基于51单片机的数字电压表设计
基于51单片机的直流数字电压表设计

基于51单片机的直流数字电压表设计概述:直流数字电压表是一种用于测量直流电压的仪器,它通过将电压信号转换为数字形式,并显示在数码管上,实现对电压的准确测量。
本文将介绍基于51单片机的直流数字电压表的设计原理和实现方法。
一、设计原理:1.1 电压信号采集:直流数字电压表的第一步是采集待测电压信号。
常用的采集方法是使用一个分压电路将待测电压降低到合适的范围,再通过运算放大器将其放大到合适的电平。
51单片机的模拟输入引脚可以接受0-5V的模拟电压信号,因此可以直接将放大后的信号接入单片机进行采集。
1.2 模数转换:采集到的模拟电压信号需要经过模数转换(A/D转换)才能被单片机读取和处理。
51单片机内部集成了一个10位的A/D转换器,可以将输入的模拟电压转换为相应的数字量。
通过设置不同的参考电压和采样精度,可以实现对不同电压范围的准确测量。
1.3 数码管显示:经过模数转换后,得到的数字量需要通过数码管进行显示。
51单片机的IO口可以通过控制段选和位选的方式,将数字量转换为相应的数码管显示。
可以根据需要选择常用的七段数码管或者液晶显示屏进行显示。
二、设计实现:2.1 硬件设计:硬件设计包括电路原理图设计和PCB布局设计两个部分。
电路原理图设计主要包括电压采集电路、运算放大器、A/D转换器和数码管驱动电路等部分。
PCB布局设计需要考虑信号的走线和电源的分布,以保证电压信号的准确采集和显示。
在设计过程中,需要注意地线和信号线的分离,以减少干扰。
2.2 软件设计:软件设计主要包括单片机的程序编写和调试。
首先需要编写采集模拟电压信号和进行A/D转换的程序,将转换后的数字量存储在单片机的内部存储器中。
然后编写数码管驱动程序,将存储的数字量转换为相应的数码管显示。
最后,通过按键或者旋转编码器等方式,可以实现对量程和精度的选择。
三、设计优化:3.1 精度优化:为了提高直流数字电压表的测量精度,可以采用更高精度的A/D转换器,增加参考电压的精度,或者通过校准电路对测量误差进行校正。
51单片机的数字电压表设计不需要仿真

51单片机的数字电压表设计不需要仿真(原创版)目录一、引言二、51 单片机的数字电压表设计原理1.主要硬件2.电路设计3.编程方法三、设计优点1.电路简单2.成本低3.性能稳定四、设计局限性五、总结正文一、引言在电子技术领域,数字电压表是一种重要的测量工具,它可以将模拟信号转化为数字信号,并显示在数码管上。
随着单片机技术的不断发展,基于单片机的数字电压表设计越来越受到关注。
本文将以 51 单片机为例,介绍一种数字电压表的设计方法,该方法不需要仿真。
二、51 单片机的数字电压表设计原理1.主要硬件本设计采用 AT89C51 单片机、AD 转换器 ADC0808 和共阳极数码管为主要硬件。
AT89C51 是一款 8 位单片机,具有较高的执行速度和稳定性;ADC0808 是一款 12 位 A/D 转换器,可以将模拟信号转换为数字信号;共阳极数码管用于显示数字信号。
2.电路设计电路设计主要包括输入电阻分压、ADC0808 的连接和数码管的动态扫描显示。
在输入端,采用电阻分压方式降低输入电压,使其适合 ADC0808 的输入范围。
ADC0808 的输出端连接到单片机的数据总线,单片机根据输出的数字信号进行数据处理。
数码管采用动态扫描显示方式,通过单片机控制数码管的点亮时间,实现数字信号的显示。
3.编程方法编程主要分为两部分:一是数据采集,即将模拟信号转换为数字信号;二是数据处理和显示,即将采集到的数字信号进行处理并在数码管上显示。
在数据采集部分,程序需要发送 ADC0808 的启动信号,并读取转换后的数字信号。
在数据处理和显示部分,程序需要根据数码管的显示要求,控制数码管的点亮时间。
三、设计优点1.电路简单:本设计采用较少的硬件,电路连接简单,易于实现。
2.成本低:主要硬件都是常见的单片机和元器件,成本较低。
3.性能稳定:采用成熟的单片机技术,性能稳定可靠。
四、设计局限性虽然本设计具有较多的优点,但仍然存在一定的局限性。
基于51单片机的数字电压表设计

目录摘要 (I)1 绪论 (1)1.1数字电压表介绍 (1)1.2仿真软件介绍 (1)1.3 本次设计要求 (2)2 单片机和AD相关知识 (3)2.1 51单片机相关知识 (3)2.2 AD转换器相关知识 (4)3 数字电压表系统设计 (5)3.1系统设计框图 (5)3.2 单片机电路 (5)3.3 ADC采样电路 (6)3.4显示电路 (6)3.5供电电路和参考电压 (7)3.6 数字电压表系统电路原理图 (7)4 软件设计 (8)4.1 系统总流程图 (8)4.2 程序代码 (8)5 数字电压表电路仿真 (15)5.1 仿真总图 (15)5.2 仿真结果显示 (15)6 系统优缺点分析 (16)7 心得体会 (17)参考文献 (18)1 绪论1.1数字电压表介绍数字电压表简称DVM,数字电压表基本原理是将输入的模拟电压信号转化为数字信号,再进行输出显示。
而A/D转换器的作用是将连续变化的模拟信号量转化为离散的数字信号,器基本结构是由采样保持,量化,编码等几部分组成。
因此AD转换是此次设计的核心元件。
输入的模拟量经过AD转换器转换,再由驱动器驱动显示器输出,便得到测量的数字电压。
本次自己的设计作品从各个角度分析了AD转换器组成的数字电压表的设计过程及各部分电路的组成及原理,并且分析了数模转换进而使系统运行起来的原理及方法。
通过自己的实践提高了动手能力,也只有亲历亲为才能收获掌握到液晶学过的知识。
其实也为建立节约成本的意识有些帮助。
本次设计同时也牵涉到了几个问题:精度、位数、速度、还有功耗等不足之处,这些都是要慎重考虑的,这些也是在本次设计中的收获。
1.2仿真软件介绍Proteus ISIS是英国Labcenter公司开发的电路分析与实物仿真软件。
它运行于Windows 操作系统上,可以仿真、分析(SPICE)各种模拟器件和集成电路,该软件的特点是:(1)现了单片机仿真和SPICE电路仿真相结合。
(完整版)基于51单片机数字电压表的毕业设计论文

甘肃畜牧工程职业技术学院毕业设计题目:基于51单片机的简易数字电压表的设计系部:电子信息工程系专业:信息工程技术班级:学生姓名:学号:指导老师:日期:目录毕业设计任务书 (1)开题报告 (2)摘要 (6)关键词 (7)引言 (8)第一章AD转换器 (9)1.1AD转换原理 (9)1.2 ADC性能参数 (11)1.2.1 转换精度 (11)1.2.2. 转换时间 (12)1.3 常用ADC芯片概述 (13)第二章8OC51单片机引脚 (14)第三章ADC0809 (16)3.1 ADC0809引脚功能 (16)3.2 ADC0809内部结构 (18)3.3ADC0809与80C51的接口 (19)3.4 ADC0809的应用指导 (20)3.4.1 ADC0809应用说明 (20)3.4.2 ADC0809转换结束的判断方法 (20)3.4.3 ADC0809编程方法 (21)第四章硬件设计分析 (22)4.1电源设计 (22)4.2 关于74LS02,74LS04 (22)4.3 74LS373概述 (23)4.3.1 引脚图 (23)4.3.2工作原理 (23)4.4简易数字电压表的硬件设计 (24)结论 (25)参考文献 (26)附录 (27)致谢 (29)毕业设计任务书开题报告摘要随着我国现代化技术建设的发展,电子检测技术日新月异,本此设计基于80C51单片机的一种8路输入电压测量电路,该电路采用ADC0809 A D转换元件,实现数字电压表的硬件电路与软件设计。
该系统的数字电压表电路简单, 可以测量0~5V的电压值,并在四位LED数码管上轮流显示或单路选择显示。
所用的元件较少,成本低,调节工作可实现自动化。
还可以方便地进行8路AD转换量的测量,远程测量结果传送等功能。
With the construction of modern technology, electronic detection technology advances, the 80C51 microcontroller for this design is based on an 8-input voltage measurement circuit that uses ADC0809 A D conversion components, digital voltage meter . The system's digital voltmeter circuit is simple, can measure the voltage 0 ~ 5V, and the four turns on the LED digital display or a single select Show. Fewer components used in low cost, regulation work can be automated. You can also easily 8 A D conversion volume measurement, remote measurement transferfunctions.数字电压表单片机 AD转换 AT80C51Digital voltmeter microcontroller A D conversion AT80C51数字电压表简称DVM,它是采用了数字化测量技术,把连续模拟量(直流输入电压)转换成不连续,离散的数字形式加以现实的仪表。
51单片机的数字电压表设计不需要仿真

51单片机的数字电压表设计不需要仿真
摘要:
1.51单片机数字电压表设计简介
2.硬件电路组成及原理
3.软件程序设计要点
4.系统性能与应用
正文:
一、51单片机数字电压表设计简介
51单片机数字电压表设计是一种基于嵌入式技术的电子测量工具,具有体积小、精度高、操作简便等优点。
本设计以51单片机为核心,结合A/D转换器、显示模块等硬件,实现对输入模拟电压信号的采集、处理和显示。
二、硬件电路组成及原理
1.核心控制器:51单片机
2.A/D转换器:将模拟电压信号转换为数字信号
3.显示模块:采用共阳极数码管,实现数字电压值的显示
4.模拟量输入:电阻分压电路,可测量0-5V范围内的电压信号
三、软件程序设计要点
1.初始化:配置单片机的工作模式、时钟频率等参数
2.A/D转换:设置A/D转换器的工作模式,进行电压信号的采样和转换
3.数据处理:对A/D转换后的数字信号进行处理,如数据调整、滤波等
4.显示更新:根据处理后的数据,通过动态扫描显示技术更新数码管的显
示内容
5.循环检测:持续监测输入电压信号,实时更新显示
四、系统性能与应用
本设计的51单片机数字电压表具有以下特点:
1.测量范围:0-5V
2.精度:±1%
3.响应速度:≤100ms
4.电源:直流5V
广泛应用于工业生产、实验室测量、电子产品研发等领域,为工程师提供了一种高效、准确的电压测量解决方案。
通过以上介绍,我们可以了解到51单片机数字电压表的设计原理、硬件组成和软件程序设计方法。
在实际应用中,根据具体需求可以对电路和程序进行优化调整,提高系统的性能和稳定性。
基于51单片机的数字电压表课程设计.

信息与电气工程学院电子应用系统CDIO一级项目设计说明书(2011/2012学年第二学期)题目:___ _数字电压表__________专业班级:电子信息0902班学生姓名:张文盛学号:090070213指导教师:贾少锐、李晓东、马永强李丽宏、贾东立、刘会军设计周数:设计成绩:2012年6月28日1、CDIO设计目的本次CDIO设计题目是:利用所学的51单片机,C语言,数字电路等知识,设计一个符合要求的数字电压表。
主控芯片可以是AT89C51,而采集电压的模拟量转换成数字量的芯片可以是ADC0804,也可以是PCF8591。
而显示模块可以是数码管,也可以是液晶LCD1602,从而展示给我们所得的电压值。
2、CDIO设计正文2.1 数字电压表系统设计框图本次数字电压表系统设计框图如图1所示:图1 数字电压表设计框图数字电压表主要由模/数转换电路、单片机控制电路、显示电路等三部分组成。
其中PCF8591等器件组成的转换电路,将输入的模拟量信号进行取样、转换、然后将转换的数字信号送进单片机。
单片机控制电路主要实现对数据进行程序处理;显示电路主要用于将单片机的信号数据转换后显示测量结果。
模拟信号产生模块:输入电源电路(变压器、整流电路、滤波电路、稳压电路组成)和分压电路(9万欧姆和1万欧姆的电阻分压)。
模数转换模块组成部分:PCF8591芯片程序处理的单片机控制模块:AT89C51芯片电压结果显示部分:LCD1602液晶2.2 各模块介绍2.2.1 AT89C51芯片介绍AT89S52 具有以下标准功能:8k 字节Flash,256 字节RAM,32 位I/O 口线,看门狗定时器,2 个数据指针,三个16 位定时器/计数器,一个 6 向量 2 级中断结构,全双工串行口,片内晶振及时钟电路。
另外,AT89S52 可降至0Hz 静态逻辑操作,支持2 种软件可选择节电模式。
空闲模式下,CPU停止工作,允许RAM、定时器/计数器、串口、中断继续工作。
基于51单片机的数字电压表的设计

摘要随着电子技术的发展,电子测量技术对测量的精度和功能的要求也越来越高,而数字电压表作为实验室的基本测量设备,它可以很好的满足测量精度和功能的要求。
本设计利用AT89S51单片机技术结合A/D转换(采用ADC0809)构建了一个直流数字电压表。
经过对数字电压表基本原理的分析,本文设计了一个以51单片机为核心的数字电压表系统,给出了直流数字电压表的设计流程,设计了电压测量子系统和电流测量子系统,给出了硬件电路的框图、电气原理图和软件流程图。
系统设置了3个键的键盘,用于设定电压、电流切换的功能键、系统复位键以及清零键。
关键词:数字电压表;AT89S51单片机;A/D转换;ADC0809;AbstractAs electronic science and technology development, electronic measurement technology on the accuracy of measurement and functional requirements are increasingly high, and digital voltmeter measurement equipment as the basic laboratory, it can well meet the measuring precision and function requirements. A dc digital voltmeter is built by using AT89S51 with the A/D convertor (ADC0809)in the paper.This paper first introduces the main method and design voltmeter SCM system advantage; Then introduces the design process of dc digital voltmeter, and hardware system and the design of software system, and gives the hardware circuit design system diagram and software system design flow diagram.Keywords: Digital voltmeter; AT89S51MCS; A/D conversion; ADC0809.目录1 绪论 (1)1.1前言 (1)1.2数字电压表的介绍 (1)1.2.1数字电压表的发展概况 (1)1.2.2数字电压表在各领域中的应用 (2)1.2.3数字电压表的优点 (2)1.3单片机的介绍 (3)1.3.1单片机简介 (3)1.3.2单片机的发展概况 (3)1.3.3单片机的应用 (4)1.3.4单片机的特点 (6)1.4课题背景,国内外研究现状 (6)1.5本文主要研究内容 (8)2 数字电压表的工作原理 (9)2.1数字电压表的基本结构 (9)2.2数字电压表的工作原理 (9)2.2.1模数(A/D)转换与数字显示电路 (10)2.2.2多量程数字电压表分压原理 (10)2.2.3多量程数字电压表分流原理 (11)3 硬件系统各模块具体设计及实现 (14)3.1单片机的选择 (14)3.1.1AT89S51的引脚框图 (15)3.1.2AT89S51的内部结构图 (17)3.2A/D转换器的选择 (18)3.2.1ADC0809的引脚结构 (19)3.2.2ADC0809的内部逻辑结构 (21)3.3显示器的选择 (21)3.4键盘的选择 (23)3.5表笔探针设计 (23)4 系统总体方案研究 (25)4.1总体方案确定 (25)4.2系统框图及阐述 (25)4.3ADC0809与AT89S51的连接 (26)4.4键盘与单片机的连接 (27)4.5多量程数字电压表档位切换原理 (28)4.5.1多量程电压的测量 (28)4.5.2多量程电流的测量 (30)5 系统的软件设计 (31)5.1系统软件设计的总体思想 (31)5.2系统单片机的软件设计 (31)5.2.1键盘的处理 (31)5.2.2显示的处理 (31)5.2.3档位切换的处理 (32)6 系统软件流程图 (33)6.1主程序流程图 (33)6.2A/D转换流程图 (34)7 设计总结 (35)参考文献 (36)致谢 (37)附录 (38)1 绪论1.1前言数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。
基于51单片机的数字电压表设计

目录摘要 (I)1 绪论 (1)1.1数字电压表介绍 (1)1.2仿真软件介绍 (1)1.3 本次设计要求 (2)2 单片机和AD相关知识 (3)2.1 51单片机相关知识 (3)2.2 AD转换器相关知识 (4)3 数字电压表系统设计 (5)3.1系统设计框图 (5)3.2 单片机电路 (5)3.3 ADC采样电路 (6)3.4显示电路 (6)3.5供电电路和参考电压 (7)3.6 数字电压表系统电路原理图 (7)4 软件设计 (8)4.1 系统总流程图 (8)4.2 程序代码 (8)5 数字电压表电路仿真 (15)5.1 仿真总图 (15)5.2 仿真结果显示 (15)6 系统优缺点分析 (16)7 心得体会 (17)参考文献 (18)1 绪论1.1数字电压表介绍数字电压表简称DVM,数字电压表基本原理是将输入的模拟电压信号转化为数字信号,再进行输出显示。
而A/D转换器的作用是将连续变化的模拟信号量转化为离散的数字信号,器基本结构是由采样保持,量化,编码等几部分组成。
因此AD转换是此次设计的核心元件。
输入的模拟量经过AD转换器转换,再由驱动器驱动显示器输出,便得到测量的数字电压。
本次自己的设计作品从各个角度分析了AD转换器组成的数字电压表的设计过程及各部分电路的组成及原理,并且分析了数模转换进而使系统运行起来的原理及方法。
通过自己的实践提高了动手能力,也只有亲历亲为才能收获掌握到液晶学过的知识。
其实也为建立节约成本的意识有些帮助。
本次设计同时也牵涉到了几个问题:精度、位数、速度、还有功耗等不足之处,这些都是要慎重考虑的,这些也是在本次设计中的收获。
1.2仿真软件介绍Proteus ISIS是英国Labcenter公司开发的电路分析与实物仿真软件。
它运行于Windows 操作系统上,可以仿真、分析(SPICE)各种模拟器件和集成电路,该软件的特点是:(1)现了单片机仿真和SPICE电路仿真相结合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于51单片机的数字电压表仿真设计
时间:2011-05-26 10:14:21 来源:山西电子技术作者:刘敏娜,潘宏侠,王乔中北大学
摘要:设计采用AT89C51单片机、A/D转换器ADC0808和共阳极数码管为主要硬件,分析了数字电压表Proteus软件仿真电路设计及编程方法。
将单片机应用于测量技术中,采用ADC0808将模拟信号转化为数字信号,用AT89C51实现数据的处理,通过数码管以扫描的方式完成显示。
设计的数字电压表可以测量0~5 V的电压值,AT89C51为8位单片机,当ADC0808的输入电压为5 V时,输出数字量值为+4.99 V。
本设计电路简单、成本低、性能稳定。
关键词:数字电压表;51单片机;ADC0808;数码管LED
0 引言
随着电子科学技术的发展,电子测量成为广大电子工作者必须掌握的手段,对测量的精度和功能的要求也越来越高,而电压的测量甚为突出,因为电压的测量最为普遍。
数字电压表是采用数字化测量技术设计的电压表。
数字电压表与模拟电压表相比,具有读数直观、准确、显示范围宽、分辨力高、输入阻抗大、集成度高、功耗小、抗干扰能力强,可扩展能力强等特点,因此在电压测量、电压校准中有着广泛的应用。
本文采用ADC0808对输入模拟信号进行转换,控制核心AT89C51单片机对转换的结果进行运算和处理,最后驱动输出装置显示数字电压信号,通过Proteus仿真软件实现接口电路设计,并进行实时仿真。
Proteus软件是一种电路分析和实物模拟仿真软件。
它运行于Windows操作系统上,可以进行仿真、分析(SPICE)各种模拟器件和集成电路,是集单片机和SPICE分析于一身的仿真软件,功能强大,具有系统资源丰富、硬件投入少、形象直观等优点,近年来受到广大用户的青睐。
1 系统概述
1.1 设计任务
利用单片机AT89C51与ADC0808设计一个数字电压表,将模拟信号0~5 V之间的电压值转换成数字量信号,以两位数码管显示,并通过虚拟电压表观察ADC0808模拟量输入信号的电压值,LED数码管实时显示相应的数值量。
1.2 总体方案
数字电压表电路组成框图如图1所示。
本设计中需要用到的电路有电源电路、模/数转换电路、单片机控制电路、显示电路等。
设计中需要用到的芯片有AT89C51单片机、ADC-0808、74LS74、LED数码管等。
2 数字电压表的Proteus软件仿真电路设计
待测电压输入信号在ADC0808芯片承受的最大工作电压范围内,经过模/数转换电路实现A/D转换,通过单片机控制电路进行程序数据处理,然后通过七段译码/驱动显示电路实现数码管显示输入电压。
硬件电路原理图如图2所示。
2.1 AT89C51单片机和数码管显示电路的接口设计
利用单片机AT89C51与ADC0808设计一个数字电压表,将模拟信号0~5 V之间的直流电压值转换成数字量信号0~FF,以两位数码管显示。
Proteus软件启动仿真,当前输入电压为2.5 V,转换成数字值为7FH,用鼠标指针调节电位器RV1,可改变输入模/数转换器ADC0808的电压,并通过虚拟电压表观察ADC0808模拟量输入信号的电压值,LED 数码管实时显示相应的数值量。
在Proteus软件中设置AT89C51单片机的晶振频率为12 MHz。
本电路EA接高电平,没有扩展片外ROM。
2.2 A/D转换电路的接口设计
A/D转换器采用集成电路ADC0808。
ADC0808具有8路模拟量输入信号IN0~IN7(1~5脚、26~28脚),地址线C、B、A(23~25脚)决定哪一路模拟输入信号进行A/D转换,本电路将地址线C、B、A均接地,即选择0号通道输入模拟量电压信号。
22脚ALE为地址锁存允许控制信号,当输入为高电平时,对地址信号进行锁存。
6脚START为启动控制信号,当输入为高电平时,A/D转换开始。
本电路将ALE脚与START脚接到一起,共同由单片机的P2.0脚和WR脚通过或非门控制。
7脚EOC为A/D转换结束信号,当A/D转换结束时,7脚输出一个正脉冲,此信号可作为A/D转换是否结束的检测信号或向CPU申请中断的信号,本电路通过一个非门连接到单片机的P3.2脚。
9脚OE为A/D
转换数据输出允许控制信号,当OE脚为高电平时,允许读取A/D转换的数字量。
该OE 脚由单片机的P2.0脚和RD脚通过或非门控制。
10脚CLOCK为ADC0808的实时时钟
输入端,利用单片机30引脚ALE的六分频晶振频率得到时钟信号。
数字量输出端8个接到单片机的P0口。
3 数字电压表的软件程序设计
系统上电状态,初始化ADC0808的启动地址,数码管显示关闭,开始启动A/D转换。
等待启动结束后,将ADC0808的0号通道模拟量输入信号转换输出的数字量结果通过数码管动态显示的方式显示到三位数码管上。
根据设计要求结合硬件电路,在输入模拟信号时采用电阻分压,最终的采样输入电压只有实际输入电压的十分之一,所以在编写程序中要编写一段数据调整程序,其中还应注意硬件显示电路采用了动态扫描显示,在动态扫描显示方式中,动态扫描的频率有一定的要求,频率太低,数码管LED将会出现闪烁现象,通常数码管点亮时间间隔一般均取5ms左右为宜,这就要求在编写程序时,使其点亮并保持一定的时间。
总结以上分析,程序流程图如图3,图4所示。
本电路的程序设计主要包括A/D转换部分、LED显示、初始化和定时器中断部分。
部分程序代码如下所示。
5 结束语
本文的数字电压表可以测量0~5 V的电压值,AT89C51为8位单片机,当ADC0808的输入电压为5 V时,输出数字量值为+4.99 V。
如果要获得更高的精度,需采用I2位、I3位等高于8位的A/D转换器。
数字电压表的显示部分可以增加BCD码调整程序来通过三位数码管显示其数据。
本设计的显示偏差,可以通过校正0808的基准参考电压来解决,或用软件编程来校正其测量值。
本系统在设计过程中通过Proteus仿真软件的调试,具有电路简单、成本低、精度高、速度快和性能稳定等特点。