气动力 气动噪声
空气动力学在飞机中的应用

空气动力学在飞机中的应用一、飞机气动力性能研究飞机气动力性能是指飞机运动中的空气动力学问题,包括阻力、升力、稳定性和控制等方面。
在设计飞机时,需要通过气动力测试获得飞机的气动特性,如飞行速度、升力系数、阻力系数和滚转、俯仰和偏航的阻力、升力和动力系数等。
通过这些数据,可以进一步推导出飞机的稳定性和控制性能,从而精确地设计出符合需求的飞机。
二、飞机空气动力设计优化飞机的翼型、机身和尾翼等部件都需要经过空气动力设计优化,以满足对飞机某些特定要求,如高升力系数、低阻力系数等。
设计优化需要采用计算机辅助设计软件,模拟不同设计方案的气动力性能,并通过优化算法得出最优方案。
三、飞机气动噪声控制气动噪声是指飞机在飞行过程中由于空气流动引起的噪声,对周围环境和航空器本身都会产生影响。
控制气动噪声是飞机设计中一个重要的目标。
控制气动噪声需要从翼型、机身、发动机进气、襟翼等方面入手,采用减噪技术来减少气动噪声的产生。
四、飞机稳定性和控制性能研究飞机的稳定性和控制性能直接影响到飞行安全和操纵性,是飞机设计中的重要问题。
稳定性研究包括静态稳定、动态稳定和自稳性分析,控制性能研究包括操纵质量、慌张性、阶跃响应等方面。
通过空气动力学模拟和试验,可以获得精确的稳定性和控制性能参数,指导飞机设计和飞行测试。
五、飞机结构强度分析飞机的结构强度和气动性能紧密相关,因为飞机结构设计需要满足飞机在飞行过程中所受的各种气动载荷。
空气动力学模拟和试验可以为飞机结构强度分析提供载荷数据,指导各个部件的强度设计和选型。
空气动力学在飞机设计中的应用非常广泛,涉及到飞机气动力性能、设计优化、气动噪声控制、稳定性和控制性能研究以及结构强度分析等方面。
随着计算机技术和试验技术的不断发展,空气动力学在飞机设计中的应用将会越来越重要。
飞机飞行时,受到空气流动的影响,包括阻力、升力、推力和重力等,而这些力量的平衡和协调是保证飞机在空中稳定飞行和安全运作的重要因素。
气动噪声的数值模拟和研究

气动噪声的数值模拟和研究气动噪声是一种由于气流经过物体或是空气之间互相摩擦时产生的声音。
这种噪声的来源广泛,从家用电器、汽车发动机到风力发电机、飞机引擎都可能会产生气动噪声。
随着工业化和城市化的发展,气动噪声已经成为人们生活中不可避免的一部分。
因此,为了改善人们的生活环境和促进工业的健康发展,对气动噪声的数值模拟和研究显得尤为重要。
气动噪声的数值模拟是基于数值计算方法的研究,其核心是CFD(计算流体力学)。
CFD是应用数学、物理和计算机科学的学科领域,是一种通过数字方法解决流体运动方程的技术。
在CFD的数值计算中,气体或流体流动过程中的各种参数和特性都能够通过数值计算得出,这样就能够较好地模拟出气动噪声的产生过程。
数值模拟能够提供详尽的求解结果,在气动噪声研究中被广泛应用。
通过优化流体流动过程和物体的形状,能够减轻或消除气动噪声的产生。
例如,针对风力发电机叶轮的气动噪声问题,可以对其外形进行优化,并通过数值模拟得出不同形状的叶轮在不同条件下的噪声效果,以此来选择最优解。
气动噪声的数值模拟需要依靠多重参数,包括风速、压力、粘度等。
这些参数对噪声的产生和传播都有影响,并且相互之间的关系也会影响噪声的产生情况。
因此,数值模拟是一项复杂的工作,需要结合实际测试数据和理论研究,才能得出准确的结果。
除了数值模拟,还可以通过实验手段来研究气动噪声。
实验是一种验证数值模拟结果的有效方法,也能够直接获取噪声产生时的音压级和声学能量等参数。
然而,实验也存在着成本高、时间长、数据难以获取的问题。
因此,气动噪声的数值模拟研究在实际应用中更为常见。
气动噪声不仅对人们的生活和工作造成影响,而且还可能对环境产生影响。
随着环保意识的提高,人们开始越来越关注气动噪声的研究和处理。
气动噪声的数值模拟和研究为人们提供了一种有效、可靠的方法,能够更好地把噪声控制在合理范围内,实现更高效、更环保的工业和生活方式。
总之,气动噪声的数值模拟和研究是一个不断发展和完善的领域。
气动噪音特性的研究与降噪技术

气动噪音特性的研究与降噪技术气动噪音是指由气体流过物体表面,或是气体在管道运输过程中产生的噪声。
这种噪声会对人们的身心健康产生负面影响,从而引发诸如疲劳、头痛、失眠等问题。
因此,气动噪音的研究与降噪技术变得越来越重要。
气动噪音特性研究是气动噪音降噪技术的基础。
首先,气动噪音与气体流动特性有着密切的关系。
气体的流动是指气体在管道或空气中的流动过程。
这个流动过程中,气体会产生压缩、膨胀等行为,从而产生噪音。
因此,对于不同的气体流动状态,其产生的气动噪音特性也会有所不同。
其次,噪音发生的位置和分布也会影响气动噪音的特性。
例如,噪音在较狭窄的流道中发生时,噪音的频率会更高,并且会有尖锐的尖峰噪音。
而在较宽阔的管道中,噪音的频率会更低,而且会变得更加平滑。
为了降低气动噪音,需要采用不同的降噪技术。
以下是几种常见的气动噪音降噪技术:(一)管道内障碍物降噪技术管道内障碍物降噪技术是通过在管道内部安装障碍物来降低噪音。
这种方法的原理是,障碍物的存在可以减少气体流动的速度,从而减缓气体流动的速度和压力,降低气动噪音的产生。
但是,如果安装的障碍物过多或过大,会对管道流量和压力造成很大的影响,从而影响管道的运行效率。
(二)反射式吸声器降噪技术反射式吸声器降噪技术是通过反射式吸声器来实现的。
反射式吸声器是由多个板块组成的,板块之间留有一定的空隙。
空隙中充满了一种能吸收气体噪音的吸声材料。
当气体通过板块之间的空隙时,气体的噪音能量被吸声材料吸收,从而达到降噪的效果。
这种方法的优点是吸声材料可以进行更换,而且安装简单。
缺点是,随着时间的推移,吸声材料表面会污染或损坏,从而降低吸声效果。
(三)消声器降噪技术消声器降噪技术是通过消声器来实现的。
消声器是由多个膜片组成的,膜片间留有一定的空隙。
空隙中充满了一种能吸收气体噪音的吸声材料。
当气体通过膜片之间的空隙时,空气的振荡会被吸声材料吸收,从而达到降噪的效果。
这种方法的优点是吸声效果好,而且可以适应不同的气流情况。
航空航天空气动力学技术的气动噪声与振动控制

航空航天空气动力学技术的气动噪声与振动控制航空航天领域一直是现代科技中最为重要和复杂的领域之一。
在飞行过程中,飞机和其他飞行器所受到的空气力和其他不利因素对其飞行性能和飞行安全产生了非常重要的影响。
其中,气动噪声和振动是较为困扰的问题之一。
本文将对航空航天领域的气动噪声和振动问题进行简要介绍,并讨论目前的一些气动噪声和振动控制技术。
气动噪声和振动是航空航天领域中面临的最重要的问题之一。
在现代飞机设计中,随着航空技术的发展,航空航天器的飞行速度和高度也越来越高。
这不仅要求飞机的设计和制造符合高性能、高可靠性、经济实用的原则,同时也要考虑飞机的噪声和振动问题如何避免影响其性能和舒适度。
飞机的气动噪声和振动是由空气动力学原理产生的。
飞机在飞行过程中,穿过气流时会产生空气动力学噪声。
这种噪声主要由飞机表面的涡旋、气流分离、抖动等产生,常常会通过机身表面传输到驾驶舱,给乘客和机内设备带来明显的噪声和振动。
飞机的机轮和发动机等机件的振动则是由运转过程中的阻力和惯性力产生的。
飞机的气动噪声和振动问题存在较大的挑战,开发高效的控制方式至关重要。
目前,航空航天领域中的控制技术主要涉及噪声控制和振动控制两个方面。
针对气动噪声问题,人们发展了一系列噪声控制方法,其中最常见的是降噪技术。
这种技术针对噪声源采取一系列措施,减少飞机周围产生的噪声。
通常包括降低发动机噪声、减少飞机表面气流的阻力、减少航空器表面涡旋等。
采取这些措施可以显著降低噪声水平。
振动控制方面,现代飞机使用的技术数量和种类非常多。
例如,使用动平衡技术可以减少飞机运转时的振动,使用主动控制技术可以通过在飞机表面增加控制展弦比的方法来控制机身的振动。
还有一些方法,如使用传感器和物理控制器来控制转子,以控制振动和叶轮噪声的发生。
此外,人们还研究了一些新的控制技术,例如基于互补滤波技术的振动控制技术。
这种控制技术通过在机器表面安装传感器和执行器等工具,并检测运动状态进行周密监控,实现对其进行连续、准确的控制。
汽车空气动力学特性与气动噪声分析

汽车空气动力学特性与气动噪声分析现代社会中,汽车已经成为了大多数家庭必备的交通工具。
汽车的空气动力学特性以及气动噪声对于车辆性能以及驾乘的舒适度有着重要影响。
本文将从多个方面来分析汽车的空气动力学特性以及气动噪声,并探讨如何改善这些问题。
首先,汽车的空气动力学特性主要包括阻力、升力、稳定性和流线型设计等因素。
阻力是汽车在行驶过程中所受到的空气阻力,它直接影响着汽车的燃油经济性和速度。
为了降低阻力,现代汽车设计中采用了许多手段,比如流线型车身、空气导流板等。
升力是指汽车在高速行驶时,由于车底面积较大而产生的上升力,它会影响车辆的稳定性和操控性能。
稳定性是指汽车行驶过程中的抗侧偏能力,主要由车身重心位置、轮距、车身宽度等因素决定。
流线型设计是为了减少空气对车身的阻力,使得汽车能够更加高效地行驶。
通过对这些因素的优化,可以提升汽车的性能和燃油经济性。
而气动噪声则是汽车行驶过程中产生的噪音,它主要来自于车身和车轮的空气流动。
在高速行驶中,车身与周围空气产生湍流现象,这会带来较大的噪音。
同时,车轮旋转也会产生噪音。
在设计车辆时,可以采取一些措施来减少气动噪声的产生。
首先是降低空气流动的湍流,可以通过改变车身造型,增加车身间隙等方式来实现。
其次是减少轮胎与地面的摩擦,可以采用低噪声轮胎或者改善路面状况来达到目的。
此外,合理的车轮悬挂系统也可以减少车轮噪音的传递。
除了上述空气动力学特性和气动噪声的分析,还有其他一些因素也会对汽车性能产生影响。
例如,风挡玻璃的倾角以及车窗的开启情况都会对车内的空气流动产生影响。
汽车内部的空气层流与流场分布也是需要考虑的因素之一。
这些因素的合理设计可以改善驾乘的舒适度,并提高车辆的稳定性。
综上所述,汽车的空气动力学特性以及气动噪声分析是汽车设计中非常重要的一环。
通过合理的设计和优化,可以提高汽车的性能、燃油经济性以及驾乘的舒适度。
未来随着科技的进步,对于汽车空气动力学特性和气动噪声的研究将更加深入,我们有理由期待汽车的未来将变得更加安静、高效和舒适。
气动噪声特性的仿真与实验分析

气动噪声特性的仿真与实验分析在现代制造业中,气动噪声成为了一个重要的问题。
高噪声会影响工作环境,降低工作效率,甚至对工人身体健康构成危害。
因此,在设计气动系统时,需要考虑噪声控制措施,以确保生产的可持续性和卫生安全。
本文将介绍气动噪声特性的仿真与实验分析方法,希望能对噪声控制措施提供参考。
一、气动噪声特性气动噪声特性是指气体在运动过程中产生的声波的音量和频率等特性。
气体流过窄阀门、喷嘴、管道、转子等流动部件时,声场将发生不同程度的波动和压力变化,产生噪声。
气动噪声的特点是发散、复杂、低频、宽频带、不稳定、脉动性强等。
这些特点给噪声控制带来了极大挑战。
二、气动噪声的影响因素1、气体流动参数:如流量、速度、压力、温度等。
2、气体流动的结构:如转子、喷嘴、管道、泵、风机等。
3、气体流动环境:如空气、液体、气体混合物等。
4、气体流动方式:如稳态流动、脉动流动等。
5、气体流动介质:如空气、自然气、蒸汽、燃气等。
三、气动噪声的仿真分析在噪声控制的早期阶段,使用气动噪声仿真分析进行设计和预测是一种常见方法。
现代仿真技术可以使用计算流体力学软件 (CFD) 建立数字模型,并模拟气体流动和声波传播。
仿真分析可以指导噪声控制的设计和实施,节省时间和成本。
四、气动噪声的实验方法虽然气动噪声仿真分析已经成为了常用方法,但实验分析仍然非常重要。
实验可以验证仿真分析的准确性并得出更精确的数据。
在实验中,可以使用声学测量设备如声级计、频谱分析仪等来测量噪声水平。
同时,可以尝试使用各种噪声控制措施,如隔声板、吸声材料等来降低噪声水平。
五、气动噪声控制方法在进行气动系统的噪声控制时,可以尝试以下方法:1、改变气体流动方式:采用稳态流动或远离共振频率的频率,可以降低噪声水平。
2、改变气体流动介质:使用减少气动噪声的流体介质,如油膜、吸声涂层液体等。
3、使用吸声材料和隔声板:通过外部介质材料对气体流动和声场进行隔离,可以降低噪声水平。
高速列车气动噪声特性分析及其控制

高速列车气动噪声特性分析及其控制随着高速列车的运行越来越频繁,气动噪声成为了影响列车行驶舒适性的主要因素之一。
在高速列车中,气动噪声主要由列车运行时与空气的摩擦所产生的气流声和空气流动所引起的涡旋噪声组成。
因此,对高速列车的气动噪声特性进行分析,以及有效地控制噪声,对于提高列车行驶的舒适性及其使用寿命具有重要意义。
一、高速列车气动噪声的特性分析高速列车气动噪声的特性是由列车的运行速度、车身外形、风阻特性以及空气性质等因素共同决定的。
其中,列车运行速度是影响气动噪声最重要的因素。
在列车高速运行时,气动噪声主要是由瞬间所产生的气动力引起的。
气动力是由于列车在空气中移动而产生的渐进压强差所引起的。
不同的列车速度会产生不同的气动力和气动噪声。
此外,车身外形和风阻特性也对气动噪声的产生起着重要的作用。
列车的车头设计经过了不断的优化,以减小平均运动阻力系数,但是车顶和侧面的流线设计并不完全。
这些不太完整的表面都会产生涡流和紊流,并且产生噪声。
二、高速列车气动噪声的控制为了控制高速列车的气动噪声,需要从以下几个方面入手。
1、减低列车与空气之间的阻力列车运行中产生的气体扰动最主要的来源是空气与车辆表面的摩擦。
因此,在设计列车时,需要具备减小阻力的能力。
目前,列车的车头设计已经相当成熟,可以减小运动阻力系数。
同时,列车的车窗和车门等部位也需要采用适当的密封措施,防止气体进入车内,从而减小气体扰动产生的噪音。
2、采用降噪技术目前,列车行驶过程中,采用的主要降噪技术有:被动噪声控制技术和主动噪声控制技术。
(1)被动噪声控制技术:被动噪声控制技术的主要目的是减低高速列车所产生的噪声,以保证乘客的舒适度。
该技术一般采用狭缝吸声器或声学环境控制技术等。
(2)主动噪声控制技术:主动噪声控制技术是通过引入消噪装置来达到降低噪声的效果。
主动噪声控制技术主要有智能噪声控制技术和反噪声技术两种。
3、采用先进的材料和技术为减小高速列车的气动噪声,还可以采用更加先进的材料和技术,如减音材料、空气动力学技术等。
汽车底盘设计中的空气动力学原理与应用

汽车底盘设计中的空气动力学原理与应用在汽车设计中,底盘是一个至关重要的部分,它直接影响着汽车的操控性、稳定性以及燃油经济性。
而在底盘设计中,空气动力学原理起着至关重要的作用。
本文将探讨汽车底盘设计中的空气动力学原理及其应用。
一、空气动力学原理空气动力学是研究空气与物体相互作用的科学。
在汽车底盘设计中,空气动力学原理主要体现在气动力和气动噪声两个方面。
1. 气动力气动力是指空气对汽车底盘的压力和阻力。
在高速行驶时,空气会产生较大的压力和阻力,影响汽车的行驶性能。
因此,设计合理的底盘结构能够减小气动力的影响,提高汽车的速度和燃油经济性。
2. 气动噪声气动噪声是由空气相互摩擦和振动所产生的噪音。
底盘的设计不仅要考虑到降低气动力的影响,还要考虑到减小气动噪声的产生。
通过优化底盘的形状和结构可以有效降低气动噪声的水平,提高车辆的乘坐舒适度。
二、空气动力学在底盘设计中的应用在汽车底盘设计中,空气动力学原理被广泛应用,以优化汽车的性能和舒适性。
1. 底盘结构设计通过优化底盘的形状和结构,可以降低汽车在高速行驶时的气动力,提高汽车的稳定性和操控性。
同时,合理设计的底盘结构还可以减小气动噪声的产生,提高车辆的乘坐舒适度。
2. 底盘悬挂设计底盘悬挂系统对汽车的操控性和舒适性有着重要影响。
空气动力学原理可以帮助设计师优化底盘悬挂系统的结构,提高汽车的通过性和舒适性。
通过合理设计底盘悬挂系统,可以有效减小气动力的影响,提高汽车的性能表现。
3. 底盘通风设计在底盘设计中,通风系统的设计也是十分重要的。
通过合理设计底盘通风系统,可以有效降低车辆在高速行驶时的气动力,提高汽车的速度和燃油经济性。
同时,优化通风系统也可以减小气动噪声的产生,提高车辆的乘坐舒适度。
总结在汽车底盘设计中,空气动力学原理是一个不可忽视的因素。
通过充分理解空气动力学原理,并将其应用于底盘设计中,可以提高汽车的性能和舒适性,让驾驶者拥有更好的驾驶体验。
希望本文能够对读者对汽车底盘设计中的空气动力学原理有所启发。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E-mail address:kimhd@andong.ac.kr(H.-D.Kim).0376-0421/02/$-see front matter r2002Elsevier Science Ltd.All rights reserved.PII:S0376-0421(02)00029-55.1.Wind tunneltest .....................................4825.2.Train-induced flows ...................................4835.3.Aerodynamic forces due to trains passing each other ..................4855.4.Cross-wind effects ....................................4886.Aeroacoustic problems of railway train ............................4886.1.Aerodynamic noise due to train .............................4886.2.Wind tunneltest .....................................4896.3.Reduction of aerodynamic noise .............................4907.Vibration of railway train ...................................4918.Aerodynamics of railway train/tunnel systems .........................4918.1.Aerodynamic analysis of train/tunnel systems ......................4918.2.Pressure wave due to the train entering into tunnel...................4938.3.Pressure variation and aerodynamic drag inside tunnel.................4938.4.Pressure variation inside train ..............................495R.S.Raghunathan et al./Progress in Aerospace Sciences 38(2002)469–5144701.IntroductionDuring the past60decades,a great dealof attention has been concentrated on the development of airplanes. Fluid dynamics,structural mechanics and automatic controlengineering have made l arge contributions to the present aerospace technologies.Of them,fluid dynamics mainly dealing with aerodynamic drag has played the most important role in the development of airplanes and flight vehicles.Relatively,there have been only a few studies of the full train system.This has been attributed to the fact that train has run at very low speeds along afixed track, compared with airplanes.Thus,aerodynamic problems on the train system could not have attracted much attention fromfluid dynamists.Recently,the train speed exceeded over300km/h,being nearly comparable with the past airplane speeds.Furthermore,the train system is playing much more roles in transport than the airplane.Systematic work is needed in the development of the train system.Aerodynamic and aeroacoustic problems accompa-nied by the speed-up of train system are,at present, receiving a considerable attention as practical engineer-ing issues that should be urgently resolved.With the speed-up of train,many engineering problems which have been reasonably neglected at low speeds,are being raised with regard to aerodynamic noise and vibrations, impulse forces occurring as two trains intersect each other,impulse wave at the exit of tunnel,ear discomfort of passengers inside train,etc.These are of major limiting factors to the speed-up of the train system. Such aerodynamic problems mentioned above are closely associated with theflows occurring around the railway train.However,much effort to speed up the train system has been paid,to date,on the improvement of electric motor power rather than understanding the flow physics around the train and therebyfinding a proper control method.This has led to larger energy losses and performance deterioration of the train,since theflows around train are more disturbed due to turbulence of the increased speed;consequently,the flow energies are being converted to aerodynamic drag, noise and vibrations.Now,many countries are operating the high-speed railway trains,such as German Inter City Express(ICE), Japanese Shinkansen and French Train de Grande Vitesse(TGV);moreover,some countries like South Korea and China are trying to construct the high-speed railway train.Systematic work is highly needed to understand the aerodynamics of high-speed railway train,and to improve the existing conventionalrail way trains and to develop a new generation of high-speed train(HST)system.This article deals with the aerodynamic phenomena with regard to the high-speed railway trains,with a view to understand practicalengineering probl ems of the present high-speed railway trains and with an emphasis on proper controlmethods for the aerodynamic problems.2.Speed-up tendency of train2.1.Requirement for the speed-up of trainSince1960s,the speed-up of transportation vehicles has been made with the timely requirements for a safe and bulk volume of transportation.This has led to the advent of a large tanker,a high-speed railway train,a jumbo jet,and a supersonic transportation(SST) vehicle.The speed-up of transportation engine always leads to the shortness of an economic distance asso-ciated with the shortness of time–distance,resulting in an increased value of time.The speed of a transportation vehicle should be determined from the point of view of the energy efficiency of the transportation.Fig.1shows Bouladon’s criterion for the speed of a transportation vehicle[1],in which the speed required for a transportation vehicle is given by a function of9.Impulse wave at the exit of tunnel (496)9.1.State-of-the-art of impulse wave (498)9.2.Theory of impulse wave (498)9.3.Slab and ballast track tunnels (500)9.4.Short and long tunnels (502)9.5.Control methodologies of impulse wave (503)9.5.1.Train body (503)9.5.2.Tunnelentrance (504)9.5.3.Inside tunnel (506)9.5.4.Tunnelexit (508)10.Concluding remarks (511)Acknowledgements (512)References (512)R.S.Raghunathan et al./Progress in Aerospace Sciences38(2002)469–514471distance.The solid line indicates the required speed according to the transportation distance,showing a generaltendency that the l onger the transportation distance,the higher the speed required.This line also indicates an increased gradient with time,thus leading to more increasing requirement for the speed-up of a transportation vehicle.An ideal speed required for transportation vehicle in the21st century is also indicated as the thick solid line.The present realizable speed to meet the speed-up requirement for a transpor-tation vehicle is also indicated in Fig.1.There are severalregions between the distance–speed curves of each transportation and the solid line,which are,at present,not able to meet the requirement for the speed of transportation.Region1indicates too long distance for walking,but too short distance for driving. Region2is between train and airplane.Region3 indicates the speed lack of subsonic airplane for inter-continentaltransportation.Region4indicates too l ong a distance for boat on sea,but too short a distance for airplane.To meet the speeds required for each region, new-generation traffic system,high-speed railway train, SST,and speedboat are under development,respec-tively.2.2.Transportation energy efficiencyIn general,energy efficiency of a transportation vehicle can be estimated based upon the fuel consump-tion used.In the case of cargo transport,the energy E necessary to carry unit weight per unit distance is expressed as[2]E¼consumed energyðkcalÞtransport capacityðtonÞÂtransport distanceðkmÞ:ð1ÞIn the case of passenger transport,Eq.(1)is changed toE¼consumed energyðkcalÞpersonðone personÞÂtransport distanceðkmÞ:ð2ÞMeanwhile,the efficiency of a transportation engine canbe obtained from the economic aspects of the fuelused:economic efficiency of fuel¼lower calorific value of fuelðkcal=gÞÂconsumption rate of fuelðg=hp hÞÂhorse powerðhpÞÂtimeðhÞpayloadðtonÞÂdistanceðkmÞ:ð3ÞFor a given lower calorific value and consumptionrate of fuel,Eq.(3)reduces toeconomic efficiency of fuelphorse powerÂtimepayloadÂdistance¼horse powerpayloadÂspeed¼H pW p V:ð4ÞThe economic efficiency of fuelused can be an indexindicating the transportation energy,and is,thus,expressed by an inverse of the transportation efficiency:transport efficiency pW p VH p¼W VH pW pW;ð5Þwhere W is the totalpayl oad,V the speed,and H p thehorse power.Using the equations above,Fig.2shows a comparisonbetween the transportation energies necessary to carryone person up to1km[2].For three different types ofvehicles,i.e.,train,bus and car,the number on the rightside indicates the transportation energy relative to thetrain,in which the transportation energy of the train isSpeed(km/h)Distance (km)Supersonic planeFig.1.Relationship between speed and distance required for transportation vehicle.R.S.Raghunathan et al./Progress in Aerospace Sciences38(2002)469–514472assumed to be 100kcal.It is found that the transporta-tion energy of a car amounts to 6times that of a train.F rom the economic point of view of the fuelused,Fig.3shows a comparison between each transportation engine [3].The solid line indicates the well-known Karman–Gabrielli’s limiting line (KG line).The KG line increases with the speed of transportation vehicle.It is noted that the economic efficiency of the fuelused in transportation engine is improved as the transportation vehicle approaches the KG line.Each transportation vehicle has different speed ranges.For instance,the boat is in the range below 50km/h,the ground vehicles are in between 50and 200km/h,the airplane in between 500and 800km/h.These speed ranges can be classified,depending on whether the vehicle is driven by the buoyancy force,the reaction force,or the lift force.The KG line indicates the lower limits of each speed range.For the range of the buoyancy force support,the energy consumption in low-speed ranges is comparatively low.However,with the speed-up of the boat,the transportation efficiency becomes remarkably low due to the increased wave drag on the boat.For instance,the value of P =ðW p V Þincreases up to severalhundred times as the boat speed increases from about 15knot (28.7km/h)to 30knot (55.6km/h),resulting in an extremely low transportation efficiency.Therefore,a hydrofoilboat or a hovercraft of the lift force support can be one of the alternatives for higher speeds.For the range of the reaction force support,the value of P =ðW p V Þis low in the mid of the speed ranges.For the speeds over this range,a high-speed railway train is recommended.In this case,the value of P =ðW p V Þis on an extended line for the existing conventionaltrain593kcalTrainBusAutomobileFig.2.Energies necessary to carry one person up to 1km.Speed(km/h)P /W V (k h /t o k m )p parison of each transportation.R.S.Raghunathan et al./Progress in Aerospace Sciences 38(2002)469–514473system.Further extension of this line approaches the Magnetic levitation(Maglev)train system.For the range of the lift force support,the value of P=ðW p VÞis, in general,dependent on the lift-drag ratio,being independent of the speed of the transportation vehicle.2.3.Limiting factors to the speed-upIn general,the transportation vehicle connecting from city to city is required to meet the following conditions: high-speed transportation,bulk volume transportation, safe and comfortable transportation with less air pollution and noise,highly reliable transportation with low cost and maintenance,etc.The high-speed railway train can be one of the alternatives to meet these requirements.Since1940s,many countries have tried to speed-up the conventionaltrain system.F ig.4shows the progress of the speed-up of train[4].Symbol J refers to the TGV in France,&the ICE in Germany,K the Shinkansen in Japan and’the HST in UK.It is found that in over a half century,the train speed has increased more than two fold.Major limiting factors to the speed-up of train result from many different sources.Technicalfactors are associated with train/railsystems,whil e geographical factors are related to the tunnel system.For instance,in Japan,the portion of the tunnel to the total railway line amounts to about60%,while in France it is at most severalper cent.ig.5shows the technicall imiting factors to the speed-up of train and associated factors. These factors are mainly associated with the train body, the track line,the electric devices around the track,etc. For instance,the train speed along a curved track is limited by the traveling performance,passenger’s comfort and safety,which are again associated with the train body and track line.Thus,to be able to increase the maximum speed of trains,it is necessary to take account of these limiting factors.3.Aerodynamic problems of railway trainFor the purpose of development of a faster and more safe train system with lower air pollution and noise, many researchers are paying much attention on the aerodynamics of high-speed railway train.These works have attention to the development of new-generation train body,railand tunnelsystems.The aerodynamic phenomena with regard to high-speed railway train are strongly dependent on the train speed.Thus,the aerodynamic problems become more important as the train speed increases.In general,the train aerodynamics are related to aerodynamic drag,pressure variations inside train, train-inducedflows,cross-wind effects,ground effects,pressure waves inside tunnel,impulse waves at the exit of tunnel,noise and vibration,etc.The aerodynamic drag is dependent on the cross-sectionalarea of train body,train length,shape of train fore-and after-bodies, surface roughness of train body,and geographical conditions around the traveling train.The train-induced flows can influence passengers on the platform and is also associated with the cross-sectional area of train body,train length,shape of train fore-and after-bodies, surface roughness of train body,etc.The pressure variations,occurring as two trains intersecting each other,are related to passenger’s comfort and safe traveling of train.These are dependentSpeed(km/h)YearFig.4.Progress of railwaytrain.Speed typeTrainHardwareLimiting factorsFoundation Elementsof Railway system Fig.5.Factors limiting the speed-up and related factors.R.S.Raghunathan et al./Progress in Aerospace Sciences38(2002)469–514 474on the shape of train fore-and after-bodies,train width, and the distance between track lines.The cross-wind can also influence the safe traveling of the train,relating to train height and perimeter,bridge system,etc.The impulse wave at the exit of tunnel influences the surrounding area around the train track and is dependent on the cross-sectionalarea of train body, the cross-sectionalarea of tunnel,the shape of train fore-and after-bodies,the tunnell ength,the kind of track,etc.The pressure variations influence the struc-turalstrength of the train body,passenger’s comfort, and are associated with the cross-sectionalarea of the train body,cross-sectional area of tunnel,train length, tunnel length,etc.Table1lists these major aerodynamic problems of HST and associated factors.All of these aerodynamic problems are closely related to the train shape,which is required to produce aerodynamically good characteristics.4.Aerodynamic forces on railway train4.1.Aerodynamic drag of trainThe aerodynamic characteristics of HST are quite different from those of airplane.There are many characteristic features in the aerodynamics of the high-speed railway train,in the points that the train length is, in general,very long,compared with the equivalent diameter of it,the train runs close to adjacent structures, passes through a confined tunnel,and intersecting with each other,the train runs along afixed railway track, always interacting with ground,and the train can be influenced by cross-winds.Thus,the aerodynamics, which has been applied to airplane,may not be of help for a detailed understanding of the HST aerodynamics.In general,a desirable train system should be aerodynamically stable and have low aerodynamic forces.These aerodynamic characteristics are closely associated with the aerodynamic drag of the running train.The aerodynamic drag on the traveling train is largely divided into mechanical and aerodynamic ones. Of both,the aerodynamic drag can influence the energy consumption of train.Thus,detailed understanding on the aerodynamic drag and its precise evaluation are of practicalimportance.It has been well known that the aerodynamic drag is proportionalto the square of speed,whil e the mechan-icaldrag is proportionalto the pared with the mechanicaldrag,the portion of the aerodynamic drag becomes larger as the train speed increases.Thus, reduction of the aerodynamic drag on high-speed railway train is one of the essential issues for the development of the desirable train system.In the open air without any cross-wind effects,the totaldrag on the travel ing train can be expressed by a sum of the aerodynamic and mechanicalones[5]:D¼D MþD A¼ðaþbVÞWþcV2;ð6Þwhere D A and D M are the aerodynamic and mechanical drags,respectively,a;b and c are the constants to be determined by the experiment,V the train speed and W the train weight.In Eq.(6),the mechanicaldrag,being proportional to the train weight,includes the sliding drag between rails and train wheels,and the rotating drag of the wheels.The measurement of the totaldrag on train and its precise prediction are not straightforward.The total drag can be obtained by using a deceleration speed of train or the consumed electric power,as will be described later.Fig.6shows a typical example of the measured totaldrag on train[5].Al lof the dataTable1Aerodynamic problems and their related mattersAerodynamic problems Related matters1Aerodynamic drag of train Maximum speed,energy consumption2Aerodynamic characteristics of train due to cross-winds Safety in strong cross-winds3Aerodynamic force due to passing-by of two trains Running stability,Quality of comfort for passengers4Winds induced by train Safety for passengers on platforms,Safety for maintenance workers5Pressure variations in tunnels Quality of comfort for passengers,(Ear discomfort)Airtightness of vehicle,Stress upon vehicle,Ventilating system of vehicle6Micro-pressure waves radiating from tunnelexit Environmentalprobl ems near tunnelexit 7Ventilation and heat transfer in underground station and tunnel Quality of comfort for passengers,Prevention of disaster(fire)8Aerodynamic noise Environmentalprobl emsR.S.Raghunathan et al./Progress in Aerospace Sciences38(2002)469–514475indicated refer to a given train with the same weight and length,and these collapse onto a single line,given by a curve fit,D ¼12:484þ0:04915þ0:001654V 2:In order to reasonably estimate the total drag on the trains with variable weight and length,it is necessary to divide it into the mechanicaland aerodynamic drags.For instance,the least-squares method can be used to correlate the data,and consequently the term propor-tionalto the square of speed can be considered as the aerodynamic drag.However,it is quite difficult to reasonably extract the aerodynamic drag from the total drag,since it can contain naturalwind effects,and additionally,it can depend on the methods of how to get the second-order polynomials for the correlation as well.4.2.Estimation of aerodynamic dragUnlike the aerodynamics of airplane,the train runs along a fixed track,strongly interacting with surround-ing structures,ground,tunnel,platform,etc.Especially,the presence of an intersecting train makes the analysis of the train aerodynamics extremely difficult.In order to speed up the train,it is necessary that the electric motor power increases or the aerodynamic drag pared with the open air traveling,the aerodynamic drag can considerably increase as the train passes through a tunnel[6].This is because the train-induced flows do work to increase the pressure by interacting with the tunnel walls.A pantograph system may produce the aerodynamic drag corresponding to that caused by one train.In particular,the structures underneath the train may produce more drag.In the open air traveling,the aerodynamic drag on train can be divided into two contributions;one is dependent on train length and the other is independent of it.The drag independent of the train length is the pressure drag caused by the fore-and after-bodies of train.It is not easy to estimate the drag dependent onthe train length.This is because the friction drag on the train body should involve all kinds of the drags occurring in the connecting parts between trains,photographs,the structures under the train,etc.In this case,the aerodynamic drag can be expressed as [7]D ¼12r A 0V 2C dp þl 0d 0c;ð7Þwhere V is the train speed,r the density of air,A 0thecross-sectionalarea of train,C dp the coefficient of the pressure drag caused by the fore-and after-bodies of train,d 0the hydraulic diameter of train,l the train length,and l 0the hydraulic friction coefficient caused by the connecting parts between trains,photographs,the structures under the train,etc.In general,a wind tunnel test for measuring the aerodynamic drag on train,which is quite long compared with the equivalent diameter,is highly difficult.The use of a small model for the train wind tunnel test causes several problems associated with lower Reynolds numbers.In addition,ground effects on the aerodynamic drag should be considered in the wind tunneltest.In Eq.(7)C dp can be obtained by wind tunnel ing the realtrain entering into the tunnel ,Hara [8]reported that l 0could be obtained by the pressure rise on the train body,when it enters into tunnel.A train entering into the tunnel compresses the atmospheric air ahead of the train and the resulting compression waves will propagate nearly at the speed of sound towards the exit of the tunnel.Meanwhile,the air displaced by the train entering into the tunnelwil ldischarge back from the entrance of tunnel.In this case,the air flow should overcome the frictional drag on the train body and tunnel walls,resulting in a pressure gradient.Due to this fact,the pressure on the train body will increase as the train proceeds into the tunnel,as schematically shown in Fig.7.The compression waves propagating along tunnel will discharge from the exit of the tunnel,consequently forming an impulse wave,as will be described later.At the same instant as the compression waves dischargeSpeed (km/h)T r a v e l i n g d r a g (N )Fig.6.Traveling drag on Shinkansen (series 100).p Fig.7.Flow model for friction coefficient.R.S.Raghunathan et al./Progress in Aerospace Sciences 38(2002)469–514476from the exit of the tunnel,expansion waves will be formed to meet the mass conservation law,and then propagate back from the exit of the tunneltowards the entrance of tunnel.In Hara’s analysis,it is assumed that the expansion waves do not interact with the train body inside tunneland the after-body of the train is stil lin the open air.In Fig.7,the momentum equation can be applied to the controlvol ume between the cross-sections2and3, as belowðp2Àp0ÞðAÀA0ÞÀf0ÀF¼0;ð8Þwhere p2is the pressure on the train body,p0the atmospheric pressure,A the cross-sectionalarea of tunnel,A0the cross-sectionalarea of train,f the frictionalforce on train body,and F the frictionalforce on tunnel walls.Eq.(8)can be changed to[8]ðp2Àp0Þð1ÀRÞ¼12r V2c Rl0dcþv2V2þldv2V2;ð9Þwhere R is the ratio of cross-sectionalareas of train to tunnel,l the distance from the entrance of tunnelto train,l the hydraulic friction coefficient on tunnel walls, l0the hydraulic friction coefficient on the train body,d the hydraulic diameter of tunnel,d0the hydraulic diameter of train,V the train speed and v2the airflow velocity occurring between train and tunnel walls.For a known value of v2=V;the hydraulic friction coefficient l0 on the train body can be obtained by measuring the pressure rise(p2Àp0)parison of the drags on different trainsThe aerodynamic drag measurement results[9],which were conducted using a wind tunneltest in F rance,are summarized in Table2,where each of the contributions of the train body(TGV),the connecting part between trains and the structures under the train on the aerodynamic drag are indicated.The wind tunneltest was carried out at a train speed of260km/h under standard atmospheric conditions.The totaldrag is al so presented on the right side of Table2.Of the totaldrag,the aerodynamic drag onl y on the train body is about80%,the aerodynamic drag due to the pantograph system and other devices over the train is17%,the rest drag of3%is due to the mechanical drag caused by the brake system,etc.From the measured data above,the totaltravel ing drag D on train is given by D¼AþBVþCV2;where the constants A and B are experimentally given by250 and3.256,respectively.Note that these values are5% and17.1%of the aerodynamic drag on only the train body,respectively.Figs.8and9present the aerodynamic drag on the Germany ICE[9].The type of the ICE,its cross-sectionalarea and aerodynamic drag are al so indicated in Fig.8.For example,the train of type a has a cross-sectionalarea of14.61m2and is assumed that its aerodynamic drag is100%.For the trains of different types and cross-sectionalareas,rel ative aerodynamic drag is given based on the train of type a.In the case of the train of type k,the cross-sectionalarea of the train is 11.39m2and the aerodynamic drag relative to the type aTable2Wind tunnelexperiment for the travel ing drag on TGVComponents of traveling drag Drag coefficient(151C,1013mbar)TotaldragDrag in260km/h Power in260km/h(kW)N/(km/h)2(%)N(%)Aerodynamic component Drag of train0.0459580310662.52243Equipments on trainroof0.009651765213.1471Totalaerodynamiccomponents0.0556097375875.62714Disk brake0.001703115 2.383Total0.05730100387377.92797Rolling drag(train407ton)BV¼3:256V84717.1612A¼250250 5.0181 Totaldrag D¼AþBVþCV24970100.03590R.S.Raghunathan et al./Progress in Aerospace Sciences38(2002)469–514477is 78%.In Fig.8,note that the trains of different cross-sectionalareas have a train body mount system and a skirt system to smooth the structures underneath the train.For the trains shown in Fig.8,each portion of thecontributions of the fore-and after-bodies of train,the connecting part between trains,the train wall surfaces,the pantograph system,etc.to the totalaerodynamic drag is given in Fig.9[9].In the case of type a ,it is found that the aerodynamic drag caused in the connecting part between trains is about 4%,the surface friction drag 23%,the fore-and after-bodies 8%,the pantograph system 7%,and the underneath structures of train 58%.For type f ;the totalaerodynamic drag is about 50%of that of type a ;and each of the portions is quite different from that of type a .For reference,all these data refer to the same train length (200m).In the case of Japanese Shinkansen,the 0series have been known as l 0¼0:018;and C dp ¼0:2[10,11].An empiricalequation to predict the aerodynamic drag on the traveling train is given by the following equation:D ¼ð1:2þ0:022V ÞW þð0:013þ0:00029c ÞV 2;ð10Þwhere D is the totaldrag (kg f ),V the train speed (km/h),W the totalweight of train (ton),and l the train length (m).The term that is proportionalto the square of speed is the aerodynamic drag.For l ¼400m,corresponding to the length of 16trains,about 90%of the aerodynamic drag is attributed to the friction drag on the middle part of the train.Of the Japanese Shinkansen,series 100has a semi-body mount system for the underneath structures,and series 200has an underneath coverage to prevent snow accumulation on the train body.Table 3lists some major parameters influencing on the aerodynamic drag [10,11].It is found that smoothing the under-neath structures of train by using the body mount system or the skirt system reduces the hydraulic friction coefficient.4.4.Pressure dragOf the aerodynamic drag components,the pressure drag comes from the pressures on the fore-and after-bodies of train,and,in the case with a double deck in train series,it stems from the pressures due to the abrupt change in the cross-sectionalarea of the train.Assuming that the coefficient of the pressure drag is C dp and in the case of a double deck,it is C dpd ;a wind tunneltest [12]has been carried out to investigate the pressure drag.In the experiment,each of the models for the fore-and after-bodies of train and the middle part of train has been manufactured.Depending on the length of the middle part of the model,the model train experiment of different lengths could be done.F or a train modelwith a short l ength,the coefficient of the aerodynamic drag can be written as C ds ¼D s12r U 2A 0;ð11ÞTypeC r o s s -s e c t i o n a l a r e a (m 2)Fig.9.Aerodynamic drag components ofICE.Moving direction Fig.8.Aerodynamic drag on ICE (the hatching area is the device to smooth the structures underneath train).R.S.Raghunathan et al./Progress in Aerospace Sciences 38(2002)469–514478。