=>所表示的曲线是( )A .B .C .D .6.极坐标方程cos ρθ=与1cos 2ρθ=的图形是( )A .B .C .D .7.将直角坐标方程y x =转化为极坐标方程,可以是( ) A .1ρ=B .ρθ=C .1()R θρ=∈D .()4R πθρ=∈8.曲线cos 104πρθθ+==关于对称的曲线的极坐标方程是( )A .sin 10ρθ+=B .sin 10ρθ-=C .cos 10ρθ-=D .cos 10ρθ+= 9.极坐标方程24sin 52θρ=表示的曲线是( )A .圆B .椭圆C .双曲线D .抛物线10.30x y -=的极坐标方程(限定0ρ≥)为 A .6πθ= B .76θπ=C .6πθ=或76θπ=D .56πθ=11.圆心在(1,0)且过极点的圆的极坐标方程为 A .1ρ= B .cos ρθ= C .2cos ρθ=D .2sin ρθ=12.若曲线2 1x ty t =-⎧⎨=-+⎩(t 为参数)与曲线22ρ=B , C 两点,则BC 的值为( )A 30B 15C 30D 60二、填空题13.圆C :4sin ρθ=-上的动点P 到直线l :πsin 24ρθ⎛⎫+= ⎪⎝⎭______. 14.已知圆M 的极坐标方程为242cos()604πρρθ--+=,则ρ的最大值为______.15.若点M 的柱坐标为2(2,,2)3π-,则点M 的直角坐标为______; 16.(坐标系与参数方程选做题)已知圆C 的圆心为(6,)2π,半径为5,直线(,)2r πθαθπρ=≤<∈被圆截得的弦长为8,则α=_____.17.在直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系.设点A ,B 分别在曲线C 1:3cos sin x y θθ=+⎧⎨=⎩ (θ为参数)和曲线C 2:ρ=1上,则|AB |的最小值为________.18.在直角坐标系xOy 中,曲线C 1的参数方程为23x cosay sina =⎧⎪⎨=⎪⎩(α为参数),在极坐标系(与直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线C 2的方程为ρ(cos θ-sin θ)+1=0,则C 1与C 2的交点个数为________.19.将曲线221x y +=按伸缩变换公式'2'3x xy y =⎧⎨=⎩变换后得到曲线C ,则曲线C 上的点(,)P m n 到直线:260l x y +-=的距离最小值为_____________.20.已知圆的直角坐标方程为2220x y x +-=,则圆的极坐标方程为____________.三、解答题21.在极坐标系中,已知直线l 过点1,0A ,且其向上的方向与极轴的正方向所成的最小正角为3π,求:(1)直线的极坐标方程; (2)极点到该直线的距离.22.在极坐标系中,圆C 的方程为2cos ρθ=,以极点O 为原点,极轴为x 轴的非负半轴建立平面直角坐标系.(1)求圆C 在直角坐标系下的标准方程; (2)直线l 的极坐标方程是2sin 633πρθ⎛⎫+= ⎪⎝⎭:(0)6OM πθρ=与圆C 的交点为O ,P ,与直线l 的交点为Q ,求线段PQ 的长. 23.在直角坐标系xOy 中,曲线1C 的参数方程为cos 2sin x y αα=⎧⎨=⎩(α为参数);以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为sin 524πρθ⎛⎫+= ⎪⎝⎭(1)求曲线1C 的普通方程与曲线2C 的直角坐标方程;(2)若把曲线1C 312,得到曲线3C ,求曲线3C 的方程;(3)设P 为曲线3C 上的动点,求点P 到曲线2C 上点的距离的最小值,并求此时点P 的坐标. 24.在平面直角坐标系xOy 中,曲线1C 的参数方程为:cos sin x y θθ=⎧⎨=⎩(θ为参数,[]0,θπ∈),将曲线1C经过伸缩变换:x xy '='=⎧⎪⎨⎪⎩得到曲线2C .(1)以原点为极点,x 轴的正半轴为极轴建立坐标系,求2C 的极坐标方程; (2)若直线cos :sin x t l y t αα=⎧⎨=⎩(t 为参数)与12,C C 相交于,A B两点,且1AB =,求α的值.25.已知直线l 的参数方程为cos sin x m t y t αα=+⎧⎨=⎩(t 为参数,0απ≤<),以坐标原点为极点,以x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4cos ρθ=,射线,444πππθφφθφ⎛⎫=-<<=+ ⎪⎝⎭,4πθφ=-分别与曲线C 交于、、A B C 三点(不包括极点O ).(Ⅰ)求证:OB OC OA +=;(Ⅱ)当12πφ=时,若B C 、两点在直线l 上,求m 与α的值.26.在极坐标系中,设圆1:4cos C ρθ=与直线:()4l R πθρ=∈交于,A B 两点.(1)求以AB 为直径的圆2C 的极坐标方程;(2)在圆1C 上任取一点M ,在圆2C 上任取一点N ,求||MN 的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【解析】分析:先求出点P 的直角坐标,P 到原点的距离r ,根据点P 的位置和极角的定义求出极角,从而得到点P 的极坐标. 详解:点P 对应的复数为33i -+,则点P 的直角坐标为()3,3-,点P到原点的距离r =,且点P 第二象限的平分线上,故极角等于34π,故点P的极坐标为34π⎛⎫ ⎪⎝⎭,故选A .点睛:本题考查把直角坐标化为极坐标的方法,复数与复平面内对应点间的关系,求点P 的极角是解题的难点.2.C解析:C 【分析】把极坐标化为直角坐标,求出直线的直角坐标方程,再化为极坐标方程. 【详解】1,2P π⎛⎫⎪⎝⎭的直角坐标是1,02⎛⎫- ⎪⎝⎭,∴过P 且与极轴垂直的直线的直角坐标方程为12x =-,其极坐标方程为1cos 2ρθ=-,即12cos ρθ=-.故选:C . 【点睛】本题考查求直线的极坐标方程,解题时利用极坐标与直角坐标的互化求解.3.D解析:D 【解析】 【分析】先把曲线1C ,2C 的极坐标方程和参数方程转化为直角坐标方程和一般方程,若1C 与2C 有且只有一个公共点可转化为直线和半圆有一个公共点,数形结合讨论a 的范围即得解. 【详解】因为曲线1C 的极坐标方程为2sin ,4a πρθ⎛⎫+= ⎪⎝⎭即222(sin cos )222a ρθθ+= 故曲线1C 的直角坐标方程为:0x y a +-=.消去参数θ可得曲线2C 的一般方程为:221x y +=,由于0θπ,故0y ≥如图所示,若1C 与2C 有且只有一个公共点,直线与半圆相切,或者截距11a -≤< 当直线与半圆相切时122O l d a -==∴=由于为上半圆,故02a a >∴= 综上:实数a 的取值范围是[1,1)-或2 故选:D 【点睛】本题考查了极坐标、参数方程与直角坐标方程、一般方程的互化,以及直线和圆的位置关系,考查了学生数形结合,数学运算的能力,属于中档题.4.D解析:D 【分析】利用数形结合,采用建系的方法,根据向量的坐标表示以及运算,结合辅助角公式,可得结果. 【详解】 如图:由GE GF ⊥,可知EF 为直径 可设()()13cos ,3sin ,13cos ,3sin E F ϕϕϕϕ+--, ()13cos ,3sin G θθ+所以()33cos ,3sin 4QE ϕϕ=-+-,()33cos ,3sin 4QF ϕϕ=---- ()3cos 3,3sin 4QG θθ=--则()3cos 9,3sin 12QE QF QG θθ++=-- 所以()()223cos 93sin 12QE QF QG θθ++=-+-化简可得()23454cos 72sin QE QF QG θθ++=-+即3234tan 4QE QF QG ϕ++==所以当()sin 1θϕ+=时,min12QE QF QG++= 当()sin 1θϕ+=-时,max18QE QF QG++=所以||QE QF QG ++的取值范围为[]12,18 故选:D 【点睛】本题主要考查向量的坐标表示,对这种几何问题,常会采用建系,将几何问题代数化,化繁为简,属中档题.5.C解析:C 【解析】 【分析】把极坐标方程化为直角坐标方程即可。

(北师大版)北京市高中数学选修4-4第一章《坐标系》检测题(包含答案解析)

(北师大版)北京市高中数学选修4-4第一章《坐标系》检测题(包含答案解析)

一、选择题1.如图所示,某人P 去草场打靶,猎物R 被放在了两个固定物E 、F 之间,满足4EF =,1RF =,此人在移动过程中,始终保持到E ,F 两点的距离和不小于6,当他离猎物最近时开枪命中猎物,则此时他离猎物的距离为( )A .2B .152C .1D .21032.以平面直角坐标系的原点为极点,以x 轴的正半轴为极轴,建立极坐标系,则曲线3cos sin x y αα⎧=⎪⎨=⎪⎩(α为参数)上的点到曲线cos sin 4ρθρθ+=的最短距离是( ). A .1B .2C .22D .323.将正弦曲线sin y x =先保持纵坐标y 不变,将横坐标缩为原来的12;再将纵坐标y 变为原来的3倍,就可以得到曲线3sin 2y x =,上述伸缩变换的变换公式是( )A .1'2'3x x y y ⎧=⎪⎨⎪=⎩B .'2'3x xy y =⎧⎨=⎩C .'21'3x x y y =⎧⎪⎨=⎪⎩D .1'21'3x x y y ⎧=⎪⎪⎨⎪=⎪⎩4.若点P 的直角坐标为()1,3-,则它的极坐标可以是( ) A .52,3π⎛⎫ ⎪⎝⎭B .42,3π⎛⎫ ⎪⎝⎭C .72,6π⎛⎫ ⎪⎝⎭D .112,6π⎛⎫⎪⎝⎭5.在极坐标中,为极点,曲线:上两点对应的极角分别为,则的面积为 A .B .C .D .6.在平面直角坐标系中,抛物线23x y =-经过伸缩变换1'21'3x x y y ⎧=⎪⎪⎨⎪=⎪⎩后得到的曲线方程是( ) A .2''4y x =- B .2''4x y =- C .2'9'4y x =-D .2'9'4x y =-7.将直角坐标方程y x =转化为极坐标方程,可以是( )A .1ρ=B .ρθ=C .1()R θρ=∈D .()4R πθρ=∈8.在极坐标系中,下列方程为圆ρ2sin θ=的切线方程的是( ) A .cos 2ρθ=B .2cos ρθ=C .cos 1ρθ=-D .sin 1ρθ=-9.在同一平面直角坐标系中,将直线22x y -=按124x xy y⎧=⎪⎨⎪='⎩'变换后得到的直线l 的方程,若以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则直线l 的极坐标方程为( ) A .4cos sin 4ρθρθ-= B .cos 16sin 4ρθρθ-= C .cos 4sin 4ρθρθ-=D .cos 8sin 4ρθρθ-=10.在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴,长度单位不变,建立极坐标系,已知曲线C 的极坐标方程为ρcos(θ-3π)=1,M ,N 分别为曲线C 与x 轴、y 轴的交点,则MN 的中点的极坐标为( )A .(1,)3B.(,)36π C .3π⎫⎪⎪⎝⎭, D.2⎛ ⎝⎭11.在极坐标系中,曲线1C 的方程为2sin 3πρθ⎛⎫=+⎪⎝⎭,曲线2C 的方程为sin 43πρθ⎛⎫+= ⎪⎝⎭,以极点O 为原点,极轴方向为x 轴正方向建立直角坐标系xOy 。

2018版数学《课堂讲义》北师大版选修4-4练习:第一讲 坐标系 1 课时作业

2018版数学《课堂讲义》北师大版选修4-4练习:第一讲 坐标系 1 课时作业

一、选择题1.▱ABCD 中三个顶点A 、B 、C 的坐标分别是(-1,2)、(3,0)、(5,1),则点D 的坐标是( ) A.(9,-1) B.(-3,1) C.(1,3)D.(2,2)解析 由平行四边形对边互相平行,即斜率相等,可求出D 点坐标.设D (x ,y ), 则⎩⎨⎧k AB =k DC ,k AD =k BC ,即⎩⎪⎨⎪⎧2-0-1-3=y -1x -5,2-y -1-x =0-13-5.∴⎩⎨⎧x =1,y =3.,故D (1,3). 答案 C2.要得到函数y =sin ⎝ ⎛⎭⎪⎫4x -π3的图像,只需将函数y =sin 4x 的图像( )A.向左平移π12个单位 B.向右平移π12个单位 C.向左平移π3个单位D.向右平移π3个单位解析 由y =sin ⎝ ⎛⎭⎪⎫4x -π3=sin 4⎝ ⎛⎭⎪⎫x -π12得,只需将y =sin 4x 的图像向右平移π12个单位即可,故选B. 答案 B3.在同一平面直角坐标系中,经过伸缩变换⎩⎨⎧x ′=5x ,y ′=3y 后,曲线C 变为曲线x ′2+4y ′2=1,则曲线C 的方程为( ) A.25x 2+36y 2=1B.9x 2+100y 2=1C.10x +24y =1D.225x 2+89y 2=1解析 将⎩⎨⎧x ′=5x ,y ′=3y 代入x ′2+4y ′2=1,得25x 2+36y 2=1,为所求曲线C 的方程. 答案 A4.将一个圆作伸缩变换后所得到的图形不可能是( ) A.椭圆B.比原来大的圆C.比原来小的圆D.双曲线解析 设圆的方程为(x -a )2+(y -b )2=r 2, 变换为⎩⎨⎧x ′=λx ,y ′=μy ,化为⎩⎪⎨⎪⎧x =1λx ′,y =1μy ′,(λ,μ不为零).⎝ ⎛⎭⎪⎫1λx ′-a 2+⎝ ⎛⎭⎪⎫1μy ′-b 2=r 2, 1λ2(x ′-λa )2+1μ2(y ′-μb )2=r 2, ∴(x ′-λa )2(λr )2+(y ′-μb )2(μr )2=1.此方程不可能是双曲线.答案 D 二、填空题5.△ABC 中,B (-2,0),C (2,0),△ABC 的周长为10,则A 点的轨迹方程为__________.解析 ∵△ABC 的周长为10, ∴|AB |+|AC |+|BC |=10.其中|BC |=4, 即有|AB |+|AC |=6>4.∴A 点轨迹为椭圆除去长轴两端点, 且2a =6,2c =4.∴a =3,c =2,b 2=5. ∴A 点的轨迹方程为x 29+y 25=1 (y ≠0). 答案 x 29+y 25=1 (y ≠0)6.在平面直角坐标系中,方程x 2+y 2=1所对应的图形经过伸缩变换⎩⎨⎧x ′=2x ,y ′=3y后的图形所对应的方程是____________. 解析 代入公式,比较可得x ′24+y ′29=1. 答案 x ′24+y ′29=17.y =cos x 经过伸缩变换⎩⎨⎧x ′=2x ,y ′=3y 后曲线方程变为________.解析 由⎩⎨⎧x ′=2x ,y ′=3y ,化为⎩⎪⎨⎪⎧x =12x ′,y =13y ′,代入y =cos x 中得:13y ′=cos 12x ′,即:y ′=3cos 12x ′. 答案 y ′=3cos 12x ′8.台风中心从A 地以20 km/h 的速度向东北方向移动,离台风中心30 km 内的地区为危险区,城市B 在A 地正东40 km 处,则城市B 处于危险区内的时间为________h.解析 以A 为坐标原点,AB 所在直线为x 轴,建立平面直角坐标系,则B (40,0),以点B 为圆心,30为半径的圆的方程为(x -40)2+y 2=302,台风中心移动到圆B 内时,城市B 处于危险区,台风中心移动的轨迹为直线y =x ,与圆B 相交于点M ,N ,点B 到直线y =x 的距离d =402=20 2. 求得|MN |=2302-d 2=20(km),故|MN |20=1,所以城市B 处于危险区的时间为1 h. 答案 1 三、解答题9.已知▱ABCD ,求证:|AC |2+|BD |2=2(|AB |2+|AD |2).证明 法一 坐标法 以A 为坐标原点O ,AB 所在的直线为x 轴,建立平面直角坐标系xOy ,则A (0,0),设B (a ,0),C (b ,c ),则AC 的中点E ⎝ ⎛⎭⎪⎫b 2,c 2,由对称性知D (b -a ,c ),所以|AB |2=a 2,|AD |2=(b -a )2+c 2, |AC |2=b 2+c 2, |BD |2=(b -2a )2+c 2,|AC |2+|BD |2=4a 2+2b 2+2c 2-4ab =2(2a 2+b 2+c 2-2ab ), |AB |2+|AD |2=2a 2+b 2+c 2-2ab , ∴|AC |2+|BD |2=2(|AB |2+|AD |2).法二 向量法 在▱ABCD 中,AC→=AB →+AD →,两边平方得AC →2=|AC →|2=AB →2+AD →2+2AB →·AD →,同理得BD →2=|BD →|2=BA →2+BC →2+2BA →·BC →, 以上两式相加,得|AC →|2+|BD →|2=2(|AB →|2+|AD →|2)+2BC →·(AB →+BA →) =2(|AB→|2+|AD →|2), 即|AC |2+|BD |2=2(|AB |2+|AD |2).10.通过平面直角坐标系中的平移变换与伸缩变换,可以把椭圆(x -1)29+(y +2)24=1变为中心在原点的单位圆,求上述平移变换与伸缩变换,以及这两种变换的合成变换.解 先通过平移变换⎩⎨⎧x ′=x -1,y ′=x +2把椭圆(x -1)29+(y +2)24=1变为椭圆x ′29+y ′24=1.再通过伸缩变换⎩⎪⎨⎪⎧x ″=x ′3,y ″=y ′2把椭圆x ′29+y ′24=1变为单位圆x ″2+y ″2=1.由上述两种变换合成的变换是⎩⎪⎨⎪⎧x ″=13(x -1),y ″=12(y +2).。

最新北师大版高中数学高中数学选修4-4第一章《坐标系》检测卷(有答案解析)(2)

最新北师大版高中数学高中数学选修4-4第一章《坐标系》检测卷(有答案解析)(2)

一、选择题1.以平面直角坐标系的原点为极点,以x 轴的正半轴为极轴,建立极坐标系,则曲线sin x y αα⎧=⎪⎨=⎪⎩(α为参数)上的点到曲线cos sin 4ρθρθ+=的最短距离是( ).A .1B C .D .2.极坐标方程2cos22cos 1ρθρθ-=表示的曲线是( ) A .圆B .椭圆C .抛物线D .双曲线3.在极坐标系中,曲线4sin 6πρθ⎛⎫=+ ⎪⎝⎭关于( ) A .直线3πθ=对称B .直线6πθ=对称C .点2,6π⎛⎫⎪⎝⎭对称 D .极点对称4.已知三个不同的点,,E F G 在圆22(1)9x y -+=上运动,且GE GF ⊥,若点Q 的坐标为()4,4,则QE QF QG ++的取值范围是( )A .B .[]1,6C .[]2,9D .[]12,185.已知曲线C 的极坐标方程为:2cos 4sin ρθθ=-,P 为曲线C 上的动点,O 为极点,则PO 的最大值为( )A .2B .4C D .6.若点P 的直角坐标为(1,,则它的极坐标可以是( ) A .52,3π⎛⎫ ⎪⎝⎭B .42,3π⎛⎫ ⎪⎝⎭C .72,6π⎛⎫ ⎪⎝⎭D .112,6π⎛⎫⎪⎝⎭7.点(,)ρθ满足223cos 2sin 6cos ρθρθθ+=,则2ρ的最大值为( ) A .72B .4C .92D .58.在球坐标系中,点3,,46P ππ⎛⎫ ⎪⎝⎭和点33,,46Q ππ⎛⎫⎪⎝⎭之间的距离为( )A B .C .D .29.已知直线1:1x t l y at =+⎧⎨=+⎩(t 为参数)与曲线221613sin ρθ=+的相交弦中点坐标为(1,1),则a 等于( )A .14-B .14C .12-D .1210.直线πsin 44ρθ⎛⎫+= ⎪⎝⎭与圆π4sin 4ρθ⎛⎫=+ ⎪⎝⎭的位置关系是( ). A .相交但不过圆心B .相交且过圆心C .相切D .相离11.在极坐标系中,曲线1C 的方程为2sin 3πρθ⎛⎫=+⎪⎝⎭,曲线2C 的方程为sin 43πρθ⎛⎫+= ⎪⎝⎭,以极点O 为原点,极轴方向为x 轴正方向建立直角坐标系xOy 。

高中数学北师大版选修4-4课时分层作业 共9套含解析

高中数学北师大版选修4-4课时分层作业 共9套含解析
∵P在BC的垂直平分线上,
∴B(x+2,0),C(x-2,0).
∵P也在AB的垂直平分线上,
∴|PA|=|PB|,
即 = ,
化简得x2-6y+5=0.
这就是所求的轨迹方程.
[能力提升练]
1.方程x2+xy=0的曲线是()
A.一个点B.一条直线
C.两条直线D.一个点和一条直线
[解析]x2+xy=x(x+y)=0,即x=0或x+y=0.
∴b2=c2-a2=4- = .
∴点P的轨迹方程为 - =1 .
由图可知,点P为双曲线与x轴的右交点时,|OP|最小,|OP|的最小值是 .
[答案]A
二、填空题
6.x轴上的单位长度为y轴上单位长度的2倍的平面直角坐标系中,以原点为圆心,4为半径的圆的图形变为________.
[解析]如果x轴上的单位长度不变,y轴上的单位长度缩小为原来的 ,圆x2+y2=16的图形变为中心在原点,焦点在x轴上的一个椭圆.
故方程x2+xy=0表示两条直线.
[答案]C
2.已知△ABC的底边BC长为12,且底边固定,顶点A是动点,且sinB-sinC= sinA,若以底边BC为x轴、底边BC的中点为原点建立平面直角坐标系,则点A的轨迹方程是()
A. - =1B. - =1(x<-3)
C. - =1D. - =1(x<-3)
8.如图所示,正方体ABCDA1B1C1D1的棱长为1,点M在AB上,且AM= AB,点P在平面ABCD上,且动点P到直线A1D1的距离的平方与P到点M的距离的平方差为1,在平面直角坐标系xAy中,动点P的轨迹方程是________.
[解析]过P作PQ⊥AD于Q,再过Q作QH⊥A1D1于H,连结PH,PM,可证PH⊥A1D1,设P(x,y),由|PH|2-|PM|2=1,得x2+1- =1,化简得y2= x- .

(北师大版)北京市高中数学选修4-4第一章《坐标系》测试题(答案解析)

(北师大版)北京市高中数学选修4-4第一章《坐标系》测试题(答案解析)

一、选择题1.在极坐标系中,点(),ρθ与(),ρπθ--的位置关系为( ) A .关于极轴所在直线对称 B .关于极点对称 C .重合D .关于直线()2R πθρ=∈对称2.已知曲线C 的极坐标方程为:22cos 2sin 0ρρθρθ--=,直线l 的极坐标方程为:4πθ=(ρ∈R ),曲线C 与直线l 相交于AB 、两点,则AB 为( )A B .C D .3.在极坐标系中,由三条直线0θ=,3πθ=,cos sin 1ρθρθ+=围成的图形的面积为( )A .14B C D .134.在极坐标系中,曲线1C 的极坐标方程为4sin ρθ=,曲线2C 的极坐标方程为ρθ=,若曲线1C 与2C 的关系为( )A .外离B .相交C .相切D .内含5.若22,3P π⎛⎫⎪⎝⎭是极坐标系中的一点,则8552,,2,,2,,2,3333Q R M N ππππ⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭四个点中与点P 重合的点有( ) A .1个B .2个C .3个D .4个6.在直角坐标系xOy 中,直线l 的方程为0x =,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,则l 的极坐标方程为( )A .sin 32πρθ⎛⎫+= ⎪⎝⎭ B .sin 32πρθ⎛⎫-= ⎪⎝⎭C .sin 62πρθ⎛⎫+= ⎪⎝⎭ D .sin 62πρθ⎛⎫-= ⎪⎝⎭ 7.在极坐标系中,曲线1:2cos C ρθ=,曲线2:4C πθ=,若曲线1C 与2C 交于,A B 两点,则线段AB 的长度为( )A .2B C .D .18.将点的直角坐标(-2,化成极坐标得( ). A .(4,23π) B .(-4,23π) C .(-4,3π) D .(4,3π)9.曲线cos 104πρθθ+==关于对称的曲线的极坐标方程是( )A .sin 10ρθ+=B .sin 10ρθ-=C .cos 10ρθ-=D .cos 10ρθ+=10.在极坐标系中,圆心为π1,2⎛⎫⎪⎝⎭,且过极点的圆的方程是( ). A .2sin ρθ=B .2sin ρθ=-C .2cos ρθ=D .2cos ρθ=-11.极坐标方程24sin 52θρ=表示的曲线是( )A .圆B .椭圆C .双曲线D .抛物线12.已知曲线C 的极坐标方程为2cos ρθ=,则曲线C 的直角坐标方程为A .22(1)4x y -+=B .22(1)4x y +-=C .22(1)1x y -+=D .22(1)1y x +-=二、填空题13.已知点1,0A ,()3,4 B ,O 为坐标原点,点C 在AOB ∠的平分线上,且2OC =,则点C 的坐标为_______________.14.圆C :4sin ρθ=-上的动点P 到直线l :πsin 24ρθ⎛⎫+= ⎪⎝⎭的最短距离为______. 15.(理)在极坐标系中,曲线sin 2ρθ=+与sin 2ρθ=的公共点到极点的距离为_________. 16.求圆心为(3,)6C π,半径为3的圆的极坐标方程为 ___________________.17.在极坐标系下,点π(1,)2P 与曲线2cos ρθ=上的动点Q 距离的最小值为_________.18.在极坐标系中,圆2cos ρθ=的圆心到直线sin 1ρθ=的距离为______. 19.已知直线l 的参数方程为{4x ty t==+ (为参数),圆的极坐标方程为22sin 4πρθ⎛⎫=+ ⎪⎝⎭ ,则圆上的点到直线l 的最大距离为_____________.20.在直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系.设点A ,B分别在曲线C 1:3cos sin x y θθ=+⎧⎨=⎩(θ为参数)和曲线C 2:ρ=1上,则|AB |的最小值为________. 三、解答题21.在极坐标系中,已知两点3,,2,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.22.在平面直角坐标系xOy 中,曲线1C :222x ax y -+=0(a >0),曲线2C 的参数方程为cos {1sin x y αα==+(α为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系;(1)求曲线1C ,2C 的极坐标方程; (2)已知极坐标方程为θ=6π的直线与曲线1C ,2C 分别相交于P ,Q 两点(均异于原点O ),若|PQ|=1,求实数a 的值;23.在直角坐标系xOy 中,曲线1C :2214y x +=,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 是圆心极坐标为(3,)π,半径为1的圆. (1)求曲线1C 的参数方程和2C 的直角坐标方程;(2)设M ,N 分别为曲线1C ,2C 上的动点,求MN 的取值范围.24.在平面直角坐标系xOy 中,圆C 的参数方程为3cos ,3sin x m a y α=+⎧⎨=⎩(α为参数,m 为常数).在以原点O 为极点、以x 轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为cos 4πρθ⎛⎫-= ⎪⎝⎭若直线l 与圆C 有两个公共点,求实数m 的取值范围. 25.已知曲线C 的极坐标方程是2cos ρθ=,若以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,且取相同的单位长度建立平面直角坐标系,则直线l 的参数方程是12x m y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数). (1)求曲线C 的直角坐标方程与直线l 的普通方程;(2)设点(),0P m ,若直线l 与曲线C 交于,A B 两点,且1PA PB ⋅=,求非负实数m 的值.26.已知平面直角坐标系xOy ,直线l过点P ,且倾斜角为α,以O 为极点,x 轴的非负半轴为极轴建立极坐标系,圆C 的极坐标方程为24cos()103πρρθ---=.(1)求直线l 的参数方程和圆C 的标准方程;(2)设直线l 与圆C 交于M 、N两点,若||||PM PN -=,求直线l 的倾斜角α的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由点(),ρπθ--和点(,)ρθ-为同一点. 则比较点(,)ρθ-和点(),ρθ,可推出点(),ρθ与(),ρπθ--的位置关系.【详解】解:点(),ρπθ--与点(),ρθ-是同一个点,(),ρθ-与点(),ρθ关于极轴对称.∴点(),ρθ与(),ρπθ--关于极轴所在直线对称.故选:A. 【点睛】考查极坐标的位置关系.题目较为简单,要掌握极坐标的概念.2.B解析:B 【分析】把圆和直线的极坐标方程都转化成直角坐标方程,可得弦AB 过圆心,则2AB r =。

高考数学统考一轮复习 第十章 选修系列 选修4-4 第1节 坐标系课时规范练(文,含解析)北师大版

高考数学统考一轮复习 第十章 选修系列 选修4-4 第1节 坐标系课时规范练(文,含解析)北师大版

学习资料第十章选修系列选修4-4 坐标系与参数方程第一节坐标系课时规范练1.在极坐标系中,直线l的方程为ρsin错误!=2,曲线C的方程为ρ=4cos θ,求直线l被曲线C截得的弦长.解析:因为曲线C的极坐标方程为ρ=4cos θ,化成直角坐标方程为(x-2)2+y2=4,所以曲线C是圆心为(2,0),直径为4的圆.因为直线l的极坐标方程为ρsin错误!=2,化成直角坐标方程为y=错误!(x-4),则直线l过A(4,0),倾斜角为错误!,所以A为直线l与圆C的一个交点.设另一个交点为B,则∠OAB=错误!。

如图,连接OB。

因为OA为直径,从而∠OBA=错误!,所以AB=4cos π6=2错误!.所以直线l被曲线C截得的弦长为2错误!。

2.(2020·青岛质检)在平面直角坐标系xOy中,圆C的参数方程为错误!(其中φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(1)求圆C的极坐标方程;(2)设直线l的极坐标方程是ρsin错误!=2,射线OM:θ=错误!与圆C的交点为P,与直线l的交点为Q,求线段PQ的长.解析:(1)圆C的普通方程为x2+(y-1)2=1,又x=ρcos θ,y=ρsin θ,所以圆C的极坐标方程为ρ=2sin θ。

(2)把θ=错误!代入圆的极坐标方程可得ρP=1,把θ=错误!代入直线l的极坐标方程可得ρQ=2,所以|PQ|=|ρP-ρQ|=1。

3.(2019·郑州一中模拟)在平面直角坐标系中,曲线C1的普通方程为x2+y2+2x-4=0,曲线C2的方程为y2=x,以坐标原点O为极点,x轴非负半轴为极轴建立极坐标系.(1)求曲线C1,C2的极坐标方程;(2)求曲线C1与C2交点的极坐标,其中ρ≥0,0≤θ<2π。

解析:(1)依题意,将错误!代入x2+y2+2x-4=0可得ρ2+2ρcos θ-4=0。

将错误!代入y2=x,得ρsin2θ=cos θ.故曲线C1的极坐标方程为ρ2+2ρcos θ-4=0,曲线C2的极坐标方程为ρsin2θ=cos θ.(2)将y2=x代入x2+y2+2x-4=0,得x2+3x-4=0,解得x=1,x=-4(舍去),当x=1时,y=±1,所以曲线C1与C2交点的直角坐标分别为(1,1),(1,-1),记A(1,1),B (1,-1),所以ρA=错误!=错误!,ρB=错误!=错误!,tan θA=1,tan θB=-1,因为ρ≥0,0≤θ<2π,点A在第一象限,点B在第四象限,所以θA=错误!,θB=错误!,故曲线C1与C2交点的极坐标分别为错误!,错误!. 4.(2020·山西八校联考)在直角坐标系xOy中,曲线C的方程为(x-3)2+(y-4)2=25.以坐标原点O为极点,x轴非负半轴为极轴建立极坐标系.(1)求曲线C的极坐标方程;(2)设l1:θ=错误!,l2:θ=错误!,若l1,l2与曲线C分别交于异于原点的A,B两点,求△AOB 的面积.解析:(1)∵曲线C的普通方程为(x-3)2+(y-4)2=25,即x2+y2-6x-8y=0.∴曲线C的极坐标方程为ρ=6cos θ+8sin θ.(2)设A错误!,B错误!。

高考数学(北师大版理科)一轮复习练习:选修4-4

高考数学(北师大版理科)一轮复习练习:选修4-4

(建议用时:50分钟)1.(2015·江苏卷)已知圆C 的极坐标方程为ρ2+22ρsin ⎝⎛⎭⎪⎫θ-π4-4=0,求圆C 的半径.解 以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xOy .圆C 的极坐标方程为ρ2+22ρ⎝ ⎛⎭⎪⎫22sin θ-22cos θ-4=0,化简,得ρ2+2ρsin θ-2ρcos θ-4=0.则圆C 的直角坐标方程为x 2+y 2-2x +2y -4=0,即(x -1)2+(y +1)2=6,所以圆C 的半径为 6.2.在平面直角坐标系中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,已知点A 的极坐标为⎝ ⎛⎭⎪⎫2,π4,直线l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π4=a ,且点A 在直线l 上.(1)求a 的值及直线l 的直角坐标方程;(2)圆C 的参数方程为⎩⎨⎧x =1+cos α,y =sin α(α为参数),试判断直线l 与圆C 的位置关系.解 (1)由点A ⎝ ⎛⎭⎪⎫2,π4在直线ρcos ⎝⎛⎭⎪⎫θ-π4=a 上,可得a = 2.所以直线l 的方程可化为ρcos θ+ρsin θ=2,从而直线l 的直角坐标方程为x +y -2=0.(2)由已知得圆C 的直角坐标方程为(x -1)2+y 2=1,所以圆C 的圆心为(1,0),半径r =1,因为圆心C 到直线l 的距离d =12=22<1, 所以直线l 与圆C 相交.3.(2013·新课标全国Ⅰ卷)已知曲线C 1的参数方程为⎩⎨⎧x =4+5cos t ,y =5+5sin t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=2sin θ.(1)把C 1的参数方程化为极坐标方程;(2)求C 1与C 2交点的极坐标(ρ≥0,0≤θ<2π).解 (1)∵C 1的参数方程为⎩⎨⎧x =4+5cos t ,y =5+5sin t ,∴⎩⎨⎧5cos t =x -4,5sin t =y -5.∴(x -4)2+(y -5)2=25(cos 2t +sin 2t )=25,即C 1的直角坐标方程为(x -4)2+(y -5)2=25,把x =ρcos θ,y =ρsin θ代入(x -4)2+(y -5)2=25,化简得:ρ2-8ρcos θ-10ρsin θ+16=0.(2)C 2的直角坐标方程为x 2+y 2=2y ,解方程组⎩⎨⎧(x -4)2+(y -5)2=25,x 2+y 2=2y ,得⎩⎨⎧x =1,y =1,或⎩⎨⎧x =0,y =2.∴C 1与C 2交点的直角坐标为(1,1),(0,2).∴C 1与C 2交点的极坐标为⎝⎛⎭⎪⎫2,π4,⎝ ⎛⎭⎪⎫2,π2. 4.在直角坐标系xOy 中,圆C 1:x 2+y 2=4,圆C 2:(x -2)2+y 2=4.(1)在以O 为极点,x 轴正半轴为极轴的极坐标系中,分别写出圆C 1,C 2的极坐标方程,并求出圆C 1,C 2的交点坐标(用极坐标表示);(2)求圆C 1与C 2的公共弦的参数方程.解 (1)圆C 1的极坐标方程为ρ=2,圆C 2的极坐标方程为ρ=4cos θ.解⎩⎨⎧ρ=2,ρ=4cos θ,得ρ=2,θ=±π3, 故圆C 1与圆C 2交点的坐标为⎝⎛⎭⎪⎫2,π3,⎝ ⎛⎭⎪⎫2,-π3. 注:极坐标系下点的表示不唯一.(2)法一 由⎩⎨⎧x =ρcos θ,y =ρsin θ,得圆C 1与C 2交点的直角坐标分别为(1,3),(1,-3).故圆C 1与C 2的公共弦的参数方程为⎩⎨⎧x =1,y =t ,-3≤t ≤ 3. ⎝ ⎛⎭⎪⎫或参数方程写成⎩⎨⎧x =1,y =y ,-3≤y ≤ 3 法二 将x =1代入⎩⎨⎧x =ρcos θ,y =ρsin θ,得ρcos θ=1,从而ρ=1cos θ. 于是圆C 1与C 2的公共弦的参数方程为⎩⎨⎧x =1,y =tan θ,-π3≤θ≤π3. 5.在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2cos α,y =2+2sin α(α为参数).M 是C 1上的动点,P 点满足OP →=2 OM →,P 点的轨迹为曲线C 2. (1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求AB .解 (1)设P (x ,y ),则由条件知M ⎝ ⎛⎭⎪⎫x 2,y 2. 由于M 点在C 1上,所以⎩⎪⎨⎪⎧x 2=2cos α,y 2=2+2sin α,即⎩⎨⎧x =4cos α,y =4+4sin α. 从而C 2的参数方程为⎩⎨⎧x =4cos α,y =4+4sin α.(α为参数) (2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ=8sin θ.射线θ=π3与C 1的交点A 的极径为ρ1=4sin π3,射线θ=π3与C 2的交点B 的极径为ρ2=8sin π3.所以AB =|ρ2-ρ1|=2 3.6.(2015·湖南卷)已知直线l :⎩⎪⎨⎪⎧x =5+32t ,y =3+12t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2cos θ.(1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA |·|MB |的值.解 (1)ρ=2cos θ等价于ρ2=2ρcos θ.①将ρ2=x 2+y 2,ρcos θ=x 代入①即得曲线C 的直角坐标方程为x 2+y 2-2x =0.②(2)将⎩⎪⎨⎪⎧x =5+32t ,y =3+12t 代入②式,得t 2+53t +18=0.设这个方程的两个实根分别为t 1,t 2,则由参数t 的几何意义即知,|MA |·|MB |=|t 1t 2|=18.7.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.圆C 1,直线C 2的极坐标方程分别为ρ=4sin θ,ρcos ⎝⎛⎭⎪⎫θ-π4=2 2. (1)求C 1与C 2交点的极坐标;(2)设P 为C 1的圆心,Q 为C 1与C 2交点连线的中点.已知直线PQ 的参数方程为⎩⎪⎨⎪⎧x =t 3+a ,y =b 2t 3+1(t ∈R 为参数),求a ,b 的值. 解 (1)圆C 1的直角坐标方程为x 2+(y -2)2=4,直线C 2的直角坐标方程为x +y -4=0.解⎩⎨⎧x 2+(y -2)2=4,x +y -4=0,得⎩⎨⎧x 1=0,y 1=4,⎩⎨⎧x 2=2,y 2=2. 所以C 1与C 2交点的极坐标为⎝⎛⎭⎪⎫4,π2,⎝ ⎛⎭⎪⎫22,π4, 注:极坐标系下点的表示不唯一.(2)由(1)可得,P 点与Q 点的直角坐标分别为(0,2),(1,3).故直线PQ 的直角坐标方程为x -y +2=0,由参数方程可得y =b 2x -ab 2+1,所以⎩⎪⎨⎪⎧b 2=1,-ab 2+1=2,解得a =-1,b =2. 8.已知曲线C 1的参数方程是⎩⎨⎧x =2cos φ,y =3sin φ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2,正方形ABCD 的顶点都在C 2上,且A ,B ,C ,D 依逆时针次序排列,点A 的极坐标为⎝⎛⎭⎪⎫2,π3. (1)求点A ,B ,C ,D 的直角坐标;(2)设P 为C 1上任意一点,求|P A |2+|PB |2+|PC |2+|PD |2的取值范围.解 (1)由已知可得A ⎝⎛⎭⎪⎫2cos π3,2sin π3, B ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+π2,2sin ⎝ ⎛⎭⎪⎫π3+π2, C ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+π,2sin ⎝ ⎛⎭⎪⎫π3+π, D ⎝ ⎛⎭⎪⎫2cos ⎝ ⎛⎭⎪⎫π3+3π2,2sin ⎝ ⎛⎭⎪⎫π3+3π2, 即A (1,3),B (-3,1),C (-1,-3),D (3,-1).(2)设P (2cos φ,3sin φ),令S =|P A |2+|PB |2+|PC |2+|PD |2,则S =16cos 2φ+36sin 2φ+16=32+20sin 2φ.因为0≤sin 2φ≤1,所以S 的取值范围是[32,52].。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时分层训练(六十七) 坐标系
1.在极坐标系中,求点⎝ ⎛⎭⎪⎫2,π6到直线ρsin ⎝ ⎛⎭⎪⎫
θ-π6=1的距离.
[解] 点⎝ ⎛
⎭⎪⎫2,π6化为直角坐标为(3,1),
3分
直线ρsin ⎝ ⎛⎭⎪⎫
θ-π6=1化为ρ⎝ ⎛⎭⎪⎫32sin θ-12cos θ=1,
得32y -1
2x =1,
即直线的方程为x -3y +2=0,
6分 故点(3,1)到直线x -3y +2=0的距离d =
|3-3×1+2|12
+(-3)
2
=1. 10分
2.在极坐标系下,已知圆O :ρ=cos θ+sin θ和直线l :ρsin ⎝ ⎛⎭⎪⎫
θ-π4=22.
(1)求圆O 和直线l 的直角坐标方程;
(2)当θ∈(0,π)时,求直线l 与圆O 公共点的一个极坐标. [解] (1)圆O :ρ=cos θ+sin θ,即ρ2=ρcos θ+ρsin θ, 2分
圆O 的直角坐标方程为x 2+y 2=x +y , 即x 2+y 2-x -y =0,
4分
直线l :ρsin ⎝ ⎛⎭⎪⎫
θ-π4=22,即ρsin θ-ρcos θ=1,
则直线l 的直角坐标方程为y -x =1,即x -y +1=0.
6分 (2)由⎩⎨⎧ x 2+y 2
-x -y =0,x -y +1=0,得⎩⎨⎧
x =0,y =1,
8分 故直线l 与圆O 公共点的一个极坐标为⎝ ⎛

⎪⎫1,π2.
10分
3.(2017·邯郸调研)在极坐标系中,已知直线l 的极坐标方程为ρsin ⎝ ⎛⎭⎪⎫
θ+π4=
1,圆C 的圆心的极坐标是C ⎝ ⎛

⎪⎫1,π4,圆的半径为1.
(1)求圆C 的极坐标方程; (2)求直线l 被圆C 所截得的弦长.
[解] (1)设O 为极点,O D 为圆C 的直径,A (ρ,θ)为圆C 上的一个动点,
则∠AO D =π4-θ或∠AO D =θ-π
4,
2分
OA =O Dcos ⎝ ⎛⎭⎪⎫π4-θ或OA =O Dcos ⎝ ⎛⎭⎪⎫
θ-π4,
∴圆C 的极坐标方程为ρ=2cos ⎝ ⎛⎭⎪⎫
θ-π4.
4分 (2)由ρsin ⎝ ⎛⎭⎪⎫
θ+π4=1,得22ρ(sin θ+cos θ)=1,
6分
∴直线l 的直角坐标方程为x +y -2=0,
又圆心C 的直角坐标为⎝ ⎛⎭⎪⎫
22,22,满足直线l 的方程,
∴直线l 过圆C 的圆心,
8分 故直线被圆所截得的弦长为直径2.
10分
4.(2017·南京调研)在极坐标系中,已知圆C 的圆心C ⎝ ⎛
⎭⎪⎫3,π3,半径r =3.
(1)求圆C 的极坐标方程;
(2)若点Q 在圆C 上运动,点P 在OQ 的延长线上,且OQ →=2QP →
,求动点P 的轨迹方程.
【导学号:57962485】
[解] (1)设M (ρ,θ)是圆C 上任意一点. 在△OCM 中,∠COM =⎪⎪⎪⎪⎪⎪
θ-π3,由余弦定理得
|CM |2
=|OM |2
+|OC |2
-2|OM |·|OC |cos ⎝ ⎛⎭
⎪⎫
θ-π3,
化简得ρ=6cos ⎝ ⎛⎭⎪⎫
θ-π3.
4分
(2)设点Q (ρ1,θ1),P (ρ,θ), 由OQ →=2QP →,得OQ →=23OP →
, ∴ρ1=2
3ρ,θ1=θ,
8分
代入圆C 的方程,得23ρ=6cos ⎝ ⎛⎭⎪⎫
θ-π3,
即ρ=9cos ⎝ ⎛⎭
⎪⎫
θ-π3.
10分
5.(2015·全国卷Ⅱ)在直角坐标系xOy 中,曲线C 1:⎩⎨⎧
x =t cos α,y =t sin α(t 为参数,t ≠0),其中0≤α<π.在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=2sin θ,C 3:ρ=23cos θ.
(1)求C 2与C 3交点的直角坐标;
(2)若C 1与C 2相交于点A ,C 1与C 3相交于点B ,求|AB |的最大值. [解] (1)曲线C 2的直角坐标方程为x 2+y 2-2y =0,曲线C 3的直角坐标方程为x 2+y 2-23x =0,
2分
联立⎩⎨⎧
x 2+y 2
-2y =0,x 2+y 2-23x =0,
解得⎩⎨

x =0,y =0
或⎩⎪⎨
⎪⎧
x =32,y =32.
所以C 2与C 3交点的直角坐标为(0,0)和⎝ ⎛⎭
⎪⎫
32,32.
4分
(2)曲线C 1的极坐标方程为θ=α(ρ∈R ,ρ≠0),其中0≤α<π. 因此A 的极坐标为(2sin α,α),B 的极坐标为(23cos α,α). 8分
所以|AB |=|2sin α-23cos α|=4⎪⎪⎪⎪⎪⎪sin ⎝ ⎛⎭⎪⎫α-π3. 当α=5π
6时,|AB |取得最大值,最大值为4.
10分
6.从极点O 作直线与另一直线l :ρcos θ=4相交于点M ,在OM 上取一点P ,使OM ·OP =12.
(1)求点P 的轨迹方程;
(2)设R 为l 上的任意一点,求|RP |的最小值.
[解] (1)设动点P 的极坐标为(ρ,θ),M 的极坐标为(ρ0,θ),则ρρ0=12.
2分
∵ρ0cos θ=4,
∴ρ=3cos θ,即为所求的轨迹方程. 4分 (2)将ρ=3cos θ化为直角坐标方程,
得x 2+y 2=3x ,
即⎝ ⎛⎭⎪⎫x -322+y 2=⎝ ⎛⎭
⎪⎫
322
. 8分
知点P 的轨迹是以⎝ ⎛⎭⎪⎫
32,0为圆心,半径为32的圆.
直线l 的直角坐标方程是x =4. 结合图形易得|RP |的最小值为1. 10分。

相关文档
最新文档