动量定理和定量矩定理

合集下载

理论力学 12 动量矩定理

理论力学 12 动量矩定理

轴转动(zhuàn dòng)。已知均质杆 OA 长为 l ,质 C1 量为 m 1,均质圆盘 C 2 的半径为 r ,质量为 m 2,
试求复摆对 O 轴的动量矩。
A
C2 r
解: J O 的计算(jìsuàn):
JO
1 12
m1
l
2
m1
l 2
2
1 2 m2
r2
m2
l
r
2
图 12-9
由几何关系知: r R h z
h 薄圆片对 y 轴转动惯量 d J y 为:
1 r2 dm 4
精品资料
dJ y
1 4
r 2dm
z 2dm
1 4
r2
z2
r 2dz
1
4
R4 h4
h
z 4
R2 h2
h
z 2
z2
dz
整个(zhěnggè)圆锥体对于 y 轴的转动惯量为:
J y
h 0
1 4
底圆直径的转动惯量。已知圆锥体质量为 M ,
z
底圆半径为 R ,高为 h ,如图12-6所示。 r
h z dz
解:把圆锥体分成许多(xǔduō)厚度为 d z 的薄圆片,该薄圆片的质量为
d m r2d z
为圆锥体的密度,r为薄圆片的半径。
O
y
R
x
图 12-6
圆锥体的质量为
M 1R2h
3
薄圆片对自身直径的转动惯量为
精品资料
12.1 转动惯量、平行(píngxíng) 轴定1理2.1.1 转动惯量
质点系的运动,不仅(bùjǐn)与作用在质点系上的力有关, 还与质点系各质点的质量其及分布情况有关。质心是描述质 点系质量分布的一个特征量,转动惯量(Moment of inertia)则 是描述质点系质量分布的另一个特征量。

第17章 动量定理和动量矩定理总结

第17章 动量定理和动量矩定理总结

第17章 动量定理和 动量矩定理工程力学学习指导第17章 动量定理和动量矩定理17.1 教学要求与学习目标1. 正确理解动量的概念,能够熟练计算质点系、刚体以及刚体系的动量。

2. 认真理解有关动量定理、动量守恒定理以及质心运动定理,掌握这些定理的相互关系。

3. 正确而熟练地应用动量定理、动量守恒定理以及质心运动定理解决质点系动力学两类问题,特别是已知运动求未知约束力的问题。

4. 学习动量矩定理时,首先需要认识到,在动力学普遍定理中,动量定理和动量矩定理属于同一类型的方程,即均为矢量方程。

而质点系的动量和动量矩,可以理解为动量组成的系统(即动量系)的基本特征量——动量系的主矢和主矩。

两者对时间的变化率等于外力系的基本特征量——力系的主矢和主矩。

5. 认真理解质点系动量矩概念,正确计算系统对任一点的动量矩。

6. 熟悉动量矩定理的建立过程,正确应用动量矩定理求解质点系的两类动力学问题。

7. 于作平面运动的刚体,能够正确建立系统运动微分方程和补充的运动学方程,并应用以上方程求解刚体平面运动的两类动力学问题。

17.2 理 论 要 点17.2.1 质点系的动量质点系中所有质点动量的矢量和(即质点系动量的主矢)称为质点系的动量。

即i ii m v p ∑=质点系的动量是自由矢,是度量质点系整体运动的基本特征量之一。

具体计算时可采用其在直角坐标系的投影形式,即⎪⎪⎪⎭⎪⎪⎪⎬⎫===∑∑∑i iz i z i iy i y iix i x v m p v m p v m p质点系的动量还可用质心的速度直接表示:质点系的动量等于质点系的总质量与质心速度的乘积,即C m v p =这相当于将质点系的总质量集中于质心一点的动量,所以说质点系的动量描述了其质心的运动。

上述动量表达式对于刚体系也是正确的。

17.2.2 质点系动量定理质点系动量定理建立了质点系动量的变化率与外力主矢量之间的关系。

其微分形式为(e)(e)R d d i it ==∑pF F 质点系的动量对时间的变化率等于质点系所受外力系的矢量和。

第九章 动量定理和动量矩定理

第九章 动量定理和动量矩定理

i
i
mi aC F i
(e)
C
i
i
i
C
i
——质心运动定理: 质点系的质量与质心绝对 加速度的乘积等于作用于 质点系的外力的主矢。 质点系的内力不影响质心 的运动,只有外力才能改 变质心的运动。
i
i
C
i
该定律的投影式为: 直角坐标式
mi aCx F (e) mi aCy F iy (e) mi aCz F iz 自然坐标式
F
(e) ix
0
则:vCx=恒代数量
四、解题步骤 分析质点系所受的全部外力,含主动力和约束反力。 为求未知力,可先计算质心绝对坐标,求出质心绝 对加速度,然后用质心运动定律求解。
在外力已知的条件下,欲求质心的运动规律,其解 法与质点动力学第二类问题相同。
如果外力主矢为零,且初始时质点系为静止,则质 心坐标保持不变。分别列出两个时刻质心的坐标, 令其相等,即可求得所求质点的位移。
质点系动量的增量等于作 用于质点系的外力元冲量 的矢量和。
由dp d I i( e) F i( e ) dt
d mi v i dt mi ai F i( e )
质点系动量对时间的一阶 导数等于作用于质点系的 外力的矢量和(主矢)。 积分形式 由 dp F i( e ) dt
M O (F )
z
F
mv
〃Q MO(F) O y
x
直角坐标投影式为
d M x (mv ) M x (F ) dt d M y (mv ) M y (F ) dt d M z (mv ) M z (F ) dt

动量定理和动量矩定理

动量定理和动量矩定理
2) 如果作用于质点系的所有外力在某轴 上的投影的代数和恒等于零,则质心速度在 该轴上的投影保持不变;若开始时速度投影 等于零,则质心沿该轴的坐标保持不变。
应用质心运动定理解题步骤
1)取质点和质点系为研究对象; 2)分析质点系所受的全部外力,包括主动力和约束反力; 3)根据外力情况确定质心运动是否守恒; 4)如果外力主矢等于零,且在初始时质点系为静止,则质 心坐标保持不变。计算在两个时刻质心的坐标(用各质心 坐标表示),令其相等,即可求得所要求的质点的位移; 4)如果外力主矢不等于零,计算质心坐标,求质心的加速 度,然后应用质心运动定理求未知力。 5)在外力已知的条件下,欲求质心的运动规律,与求质点 的运动规律相同。
动力学普遍定理包括动量定理、 动量矩定理、动能定理。这些定理建 立了表现运动特征的量(动量、动量 矩、动能)和表现力作用效果的量 (冲量、冲量矩、功)之间的关系。
9.1 动量定理
1.动量 1)质点的动量
质点的质量与速度的乘积称为质点的动量, 记为mv。
动量是矢量,方向与速度方向相同。动量的单位为 N ·s。
4.质点系的动量定理
设由n个质点组成的质点系。其中第i个质点的
动 分别量为为Fmri(iiv)与i,Fr作i(e,) 用由在质该点质的点动上量的定外理力有与内力的合力
d dt
r (mivi
)

r F (e)
i

r F (i)
i
(i 1, 2,, n)
将n个方程相加,即得

d
r (mv
)

解得
y
v FOy
O
v FOx

x
C
pv
mgr A
FOx ml(a sin 2 cos) FOy mg ml(a cos 2 sin)

第十七章 动量定理 动量矩定理

第十七章 动量定理 动量矩定理
第十七章 质点动力学
第一节 质点运动微分方程 第二节 质心、动量和冲量的概念 第三节 动量定理 第四节 动量守恒 第五节 动量矩的概念 第六节 动量矩定理 第七节 刚体定轴转动微分方程
本章重点
一、 质心运动定理 二、 动量守恒 三、 动量矩守恒 四、 刚体定轴转动微分方程
第一节 质点运动微分方程
动荷系数
Kd

FT max FT 0
1
v02 gl
第二节 质心动量与冲量的概念
一、质点系的质心
1 2
C的矢径为
rC

miri m
取直角坐标系Oxyz
质心的坐标为xC、yC、zC
xC

mi xi m

yC

mi yi m

zC

mi zi m

xC

Wi xi W
iieiitffpdd求和注意只有外力才能改变质点系的动量eiiieitfffppddd交换求导和求和的顺序质点系动量定理的微分形式eitfd质点系动量定理的积分形式eii12ppddddexixyeiyptptff2121eixeiyxxyyppppii在平面问题中取直角坐标轴动量定理的投影式为三质心运动定理pm平面问题中将矢量形式的质心运动定理投影cmveicmtfddveicfaeiicimfaecxixecyiymamaffnceinecimamaff自然轴直角坐标轴质心运动定理常用来求力特别用来求约束反力
由n个质点组成的质点系,对其中第i个质点应用动量定理 :
d pi dt
Fi
Fie
Fii
i = 1,2,3,…,n
Fie :质点系以外的物体作用于质点的外力;

第04章3-动量定理及动量矩定理

第04章3-动量定理及动量矩定理
(1)叶片出口的径向速度vr2 ; (2)输入叶轮的转矩; (3)输入叶轮的功率。
33
解: (1)定常流动连续方程
v1R12 vr2 2R2 b2或Q vr2 2R2 b2
Q
vr2 2R2 b2
34
(2) 动量矩方程:
T轴
(R 2v2 R v1 0 v 2 R 2
1v
1
)m
对坐标原点的动量矩
25
dB dt
t
CV
r
v
dV
CS
r
v
v
ndA
t
CV
r
v
dV
CS
r
v
v
ndA
T
• 作为一种近似,忽略表面力和对称质量力所 产生的力矩。
T=r
F s
r Fm
T轴
T轴
• 对于定常流动, 0 ,有:
t
rv v ndA T
CS
一、角动量方程 二、角动量方程应用
叶轮机分析时往往取转轴为z轴,为 圆柱坐标系。
n)dA
F
1-3 定常动量方程
d
mv
dt
sys
t
CV
vdV
CS
v(v n)dA
F
t
CV
vdV
0
v(v n)dA F CS
定常流动时,作用在控制体上的合力等于流出控 制面的净动量流率。
直角坐标系下的定常动量方程:
Fx
u v n dA
CS
Fy
v v n dA
0=ρQ1v1 –ρQ2v2 – ρQ0v0 cosθ Q1 –Q2 = Q0 cosθ
连续方程: Q1 +Q2 = Q0

工程力学 动力学普遍定理动量矩定理.

工程力学 动力学普遍定理动量矩定理.

dLO dt

dLC dt
drC dt
mvC

rC

m
dvC dt

dLC dt
rC maC
M
(e) O

ri
Fi

(rC
ri) Fi

rC
Fi
ri Fi
dLC dt
rC
maC
rC
R(e)

M
(e) C
刚体
dLC dt

M
(e) C
质点系对点O的动量矩为质点系内各质点对同一 点O的动量矩的矢量和,一般用Lo表示。
质点系内各质点对某轴的动量矩的代数和称为 质点系对该轴的动量矩,一般用Lx、Ly ,Lz表示。
动量矩定理
例:已知小球C和D质量均为m,用直杆相连,杆重不 计,直杆中点固定在铅垂轴AB上,如图示。如杆绕 轴AB以匀角速度ω转动,求质点系对定点O的动量矩。
动量矩定理
4. 常见刚体对轴的转动惯量 J z —刚体转动惯性大小的度量 质量 J z mi ri2 { 质量分布
在工程中,常将转动惯量表示为
Jz mz2 z称为回转半径或惯性半 径
其物理意义:相当于将质量集中于一点, 该点距转轴的距离为ρz
动量矩定理
上例中:求质点系对AB(z)轴的动量矩 1.利用定义
动量矩定理
§3-1 质点系动量矩定理
1.质点动量矩的计算
◆质点对一点的动量矩:
MO (mv) r (mv)
◆质点对轴的动量矩
M x (mv) [M O (mv)]x y(mv z ) z(mv y ) M y (mv) [M O (mv)] y z(mv x ) x(mv z ) M z (mv) [M O (mv)]z x(mv y ) y(mv x ) 即:质点对点的动量矩是矢量,大小为DOMD

第5章 动量定理和动量矩定理

第5章 动量定理和动量矩定理

px = ∑m xi = mvcx i
py = ∑mi yi = mvcy pz = ∑mi zi = m c z v
15
比较两环 p1 , p2大小 思考: 思考: 1.已知m,r, ω m
m
r
ω
c r
ω
2m
vc
解: p1 = rω m+ 2rω m = 3mrω (→) p2 = 2 rmω
oc守恒62杆细长可略去方向sin12方向如图右手法则类比63若考虑有所减小若固结点偏离质心o如图类似方法可求矩形板圆盘转动时的动约束力mgoy若不计绳与滑轮的质量则若考虑绳与滑轮的质量则显然brar已知66稳定流体的动约束力
1
研究机械运动与力的相互关系
: 离散型 松散介质 模型:受力的质点系 : 连续型 固体、流体、刚体
牛顿 力学、矢量动力学 经典动力学- (物理中已阐述) 分析动力学- 两个原理为基础
2
3
5.1 质点动力学
5.1.1 动力学基本定律
1.惯性定律 不受力作用的质点,将保持静止或作匀速直线运动 (对惯性系)。 表明:①任何物体具有保持静止或作匀速直线运动 的性质-惯性;②力是改变物体运动的原因。
38
变质量系统的质心运动定理 5.2.4 变质量系统的质心运动定理
质点系在运动过程中,若不断发生系统外的质点 并入,或系统内的质点排出,导致系统的总质量 随时间不断改变时,称为变质量系统。
m v m t vc m m t+t
39
vc+ vc
系统动量的变化为:
p = (m + m )(v c + v c ) (mv c + mv ) = m vC m ( v vC ) + m vC
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:1)研究对象:取管中 截面和 截面之间的流体为研究的质点系
2)受力分析:如图所示
设流体密度为 ,流量为 ,(流体在单位时间内流过截面的体积流量,定常流动时, 是常量)在 时间内,流过截面的质量为 ,其动量改变量为




其中 为管子对流体的静约束力,由下式确定
则有
为流体流动时,管子对流体的附加动约束力。可见,当流体流速很高或管子截面积很大时,流体对管子的附加动压力很大,在管子的弯头处必须安装支座(图12.14)
(2)微运动的周期与运动规律
解:
1.研究对象:圆轮
2.分析受力:如图12.35所示
3.分析运动:轮作平面运动,轮心沿作圆周运动
4.列动力学方程,求解:
5.求
6.微运动时
由式令
解得
所以
周期
解:
1.分析运动:
2.计算
例12.9图12.21所示椭圆规尺,质量为,曲柄质量为,滑块和的质量为,设曲柄和均为均质杆,且,曲柄以转动,求:此椭圆规尺机构对转轴的动量矩。
解:
1.分析运动:规尺作平面运动
2.计算
物块速度均通过转轴,对的动量矩为,杆定轴转动,对轴的动量矩为
四. 心为定点的动量矩定理
引言:求均质轮在外力偶的作用下,绕质心轴的角加速度
刚体的平面运动微分方程
设刚体具有质量对称平面,作用在刚体上的力系可以简化为在此平面内的力系,如图12.31所示。以为基点建立平动坐标系,则刚体相对于此质心的动量矩为
刚体平面运动岁质心平动相对质心转动
随质心平动
相对质心转动
刚体平面运动微分方程:
例12.15已知:质量为半径为的均质圆轮放在倾角为的斜面上,由静止开始运动。设轮沿斜面作纯滚动。求:(1)轮心的加速度,(2)轮沿斜面不打滑的条件。
质点对 轴的动量矩为
动量矩 的解析式为
刚体动量矩的计算
1)刚体平动(图12.17)
2)定轴转动刚体对转轴的动量矩(图12.18)
3)平面运动刚体对其平面内一点的动量矩(图12.19)
例12.8已知:质量为,的两物块分别系在两柔软不可伸长的绳子上,图12.20所示,此两绳分别绕在半径为和并固结在一起的鼓轮上,设鼓轮的质量为,对转轴的回转半径为,并以转动。求系统对鼓轮转轴的动量矩。
解:
1.研究轴Ⅰ(图12.29)
(1)
2.研究轴物(图12.29)
(2)
3.运动学关系
(3)
(4)
由方程(1)、(2)、(3)、(4),解得:
五.矩心为质心的动量矩定理
1.质点系对于定点”O”和质心”C”的动量矩之间的关系
如图12.30所示,O为定点,C为质点系的质心,质点系对于定点O的动量矩为
对于任一质点 ,由图可见
2)附加动约束力有最大值或最小值:
时,
时,
时,
时,
3)附加动约束力与成正比,当转子的转速很高时,其数值可以达到静约束力的几倍,甚至几十倍,而且这种约束力是周期性变化的,必然引起机座和基础的振动,还会引起有关构件内的交变应力。
4)利用动量定理能否求约束力偶矩 ?
本例也可以选用质心运动定理 求解。
在图12.10中,因为定子不动,故 是惯性参考系中,写出系统的质心坐标公式:
(2)回转半径(惯性半径)
设刚体对轴 的转动惯量为 ,质量为 ,则由式 定义的长度,称为刚体对轴 的回转半径。
例如:均质杆(图12.2)
均质圆环(图12.3)
均质薄圆板(图12.4)
若已知刚体对轴的回转半径 ,则刚体对轴 的转动惯量为:
(3)转动惯量的平行轴定理
在图12.5中, ,轴间距离为 ,刚体质量为 ,其中 轴过质心,则有
解:研究整体:因重力和轴承力对于转轴的矩为零,即故常量


由得
例12.12已知:不可伸长的绳子绕过不计质量的定滑轮,绳的一端悬挂物块,另一端有一个与物块重量相等的人,从静止开始沿绳子上爬,设其相对绳子的速度为,试问:物是否动?并分析绳子的速度。
解:研究整体系统:因为,故常量
设轮顺时针转,绳子的速度为
右边
左边
可得质点系对固定点的动量矩定理
3.动量矩守恒
若,常矢量
若则常量
例12.10分析受有心力作用的物体的运动
解:如图12.24所示,因为
故常矢量,可见质点在有心力作用下运动的轨迹是平面曲线。
例12.11如图12.25所示,在调速器中,除小球外,各杆重量可不计,忽略摩擦,系统绕轴自由转动。初始时,系统的角速度为,当细绳拉断时。求各杆与铅直线成角时系统的角速度。
第十二章动量定理和动量矩定理
本章研究的两个定理
动量定理——力系主矢量的运动效应反映;
动量矩定理——力系主矩的运动效应反映。
一.质点系质量的几何性质
1. 质心
质点系的质量中心,其位置有下式确定:
其投影式为
, ,
2.刚体对轴的转动惯量
定义: 为刚体对 轴的转动惯量或
影响 的因素 单位:
物理意义:描述刚体绕 轴时惯性大小的度量。
的计算方法:
(1)积分法
例12.1已知:设均质细长杆为 ,质量为 。求其对于过质心且与杆的轴线垂直的轴 的转动惯量。
解:建立如图12.2所示坐标,取微段 其质量为 ,则此杆对轴 的转动惯量为:
例12.2已知:如图12.3所示设均质细圆环的半径为 ,质量为 ,求其对于垂直于圆环平面且过中心 的轴的转动惯量。
解:
1.研究对象:复摆
2.分析受力:如图12.28所示
3.分析运动:复摆作定轴转动,用表示其转角
4.列动力学方程,求解:
由题意,复摆微摆动时,于是有
这是简谐运动的标准微分方程,此方程的解为:
式中称为角振幅,为初相位他们由初始条件确定
摆动周期为
5.讨论
1)若测出周期T,可求出刚体对转轴的转动惯量
2)如果要求轴承O的约束力
解:将圆环沿圆周分为许多微段,设每段的质量为 ,由于这些微段到中心轴的距离都等于半径 ,所以圆环对于中心轴 的转动惯量为:
例12.3已知:如图12.4所示,设均质薄圆板的半径为 ,质量为 ,求对于垂直于板面且过中心 的轴 的转动惯量。
解:将圆板分成无数同心的细圆环,任一圆环的半径为 ,宽度为 ,质量为 ,由上题知,此圆环对轴 的转动惯量为 ,于是,整个圆板对于轴 的转动惯量为:
于是
式中 , 质点系对于质心的绝对动量矩
图12.30中为随质心平动的参考系,设点相对该坐标系的速度为,有
式中质点系对于质心的相对动量矩

代入式,有
2.质点系相对于质心的动量矩定理
质点系相对于固定点的动量矩定理
左边
右边
由于
所以
矩心为质心的动量矩定理

则常矢量矩心为质心的动量矩守恒
试分析跳水运动的腾空动作(图12.31)
例如:在图12.2中,细长杆对 轴的转动惯量为
(4)组合体
例12.4已知:钟摆可简化为如图12.6所示。设均质杆和均质圆盘的质量分别为 和 ,杆长为 ,圆盘直径为 ,求钟摆对通过悬挂点 的水平轴的转动惯量。
解:钟摆对水平轴 的转动惯量为:
其中:
所以
二.动量定理
1.动量的概念与计算
质点的动量为
质点系的动量系为
(1)积分形式
由式(Ⅰ)可得到积分形式
(2)动量守恒(质心守恒)
若 则 常矢量或 常矢量
若 则 常量或 常量
若 则 常量(质心守恒)
实例分析
实例1利用质心运动定理解释定向爆破
实例2利用质心运动定理分析汽车的起动与刹车
例12.5已知:如图12.11所示的电动机用螺栓固定在刚性基础上,设其外壳和定子的总质量为 ,质心位于转子转轴的中心 ;转子质量为 ,
1.质点对固定点的动量矩定理图12.22
牛顿第二定律:
上式两边左叉矢径
左边
是固定点时,于是有
——质点对固定点的动量矩定理
2.质点系对固定点的动量矩定理
设质点系由个质点组成,其中第个质点的质量为,速度为,对固定点的矢径为,作用在该质点上的外力为,内力为。
第个质点对固定点的动量矩定理为
将上式从到求和
由图12.23知
(1)由牛顿第二定律
将上式由 到 求和,有

(Ⅰ)
由 ,
质心运动定理: (Ⅱ)
质心运动定理反映了质心的重要力学特征:质点系的质心的运动只取决于质点系的外力,内力改变不了质心的运动。这个定理在理论上和实际中都具有重要的意义。
在求解刚体系统动力学问题时,为了应用方便,常将上式改写为
(Ⅲ)
式中 、 分别是刚体系统中第 个刚体的质量和质心加速度。 是由质心公式对时间求二阶导数后得到的,即
三动量矩的概念及其计算
1.质点的动量矩
设质点 的质量为 ,某瞬时的速度为 ,到 点的矢径为 (图12.15)
质点对 点的动量矩为
质点对 轴的动量矩为
质点对 点和 轴(该轴通过 点)的动量矩关系为
2.质点系的动量矩
设质点系由 个质点组成,其中第 个质点的质量为 ,速度为 ,到 点的矢径为 ,则质点系对 点的动量矩(动量系对点的主矩)为:

由即

物上升的速度为
人向上的速度为
人、物向上的绝对速度大小相等,方向相同,人物同时到达顶端。
五.刚体定轴转动微分方程
设刚体在主动力系作用下,绕固定轴转动(图12.27),设刚体对轴的转动惯量为,瞬时的角速度为,刚体对转轴的动量矩为,由质点系对固定轴的动量矩定理
可得
刚体的定轴转动微分方程
例12.13已知复摆由绕水平轴转动的刚体构成,已知复摆的重量为,重心到转轴的距离为,如图12.28所示,设复摆对转轴的转动惯量为。求复摆微摆动的周期。
相关文档
最新文档