百分数应用题(B)六年级奥数题之专题串讲试题(附答案)2013
(完整版)六年级奥数分数百分数应用题汇总,推荐文档

分数百分数应用题一、单位“1”定长短。
1)两根1米长的绳子,第一根用去1/4,第二根用去1/4米,两次用去的一样长吗?2)两根一样长的绳子,第一根用去1/4,第二根用去1/4米,两次用去的一样长吗?3)一根绳子,第一次用去1/4,第二次用去1/4米。
哪一次用去的长一些?4)一根绳子,第一次用去4/7,第二次用去4/7米。
哪一次用去的长一些?5)一根绳子分两次用完,第一次用去1/3,第二次用去1/3米。
哪一次用去的长一些?6)一根绳子分两次用完,第一次用去2/3,第二次用去余下的部分。
哪一次用去的长一些?练一练:1)两根1米长的绳子,第一根用去1/3,第二根用去1/3米,两次用去的一样长吗?2)两根一样长的绳子,第一根用去1/3,第二根用去1/3米,两次用去的一样长吗?3)一根绳子,第一次用去1/6,第二次用去1/6米。
哪一次用去的长一些?3)一根绳子,第一次用去3/5,第二次用去2/5米。
哪一次用去的长一些?4)一根绳子分两次用完,第一次用去2/5,第二次用去3/5米。
哪一次用去的长一些?5)一根绳子分两次用完,第一次用去3/8,第二次用去余下的部分。
哪一次用去的长一些?二、量率对应1、修一条水渠,已经修好了2/5.(1)水渠全长20千米,已经修了的比剩下没修的少多少千米?(2)正好已经修了8千米,这条水渠全长多少千米?(3)还剩12千米没修,已经修了多少千米?(4)已经修好了的比剩下没修好的少4千米,还剩下多少千米没修?2、六年级一班,男学生人数相当于女学生人数的4/5,问:(1)女生20人,全班多少人?(2)男生人数比女生人数少4人,女生有多少人?(3)男生16人,女生人数比男生人数多多少人?(4)全班36人,男生有多少人?3、等候公共汽车的人整齐的排成一排,小明也在其中。
他数了数,排在他前面的人数是总人数的2/3,排在他后面的是总人数的1/4.小明排在第几位?4、 甲、乙两人星期天一起上街买东西,两人身上所带的钱共计是元.在人民市场,甲买86一双运动鞋花去了所带钱的,乙买一件衬衫花去了人民币元.这样两人身上所剩的钱4916正好一样多.问甲、乙两人原先各带了多少钱?【巩固】一实验五年级共有学生152人,选出男同学的和5名女同学参加科技小组,剩下的男、女人111数正好相等。
六年级奥数百分数应用题

百分数应用题例1、服装厂一车间人数占全厂的25%,二车间人数比一车间少20%,三车间人数比二车间多30%。
已知三车间有156人,全厂有多少人?训练、有三块地,第二块地的面积是第一块地的80%,第三块地的面积比第二块多20%,三块地共69公顷,求三块地各多少公顷。
例2、已知甲校学生数是乙校学生数的40%,甲校女生数是甲校学生数的30%,乙校男生数是乙校学生数的42%,那么,两校女生数占两校学生总数的百分之几?训练、某班男生人数占全班人数的60%,男生中有12.5%的人希望长大当教师,女生25%的人希望长大当教师。
问:想当教师的男生人数是想当教师的女生人数的百分之几?例3、一个长方体的长比宽多20%,高是宽的75%,如果将长减少4厘米,高增加5厘米,正好可以得到一个正方体。
问:这个长方体的体积是多少立方厘米?训练、把一个正方形的一边减少20%,另一边增加2米,得到一个长方形.它与原来的正方形面积相等.那么正方形的面积是多少平方米?例4、育红小学四年级学生比三年级学生多25%,五年级学生比四年级学生少10%,六年级学生比五年级学生多10%。
如果六年级学生比三年级学生多38人,那么三至六年级共有多少名学生?训练、林场种植杉树、柏树、梧桐树,其中杉树棵数占这三种树的总棵数的40%,柏树棵数占杉树棵数的7/8,梧桐树比杉树少144棵。
问:这三种树一共种了多少棵?例5、某中学上年度高中男、女生共290人,这一年度高中男生增加4%,女生增加5%,共增加了13人,本年度该校有男、女生各多少人?训练、六(3)班男生人数占全班人数的60%,如果男人减少5人,女生增加3人,则男、女生人数正好相等,问:六(3)班原有学生多少人?例6、有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖占25%,那么这堆糖果中有奶糖多少块?训练、有一堆糖果,其中奶糖占45%,再放入32块水果糖后,奶糖就只占25%,那么这堆糖中有奶糖多少块?例7、在某次数学测试中,六年级的及格率为95%,不及格的学生参加了补考,结果及格率为80%,如果补考后该年级还有2名学生没有及格,那么六年级一共有多少名学生?训练、操场上有200人,一部分站着,另一部分坐着。
小学六年级数学竞赛练习题--百分数应用题及答案

小学六年级数学竞赛练习题--百分数应用题及答案1.甲数比乙数少20%,那么乙数比甲数多百分之25.2.假设这堆糖果有100块,其中奶糖有45块,那么另外55块就是其他糖果。
放入16块水果糖后,奶糖只占总数的25%,也就是说有25块奶糖。
因此,这堆糖果中有25块奶糖。
3.一个正方体的棱长增加原长的1/2,那么新正方体的棱长为1.5倍原来的长。
表面积是边长平方的6倍,因此新正方体的表面积是原来的2.25倍。
增加的百分比为125%。
4.假设篮球有x个,那么排球有45-x个。
卖出一批篮球后,篮球的数量变成0.25*(45-x),也就是0.25*45-0.25x个。
因此,x=6个。
5.假设原来正方形的一边为x,那么面积为x^2.根据题意,新长方形的面积也是x^2.另一边的长度为0.8x+2,因此新长方形的面积为0.8x+2乘以x,即0.8x^2+2x。
因此,0.8x^2+2x=x^2,解得x=8.因此原来正方形的面积为64平方公尺。
6.假设乙校学生数为100人,那么甲校学生数为40人。
甲校女生数为12人,乙校男生数为42人,因此两校女生数为(0.4*0.3*40+0.58*100)/(40+100)=50%。
7.盐的重量为25克,盐水的总重量为125克(25克盐+100克水)。
因此盐的含量为25/125=20%。
8.假设昨天参加会议的男代表有x人,那么女代表有x-700人。
今天男代表有0.9x人,女代表有1.05(x-700)人。
因此,0.9x+1.05(x-700)=1995,解得x=3700.因此昨天参加会议的男代表有3700人。
9.假设原来甲店的利润为x,那么乙店的利润为0.8x。
现在甲店的利润为1.2x,乙店的利润为0.9*0.8x=0.72x。
因此,1.2x=0.72x,解得x=0.因此原来甲店的利润为0,乙店的利润为任意值。
10.假设需要蒸发掉y克水,那么盐的重量不变,即3.2%*500=8%*(500-y)。
六年级奥数第11讲百分数应用题

百分数应用题的不同题型百分数应用题在日常生活和生产中有着较广泛的应用,是小学数学中重要的基础知识之一。
如“合格率”“成活率”“浓度”“利率”“利润”等,都是有关百分数的知识。
解答百分数应用题与分数应用题的方法基本相似,找准单位“1”,寻找对应关系。
例一、一项工程,甲独做需12 天完成,乙独做需15 天完成。
甲的工作效率比乙的工作效率高百分之几?分析:求甲的工作效率比乙的工作效效率比乙的工作效率多率高百分之几,就是求甲的工作的部分是乙的工作效率的百分之几。
把乙的工作效率(115)当作单位“1”,甲的工作效率比乙的工作效率高112−115,再除以乙的工作效率115。
(112-115)÷115=160÷115=25% 答;甲的工作效率比乙的高25%。
巩固练习11、甲车从A 地开往B 地需要8 小时,乙车从A 地开往B 地需要10 小时。
甲车的速度比乙车快百分之几?2. 甲2 小时所行驶路程的15%和乙12小时所行驶的路程相等,乙的速度比甲的速度慢百分之几?3. 一辆汽车每小时行驶40 千米,自行车每行驶1千米比汽车多用2.5 分钟,自行车速度是汽车速度的百分之几?例二、某化肥厂原计划每月生产6000吨,由于改进技术8 个月生产的化肥就超过了全年计划产量的10%,这8 个月的平均产量超过了原来月计划产量百分之几?分析:将原来月计划产量看作单位“1”,实际8 个月的总产量相当于原来月计划产量的1×12×(1+10%)=13. 2 倍,实际月平均产量为原来量的13. 2÷8=1.65倍。
1×12(1+10%)÷8-1=1. 65-1=65%答:这8个月的平均产量比原来月计划产量超过65%。
巩固练习21.服装厂实际前6个月的产量相当于全年计划产量的80%,原计划每月产量1200套,实际月平均产量比月计划产量超额百分之几?2. 化肥厂第一季度生产化肥0. 24 万吨,比第二季度少25% ,这两个季度化肥产量正好是全年总产量的20%。
百分数应用题(B) 六年级奥数题之专题串讲试题(附答案)

六 百分数应用题(2)年级 班 姓名 得分一、填空题1.甲数比乙数少20%,那么乙数比甲数多百分之 .2.每天水分排出量(单位为毫升)如图所示.由肺呼出的水分占每天水分排出的百分之 .(400:肺呼出;500: ;100:固体废物;1500:水性废物)3.有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%.那么,这堆糖中有奶糖 块.4.把25克盐放进100克水里制成盐水,制成的这种盐水,含盐量是百分之几?有200克这样的盐水,里面含盐 克.5.一个有弹性的球从A 点落下到地面,弹起到B 点后又落下高20厘米的平台上,再弹起到C 点,最后落到地面(如图).每次弹起的高度都是落下高度的80%,已知A 点离地面比C 点离地面高出68厘米,那么C 点离地面的高度是 厘米.6.某次会议,700人,今天男代表减少10%,女代表增加了5%,今天共1995人出席会议,那么昨天参加会议的有 人.7.有甲、乙两家商店,如果甲店的利润增加20%,乙店的利润减少10%,那么这两店的利润就相同,原来甲店的利润是原来乙店的利润的百分之 .8.开明出版社出版某种书.今年每册书的成本比去年增加10%.但是仍保持原售价,因此每本盈利下降了40%,但今年的发行册数比去年增加80%,那么今年发行这种书获得的总盈利比去年增加的百分数是 .9.甲、乙二人分别从A 、B 两地同时出发,相向而行,出发时他们的速度比是3:2.他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%,这样,当甲到达B 地时,乙离A 还有14千米.那A 、B 两地间的距离是 .10.有两堆棋子,A 堆有黑子350个和白子500个,B 堆有黑子400个和白子100个,为了使A 堆中黑子占50%,B 堆中黑子占75%,要从B 堆中拿到A 堆;黑子 .个,白子 个.A B C二、解答题11.有一位精明的老板对某商品用下列办法来确定售价:设商品件数是N ,那么N 件商品售价(单位:元)按:每件成本⨯(1+20%)⨯N 算出后,凑成5的整数倍(只增不减),按这一定价方法得到:1件50元;2件95元;3件140元;4件185元;…,如果每件成本是整元,那么这一商品每件成本是多少元?12.盈利百分数=买入价买入价买出价-⨯100% 某电子产品去年按定价的80%出售,能获得20%的盈利,由于今年买入价降低,按同样定价的75%出售,却能获得25%的盈利,那么去年买入价今年买入价是多少? 13.北京九章书店对顾客实行一项优惠措施:每次买书200元至499.99元者优惠5%,每次买500元以上者(包含500元)优惠10%.某顾客到书店买了三次书,如果第一次与第二次合并一起买,比分开买便宜13.5元;如果三次合并一起买比三次分开买便宜38.4元.已经知道第一次的书价是第三次书价的85,问这位顾客第二次买了多少钱的书.14.有A 、B 、C 三根管子,A 管以每秒4克的流量流出含盐20%的盐水,B 管以每秒6克的流量流出含盐15%的盐水,C 管以每秒10克的流量流出水.C 管打开后开始2秒不流,接着流5秒,然后又停2秒,再流5秒…三管同时打开,1分种后都关上,这时得到的混合液中含盐百分之几?———————————————答 案——————————————————————1. 20%÷(1-20%)=25%2. 400÷(400+500+100+1500)=16%3. 16÷[(1-25%)÷25%-(1-45%)÷45%]=9(块)4. 含盐量是: %20%1001002525=⨯+ 200克这样的盐水里面含盐200⨯20%=40克5. [68+20⨯(1-80%)]÷(1-80%⨯80%)-68=132(厘米)6. (1995-700⨯90%)÷(1+5%+90%)⨯2+700=2100(人)7. (1-10%)÷(1+20%)=75%8. 假设每册书成本为4元,售价5元,每册盈利1元,而现在成本为4⨯(1+10%)=4.4元,售价仍为5元,每册盈利0.6元,比原来每册盈利下降了40%.但今年发行册数比去年增加80%,若去年发行100册,则今年发行100⨯(1+80%)=180(册).原来盈1⨯100=100(元),现在盈利0.6⨯180=108(元).故今年获得的总盈利比去年增加了(108-100)÷100=8%.9. 相遇到后,甲乙速度之比为1⨯(1+20%):⨯32(1+30%)=18:13,故A 、B 两地之间的距离是14÷4513185253=⎪⎭⎫ ⎝⎛÷-(千米) 10. 设要从B 堆中拿到A 堆黑子x 个,白子y 个,则有:()()[]()()[]⎩⎨⎧⨯++-=-⨯+++=+%75100400400%50500350350y x x y x x 解得 x =175, y =25. 11. 45÷[(1+20%)⨯1]=37.512. [75%÷(1+25%)]÷[80%÷(1+20%)]=109. 13. 第一次与第二次共应付款13.5÷5%=270(元),故第三次书价必定在 500-270=230(元)以上,这样才能使三次书价总数达到优惠10%的钱数.如果分三次购买,第三次的书价也能优惠5%,从而有:第三次书价总数为518-270=248(元)第一次书价总数为24885⨯=155(元) 第二次书价总数为270-155=115(元)14. 因60÷(5+2)=8…4,故C 管流水时间为5⨯8+2=42(秒),从而混合液中含盐百分数为()()%10%1004210606460%156%2040=⨯⨯+⨯+⨯⨯+⨯。
六年级上册数学百分数应用题专项(完整版)

百分数的认识、百分数应用题学生/课程年级学科授课教师日期时段核心内容百分数的认识、百分数应用题课型一对一/一对N教学目标1、认识百分数的意义2、会转化百分数、分数与小数3、熟练运用百分数相关知识解决问题重、难点百分数的综合应用知识导图导学一百分数意义及与分数、小数互化知识点讲解 1:百分数的意义百分数的意义:表示一个数是另一个数的百分之几,也叫百分率或百分比知识点讲解 2:百分数和分数、小数互化(1)百分数与小数互化; (2)百分数与分数互化例 1. 用百分数、分数和小数表示阴影部分的大小。
小数()小数()小数()分数()分数()分数()百分数()百分数()百分数()我爱展示1. 35:28= = =()8=()%=()(填小数)。
2. 观察下图,图中阴影部分的面积占大圆面积的()%。
导学二百分率的应用知识点讲解 1:一个数是另外一个数的几分之几题型:求A是B的几分之几解题思路:A÷B出勤率= ×100% 成活率= 100%出油率= ×100%出粉率= ×100%发芽率= ×100%合格率= ×100%射击命中率= 出糖率= ×100%例 1. 六(一)班今天出勤的有47人,有1人请病假,有2人去参加数学竞赛,今天该班的出勤率是多少?例 2. 一种核桃的出油率是45%,900千克的核桃可以榨油多少千克?要榨900千克油,需要核桃多少千克?我爱展示1.六年1班有40人,某天请事假的1人,请病假的2人,这天的缺勤率是()%,出勤率是()%。
2.荔红小学有学生800人,今天的出勤率是96%,今天出勤人数是()人。
3.学校春季植树600棵,成活率75%。
而秋季植树的成活率是90%,春秋两季植树成活的棵数一样多。
学校秋季植树多少棵?导学三百分数的应用知识点讲解 1:比一个数多(或少)百分之几的应用题方法:(1)先求出增加(或减少)的具体量,再除以单位“1”的量。
列方程解应用题(A)六年级奥数题之专题串讲试题(附答案)2013

九 列方程解应用题(1)年级 班 姓名 得分一、填空题1.一个分数约分后将是54,如果将这个分数的分子减少124,分母减少11,所得的新分数约分后将是94.那么原分数是 . 2.八个自然数排成一行,从第三个数开始,每个数都等于它前面两个数的和.已知第一个数是3,第八个数是180,那么第二个数是 .3,□,□,□,□,□,□1803.一个长方形的长与宽之比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米.原长方形的面积是 平方厘米.4.某商品按每个5元利润卖出11个的价钱,与按每个11元的利润卖出10个价钱一样多.这个商品的成本是 元.5.粮店中的大米占粮食总量的73,卖出600千克大米后,大米占粮食总量的31.这个粮店原来共有粮食 千克. 6.从家里骑摩托车到火车站赶乘火车.如果每小时行30千米,那么早到15分钟;如果每小时行20千米,则迟到5分钟.如果打算提前5分钟到,摩托车的速度应是 .7.两个杯中分别装有浓度40%与10%的食盐水,倒在一起后混合食盐水浓度为30%.若再加入300克20%的食盐水,则浓度变为25%.那么原有40%的食盐水 克.8.某缝纫师做成一件衬衣、一条裤子、一件上衣所用的时间之比为1:2:3.他用十个工时能做成2件衬衣、3条裤子和4件上衣.那么他要做成14件衬衣、10条裤子和2件上衣,共需 工时.9.一个运输队包运1998套玻璃具.运输合同规定:每套运费以1.6元计算,每损坏一套,不仅不得运费,还要从总费中扣除赔偿费18元.结果这个运输队实际得运费3059.6元,那么,在运输过程中共损坏 套茶具.10.摄制组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃午饭.由于道路堵车,中午才赶到一个小镇,只行驶了原计划的三分之一.过了小镇,汽车赶了400千米,傍晚才停下来休息.司机说,再走从C 市到这里的二分之一,就到达目的地了.那么A ,B 两市相距 千米.二、解答题11.A 、B 两地相距30千米.甲骑自行车从A 到B ,开始速度为每小时20千米,一段时间后减速为每小时15千米.甲出发1小时后,乙驾驶摩托车以每小时48千米的速度也由A 到B ,中途因加油耽误了10.5分钟.结果甲乙两人同时到达B 地.甲出发后多少分钟开始减速的?12.一批树苗,按下列原则分给各班栽种;第一班取走100棵又取走剩下树苗的101,第二班取走200棵又取走剩下树苗的101.第三班取走300棵又取走剩下树苗的101,照此类推,第i 班取走树苗100⨯i 棵又取走剩下树苗的101.直到取完为止.最后各班所得树苗都相等.试问这批树苗有多少棵?有几个班?每个班取走树苗多少棵?13.一辆汽车在上坡路上行驶的速度是每小时40千米,在下坡路上行驶的速度是每小时50千米,在平路上行驶的速度是每小时45千米.某日这辆汽车从甲地开往乙地,先是用了31的时间走上坡路,然后用了31的时间走下坡路,最后用了31的时间走平路.已知汽车从乙地按原路返回甲地时,比从甲地开往乙地所用的时间多15分钟,求甲、乙两地的距离.14.兄弟两人骑马进城,全程51千米.马每小时行12千米,但只能由一个人骑.哥哥每小时步行5千米,弟弟每小时步行4千米.两人轮换骑马和步行,骑马者走过一段距离就下鞍拴马(下鞍拴马的时间忽略不计),然后独自步行.而步行者到达此地,再上马前进.如果他们早晨六点动身,何时能同时到达城里?———————————————答 案—————————————————————— 1. 335268. 设原分数是x x 54,由题意有941151244=--x x ,解得x =67,所以原分数是335268675674=⨯⨯. 2. 12设第二个数是x ,则这八个数可写为3,x ,3+x ,3+2x ,6+3x ,9+5x ,15+8x ,24+13x .由24+13x =180,解得 x =12.3. 630设原长方形的长是14a 厘米,则宽是5a 厘米.由题意可列方程14a ⨯5a +182=(14a -13)⨯(5a +13)70a 2+182=70a 2+117a -169解得a =3,所以原长方形的面积为14a ⨯5a =70a 2=630(平方厘米)4. 55设成本是x 元.根据题意可列方程(x +5)⨯11=(x +11)⨯10,解得x =55(元).5. 4200设原来有粮食x 千克,根据现有大米可列方程,31)600(60073⨯-=-⨯x x 解得x =4200(千克).6. 42设离火车开车时刻还有x 分钟,根据从家到火车站的距离,可列方程)5(6020)15(6030+⨯=-⨯x x ,解得x =55(分钟),所求速度应是30⨯[(55-15)÷(55-5)]=24(千米/小)7. 200浓度为30%与20%的食盐水混合成25%的食盐水,则30%与20%的食盐水的质量应相同,所以40%与10%的食盐水混合成30%的食盐水有300克.设原有40%的食盐水x 克,则10%的食盐水有300-x (克).由x ⨯40%+(300-x )⨯10%=300⨯30%,解得x =200(克).8. 20设缝纫师做一件衬衣的时间为x ,则一条裤子的时间为2x ,做一件上衣用时为3x .由于十个工时完成2件衬衣、3条裤子、4件上衣,即2x +3⨯(2x )+4⨯(3x )=10(工时).即20x =10(工时),则完成2件上衣、10条裤子、14件衬衣共需:2⨯(3x )+10⨯(2x )+14x =40x =20(工时).9. 7设共损坏x 套茶具,依题意,得1.6⨯(1998-x )-18⨯x =3059.6,解得x =7.10. 600设BC =x 千米,则AC =(x +1)千米,依题意,得x x x x ++=+++)1(31400)100(31 解得x =250,两地相距(x +1)+x =2x +1=600(千米).11. 设甲出发后x 分钟开始减速的,依题意,得20⨯30601)605.10604830(1560=⨯-++⨯⨯+x x .解得x =36(分钟). 答:甲出发后36分钟开始减速.12. 设这批树苗有x 棵,则第一班取走树苗(100+)10100-x 棵,第二班取走 树苗10)1010100(200200-+--+x x 棵.依题意,得10)10100100(20020010100100-+--+=-+x x x ,解得x =8100,于是第一班取走的棵数,也就是每个班取走的棵数为900101008100100=-+,参加栽树的班数为99008100=,所以这批树苗有8100棵,共有9个班,每个班取走的树苗都是900棵. 13. 设汽车从甲到乙所用时间为3x 小时,依题意,得60153504*********+=++x x x x ,解得x =5,故甲、乙两地的距离为40x +50x +45x =135x =675(千米).14. 设哥哥步行了x 千米,则骑马行了51-x 千米.而弟弟正好相反,步行了51-x 千米,骑马行x 千米,依题意,得1245112515x x x x +-=-+,解得x =30(千米).所以两人用的时间同为437476123051530=+=-+(小时)=7小时45分.早晨6点动身,下午1点45分到达.。
(完整版)百分数应用题练习题及答案

百分数应用题练习题及答案1、有一台冰箱,原价2000元,降价后卖1600元,降了百分之几?2、有一台空调,原价1600元,涨价后卖2000元,涨了百分之几?3、有一台电视,原价1200元,降了300元,价格降了百分之几?4、有一种消毒柜,原价2400元,涨价了400元,价格涨了百分之几、5、光明小学去年有篮球24个,今年新买了6个,今天一共有篮球多少个?今年比去年增加了百分之几?6、有一个公园原来的门票是80元,国庆期间打8折,每张门票能节省多少元?相当于降价了百分之几?7、南山小学共占地8000平方米,其中绿地面积占65 %,其余为教学楼和道路等,南山小学的绿地面积有多少平方米?教学楼和道路等有多少平方米?&商场搞打折促销,其中服装类打5折,文具类打8折。
小明买一件原价320元的衣服,和原价120元的书包,实际要付多少钱?9、有一批种子的发芽率为98.5 %,播种下3000粒种子,可能会有多少粒种子没发芽?10、一个果园里去年产了4500千克的苹果,今年因为气候好,比去年增产了2成,今年产了多少千克苹果?11、实验小学六年级的女生人数占全年级的48.75 %,男生占全年级人数的百分之几?如果男生人数比女生人数多12人,那么实验小学六年级人数共有多少人?12、蔬菜基地今年生产了 2.4万吨蔬菜,比去年增产了2成,去年这个蔬菜基地的产量是多少万吨?13、504班参加美术兴趣小组的有20人,比参加体育兴趣小组的人数多20 %,参加体育兴趣小组的有多少人?14、王叔叔把4000元存入银行,整存整存3年,年利率为3.15%,至U期有利息多少元?要缴纳利息税多少元?王叔叔的本金加利息一共多少元?(现在的利息税为5%)15、小明家六月份用电180千瓦时,七月份比六月份多用了20 %,每千瓦时电费为0.54元,小明家七月份的电费为多少元?〕16、林林爸爸2000年的总工资收入13500元,2006年比2001年增加了240 %,林林爸爸2006年的工资是多少元?答案1、答:降了20%o答:涨了25%3、答:价格降了25%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六 百分数应用题(2)
年级 班 姓名 得分
一、填空题
1.甲数比乙数少20%,那么乙数比甲数多百分之 .
2.每天水分排出量(单位为毫升)如图所示.由肺呼出的水分占每天水分排出的百分之 .
(400:肺呼出;500: ;100:固体废物;1500:水性废物)
3.有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%.那么,这堆糖中有奶糖 块.
4.把25克盐放进100克水里制成盐水,制成的这种盐水,含盐量是百分之几?有200克这样的盐水,里面含盐 克.
5.一个有弹性的球从A 点落下到地面,弹起到B 点后又落下高20厘米的平台上,再弹起到C 点,最后落到地面(如图).每次弹起的高度都是落下高度的80%,已知A 点离地面比C 点离地面高出68厘米,那么C 点离地面的高度是 厘米.
6.某次会议,
昨天参加会议的男代表比女代表多700人,今天男代表减少10%,女代表增加了5%,今天共1995人出席会议,那么昨天参加会议的有 人.
7.有甲、乙两家商店,如果甲店的利润增加20%,乙店的利润减少10%,那么这两店的利润就相同,原来甲店的利润是原来乙店的利润的百分之 .
8.开明出版社出版某种书.今年每册书的成本比去年增加10%.但是仍保持原售价,因此每本盈利下降了40%,但今年的发行册数比去年增加80%,那么今年发行这种书获得的总盈利比去年增加的百分数是 .
9.甲、乙二人分别从A 、B 两地同时出发,相向而行,出发时他们的速度比是3:2.他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%,这样,当甲到达B 地时,乙离A 还有14千米.那A 、B 两地间的距离是 .
10.有两堆棋子,A 堆有黑子350个和白子500个,B 堆有黑子400个和白子100个,为了使A 堆中黑子占50%,B 堆中黑子占75%,要从B 堆中拿到A 堆;黑子 .
个,白子 个.
A B C
二、解答题
11.有一位精明的老板对某商品用下列办法来确定售价:设商品件数是N ,那么N 件商品售价(单位:元)按:每件成本⨯(1+20%)⨯N 算出后,凑成5的整数倍(只增不减),按这一定价方法得到:1件50元;2件95元;3件140元;4件185元;…,如果每件成本是整元,那么这一商品每件成本是多少元?
12.盈利百分数=买入价买入价
买出价-⨯100%
某电子产品去年按定价的80%出售,能获得20%的盈利,由于今年买入价降低,按同样定价的75%出售,却能获得25%的盈利,那么去年买入价今年买入价
是多少?
13.北京九章书店对顾客实行一项优惠措施:每次买书200元至499.99元者优惠5%,每次买500元以上者(包含500元)优惠10%.某顾客到书店买了三次书,如果第一次与第二次合并一起买,比分开买便宜13.5元;如果三次合并一起买比三次分开买便宜38.4元.已经知道第一次的书价是第三次书价的85
,问这位顾客第二次买了多少钱的书.
14.有A 、B 、C 三根管子,A 管以每秒4克的流量流出含盐20%的盐水,B 管以每秒6克的流量流出含盐15%的盐水,C 管以每秒10克的流量流出水.C 管打开后开始2秒不流,接着流5秒,然后又停2秒,再流5秒…三管同时打开,1分种后都关上,这时得到的混合液中含盐百分之几?
———————————————答 案——————————————————————
1. 20%÷(1-20%)=25%
2. 400÷(400+500+100+1500)=16%
3. 16÷[(1-25%)÷25%-(1-45%)÷45%]=9(块)
4. 含盐量是: %20%1001002525
=⨯+
200克这样的盐水里面含盐200⨯20%=40克
5. [68+20⨯(1-80%)]÷(1-80%⨯80%)-68=132(厘米)
6. (1995-700⨯90%)÷(1+5%+90%)⨯2+700=2100(人)
7. (1-10%)÷(1+20%)=75%
8. 假设每册书成本为4元,售价5元,每册盈利1元,而现在成本为
4⨯(1+10%)=4.4元,售价仍为5元,每册盈利0.6元,比原来每册盈利下降了40%.
但今年发行册数比去年增加80%,若去年发行100册,则今年发行100⨯(1+80%)=180(册).
原来盈1⨯100=100(元),现在盈利0.6⨯180=108(元).故今年获得的总盈利比去年增加了(108-100)÷100=8%.
9. 相遇到后,甲乙速度之比为1⨯(1+20%):⨯32
(1+30%)=18:13,故A 、B 两地之间的距离是14÷4513185253=⎪⎭⎫ ⎝⎛÷-
(千米)
10. 设要从B 堆中拿到A 堆黑子x 个,白子y 个,则有:
()()[]()()[]⎩⎨⎧⨯++-=-⨯+++=
+%75100400400%50500350350y x x y x x 解得 x =175, y =25.
11. 45÷[(1+20%)⨯1]=37.5
12. [75%÷(1+25%)]÷[80%÷(1+20%)]=109
.
13. 第一次与第二次共应付款13.5÷5%=270(元),故第三次书价必定在 500-270=230(元)以上,这样才能使三次书价总数达到优惠10%的钱数.如果分三次购买,第三次的书价也能优惠5%,从而有:
第三次书价总数为518-270=248(元)
第一次书价总数为24885
⨯=155(元)
第二次书价总数为270-155=115(元)
14. 因60÷(5+2)=8…4,故C 管流水时间为5⨯8+2=42(秒),从而混合液中含盐百分数为
()()%10%1004210606460%156%2040=⨯⨯+⨯+⨯⨯+⨯。