传递函数

合集下载

传递函数的计算

传递函数的计算

传递函数的计算
传递函数的计算是通过将系统的输入和输出之间的关系表示成一个代数式的方式来描述系统行为的。

传递函数通常用H(S)表示,其中S是复变量,代表系统所处的频域。

计算传递函数的方法是将系统的微分方程表示成拉普拉斯变换的形式,然后通过代数运算得到H(S),公式为:
H(S) = Y(S) / X(S)
其中,X(S)和Y(S)分别是系统的输入和输出的拉普拉斯变换,其表达式为:
X(S) = L{x(t)} = ∫0e^(-st)x(t)dt
Y(S) = L{y(t)} = ∫0e^(-st)y(t)dt
通过这些表达式,可以将系统的输入和输出之间的关系表示成传递函数H(S),进而进行系统设计、分析和优化等任务。

传递函数

传递函数

2.3.6 典型环节及其传递函数
比例环节传递函数
输出量与输入量成正比的环节称为比例环节。 输出量与输入量成正比的环节称为比例环节。即 则传递函数为
y(t) = K (t) , x
G(s) =
Y(s) = K ,式中 式中K——放大系数 放大系数 X(s)
惯性环节(非周期环节 惯性环节 非周期环节) 非周期环节
Y(s)=0的根称为零点。 的根称为零点。 的根称为零点 X(s)=0的根称为极点。 的根称为极点。 的根称为极点 零点和极点的数值取决于系统的参数。 零点和极点的数值取决于系统的参数。
G(s)的零极点分布决定系统动态特性。 的零极点分布决定系统动态特性。 的零极点分布决定系统动态特性
2.3.5 传递函数的特点
传递函数是经典控制理论的基础,是极其重要的基本概念。 传递函数是经典控制理论的基础,是极其重要的基本概念。
2.3.2 传递函数的概念
在零初始条件下,线性定常系统输出象函数Y(s)和输入象函数 在零初始条件下,线性定常系统输出象函数 和输入象函数X(s)之比,称为系统的传 之比, 和输入象函数 之比 递函数, 表示。 递函数,用G(s)表示。即 表示
d2 y(t) dy(t) m 2 +f +ky(t) = x(t) dt dt
2 ωn Y(s) 1 k G(s) = = 2 = 2 2 2 X(s) k s +2 ns +ωn T s +2 Ts +1 ξω ξ
则传递函数为
式中ω
k = n m
—— 无阻尼固有频率; ξ = 无阻尼固有频率;
f 1 —— 阻尼比; 阻尼比; 2 m k
dy(t) T + y(t) = Kx(t) dt

传递函数

传递函数

2-6 传递函数求解控制系统的微分方程,可以得到在确定的初始条件及外作用下系统输出响应的表达式,并可画出时间响应曲线,因而可直观地反映出系统的动态过程。

如果系统的参数发生变化,则微分方程及其解均会随之而变。

为了分析参数的变化对系统输出响应的影响,就需要进行多次重复的计算。

微分方程的阶次愈高,这种计算愈复杂。

因此,仅仅从系统分析的角度来看,就会发现采用微分方程这种数学模型,当系统阶次较高时,是相当不方便的。

以后将会看到,对于系统的综合校正及设计,采用微分方程这一种数学模型将会遇到更大的困难。

目前在经典控制理论中广泛使用的分析设计方法——频率法和根轨迹法,不是直接求解微分方程,而是采用与微分方程有关的另一种数学模型——传递函数,间接地分析系统结构参数对响应的影响。

所以传递函数是一个极其重要的基本概念。

一、传递函数的概念及定义在[例2-7]中,曾建立了RC 网络微分方程,并用拉氏变换法对微分方程进行了求解。

其微分方程(2-44)为)()(t u t u dtdu RC r c c =+ 假定初始值0)0(=c u ,对微分方程进行拉氏变换,则有)()()1(s U s U RCs r c =+网络输出的拉氏变换式为)(11)(s U RCs s U r c += (2-48)这是一个以s 为变量的代数方程,方程右端是两部分的乘积;一部分是)(s U r ,这是外作用(输入量)的拉氏变换式,随)(t u r 的形式而改变;另一部分是11+RCs ,完全由网络的结构参数确定。

将上式(2-48)改写成如下形式 11)()(+=RCs s U s U r c 令11)(+=RCs s G ,则输出的拉氏变换式可写成 )()()(s U s G s U r c =可见,如果)(s U r 给定,则输出)(s U c 的特性完全由)(s G 决定。

)(s G 反映了系统(网络)自身的动态本质。

这很显然,因为)(s G 是由微分方程经拉氏变换得到的,而拉氏变换又是一种线性变换,只是将变量从实数t 域变换(映射)到复数s 域,所得结果不会改变原方程所反映的系统本质,对照)(s G 与原微分方程(2-44)的形式,也可看出二者的联系。

传递函数特点

传递函数特点

传递函数特点
1. 传递函数是一种函数式编程技术,它可以将函数作为参数传递给另一个函数,从而实现函数的复用和灵活性。

2. 传递函数可以提高代码的可读性和可维护性,使得代码更加简洁和优雅。

3. 传递函数可以帮助实现抽象,使得代码更加模块化,更容易维护和理解。

4. 传递函数可以改变函数的行为,因此可以让程序更加灵活,可以根据不同的场景和需求来调整函数的行为。

5. 传递函数可以提高代码的复用性,可以将多个函数封装在一起,从而实现代码的复用。

数学模型-传递函数

数学模型-传递函数

1 1 , j ,Ti zj pi ( pi )
( z j )
m
(3) 二项式表示法:
如 p1 . p2为一对共轭复数,则有
1 1 2 ( s p1 )( s p2 ) s 2 n s n 2
1 1 2 2 或 (T1 s 1)(T2 s 1) T s 2Ts 1
当初始条件为零时有:
3
第二章 数学模型
传 递 函 数(续)
C ( s ) b0 s m b1 s m 1 bm 1 s bm 则G ( s ) R( s ) a 0 s n a 1 s n 1 a n 1 s a n
s j 为复数, G (s ) 是复变量s 的函数, 故称为复放大系数。
i 1
m
(s z )
当s
z j时,G(s) = 0. z j 为传函的零点。
10
当 s pi 时,G(s) = , pi 为传函的极点。
第二章 数学模型
而 K g b0 ——传递系数。(根轨迹中叫根轨迹增益)
a0
(2)时间常数表示法:
bm d m s m d m 1 s m 1 d 1 s 1 G( s ) a n c n s n c n 1 s n 1 c 1 s 1
其传递函数为
6. 齿轮系
m
Z1
Z2
c
第二章 数学模型
§2-2 传 递 函 数
用拉氏变换求解微分方程,虽思路清晰,简单实用,但 如果系统参数改变,特征方程及其解都会随之改变。 要了解参数变化对系统动态响应的影响,就必须多次 计算,方程阶次愈高,计算工作量越大,故引入另一 种数模—传递函数。它是控制理论中的重要概念和工具, 也是经典理论中两大分支—根轨迹和频率响应的 基础。利用传递函数不必求解微方就可研究初始条件 为零的系统在输入信号作用下的动态过程。

传递函数求增益课件

传递函数求增益课件

通过调整传递函数的增益,优化控制 系统的性能指标,如调节时间、超调 量等。
控制策略设计
根据系统性能要求,通过调整传递函 数的增益,设计合适的控制策略,如 PID控制器等。
在信号处理中的应用
滤波器设计
利用传递函数实现信号的滤波处 理,如低通、高通、带通、带阻
滤波器等。
信号均衡
通过调整传递函数的增益,对信 号进行均衡处理,改善信号质量
传递函数求增益课件
目录 Contents
• 传递函数基础 • 传递函数求增益方法 • 传递函数增益的应用 • 传递函数增益的实例分析 • 总结与展望
01
传递函数基础
传递函数的定义
01
传递函数:描述线性时不变系统 动态特性的数学模型,是系统输 入和输出之间关系的复数域数学 表达式。
02
传递函数的定义基于系统的输入 和输出信号,通过拉普拉斯变换 或Z变换等方法得到。
高阶传递函数增益分析
总结词
高阶传递函数的增益分析较为复杂,需要全面解析传递函数的各项系数和极点、零点。
详细描述
高阶传递函数由多个多项式分数组成,每个多项式的分母称为极点,分子称为零点。增益分析需要全面解析这些 多项式系数以及极点和零点的关系,以准确计算增益。同时,高阶传递函数的稳定性、动态性能和静态性能也需 要综合考虑。
总结词
二阶传递函数的增益分析需要解析传递函数的分子、分母以及极点和零点。
详细描述
二阶传递函数通常表示为 G(s) = K(Ts^2+Zs+1)/(Ts^2+Ps+1),其中K是增益 ,T是时间常数,Z是零点,P是极点。增益K可以通过比较传递函数的分子和分 母来计算,同时需要考虑极点和零点对增益的影响。

传递函数和频率响应函数的概念

传递函数和频率响应函数的概念1. 传递函数与频率响应函数的定义传递函数和频率响应函数是在控制系统分析中经常被使用的两个重要概念。

传递函数表示了系统的输入和输出之间的关系,通常用于描述线性时不变系统的动态特性。

而频率响应函数则是描述系统对不同频率信号的响应特性,帮助我们分析系统对于输入信号频率的衰减或放大情况。

2. 传递函数的深入理解传递函数通常用 H(s) 或 G(s) 表示,其中 s 是复数变量。

传递函数可以表示为系统的输出与输入的比值,其实际上是系统的冲激响应与冲激输入的拉普拉斯变换。

通过传递函数,我们可以分析系统对于各种输入信号的时域和频域响应,从而更好地理解系统的动态特性。

3. 频率响应函数的广度分析频率响应函数通常可以表示为H(jω),其中ω 是频率变量。

它可以描述系统对于不同频率输入信号的幅度和相位特性,通过频率响应函数,我们可以清晰地了解系统在不同频率下的放大或者衰减情况,从而更好地设计控制系统并进行频域分析。

4. 传递函数和频率响应函数间的关系传递函数和频率响应函数之间存在着密切的关系。

事实上,频率响应函数可以通过传递函数来得到,通过传递函数的极点和零点,我们可以清晰地了解系统对于不同频率信号的响应情况,从而利用频率响应函数来优化系统的控制性能。

5. 个人观点和理解对于传递函数和频率响应函数的理解,我认为它们是控制系统分析和设计中非常重要的概念。

通过对传递函数和频率响应函数的深入理解,我们可以更好地了解系统的动态特性,在控制系统设计中更加灵活地选择合适的控制策略。

频率响应函数还可以帮助我们进行系统的稳定性分析和频域设计,对于系统的性能指标如稳定裕度、相位裕度等有着重要的指导意义。

总结回顾传递函数和频率响应函数作为控制系统分析中的重要概念,对于系统的动态特性和频域特性有着深刻的影响。

通过对传递函数和频率响应函数的分析,我们可以更好地理解系统的动态响应和频率特性,从而更好地设计和优化控制系统。

自动控制原理传递函数


y(t) y kt
S平面 j
x(t) 1(t)
0
t
0 Re
有一个0值极点。在图中极点用“ ”表示,零点用“ ”
表示。K表示比例系数,T称为时间常数。
3/18/2024 2:47:29 AM
20
积分环节实例
积分环节实例:

C
R
ui
ui (s) uo (s)
R
1 Cs
uo
uo (s) 1
LCs 2
1 RCs
1
3/18/2024 2:47:28 AM
2
传递函数的定义: 系统初始条件为零时,输出变量的拉普拉
斯变换与输入变量的拉普拉斯变换之比,称为 系统的传递函数。 记做: Y (s) G(s) 或 Y (s) G(s)U (s)
U (s)
U(s)
Y(s)
G(s)
3/18/2024 2:47:28 AM
R2 I2 (s) UO (s)
G(s) U0 (s) 1 1 Ts Ui (s) 1 Ts
T R1R2C R1 R2
R1 R2
R2
3/18/2024 2:47:28 AM
7
复习拉氏变换
②性质:
⑴线性性质:L[f1(t) f2 (t)] F1(s) F2 (s)
⑵微分定理:L[ f (t)] sF (s) f (0)
L[ f(t)] s2F (s) sf (0) f (0)
L[ f (n) (t)] sn F (s) sn1 f (0) sn2 f (0) ... f (n1) (0)
⑶积分定理:(设初值为零)
L[
f
(t)dt]
F (s) s
⑷时滞定理:L[ f (t T )] est f (t T )dt esT f (s) 0

已知传递函数求原函数

已知传递函数求原函数一、传递函数和原函数的概念在探讨已知传递函数求原函数的问题之前,我们首先需要明确传递函数和原函数的概念。

1. 传递函数传递函数是指输入与输出之间的关系,它描述了信号在系统中的传递方式。

在控制系统中,传递函数通常用数学表达式表示,可以是一个多项式函数、有理函数或者其他形式的函数。

传递函数通常用记号G(s)表示,其中s是一个复数变量。

传递函数可以是连续时间传递函数,也可以是离散时间传递函数。

2. 原函数原函数是指给定一个函数的导数,求出该函数本身的过程。

原函数也被称为不定积分。

在微积分中,我们知道,对于一个函数f(x),如果它的导数是F’(x),那么F(x)就是f(x)的原函数。

二、已知传递函数求原函数的方法已知传递函数求原函数是控制系统中常见的问题之一。

下面我们将介绍几种常用的方法。

1. 反演Laplace变换在连续时间控制系统中,传递函数通常用Laplace变换表示。

如果我们已知传递函数的Laplace变换形式,那么可以通过反演Laplace变换求得原函数。

具体来说,我们可以使用Laplace变换的反演公式,将传递函数的Laplace变换形式转换回时间域的函数形式。

在离散时间控制系统中,传递函数通常用Z变换表示。

如果我们已知传递函数的Z 变换形式,那么可以通过反演Z变换求得原函数。

类似于Laplace变换,我们可以使用Z变换的反演公式,将传递函数的Z变换形式转换回时间域的函数形式。

3. 傅里叶变换在信号处理中,傅里叶变换是一种常用的工具。

如果我们已知传递函数的傅里叶变换形式,那么可以通过反演傅里叶变换求得原函数。

傅里叶变换的反演公式将传递函数的傅里叶变换形式转换回时间域的函数形式。

4. 差分方程对于离散时间控制系统,我们可以使用差分方程来描述传递函数和原函数之间的关系。

如果我们已知传递函数的差分方程形式,那么可以通过求解差分方程得到原函数。

三、示例为了更好地理解已知传递函数求原函数的方法,我们来看一个具体的示例。

第六章 传递函数

第六章 传递函数对于线性定常系统,传递函数是常用的一种数学模型,它是在拉氏变换的基础上建立的。

用传递函数描述系统可以免去求解微分方程的麻烦,间接地分析系统结构及参数与系统性能的关系,并且可以根据传递函数在复平面上的形状直接判断系统的动态性能,找出改善系统品质的方法。

因此,传递函数是经典控制理论的基础,是一个极其重要的基本概念。

第一节 传递函数的定义一、传递函数的定义1、定义对于线性定常系统,在零初始条件下,系统输出量的拉氏变换与输入量的拉()()C s R s ==零初始条件输出信号的拉氏变换传递函数输入信号的拉氏变换2、推导设线性定常系统的微分方程的一般形式为1011110111()()()()()()()()n n n n nn m m m m mm d d d a c t a c t a c t a c t dtdtdtd d d b r t b r t b r t b r t dtdtdt------++⋅⋅⋅++=++⋅⋅⋅++◆ 式中c(t)是系统输出量,r(t)是系统输入量,r(t)、c(t)及其各阶导数在t=0时的值均为零,即零初始条件。

◆a , 1a ,…,na 及b , 1b ,…,mb 均为系统结构参数所决定的实常数。

对上式中各项分别求拉氏变换,并令C(s)=L[c(t)],R(s)=L[r(t)],可得s 的代数方程为:11011011[]()[]()nn mm n n m m a s a sa s a C sb sb sb s b R s ----++⋅⋅⋅++=++⋅⋅⋅++于是,由定义得到系统的传递函数为:10111011()()()()()m m m m nn n nb s b sb s b C s M s G s R s a s a sa s a N s ----++⋅⋅⋅++===++⋅⋅⋅++其中,1011()m m m m M s b s b s b s b --=++⋅⋅⋅++ 1011()n n n n N s a s a s a s a --=++⋅⋅⋅++ N(s)=0称为系统的特征方程,其根称为系统特征根。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

简介
传递函数(3张)
系统的传递函数与描述其运动规律的微分方程是对应的。

可根据组成系统各单元的传递函数和它们之间的联结关系导出整体系统的传递函数,并用它分析系统的动态特性、稳定性,或根据给定要求综合控制系统,设计满意的控制器。

以传递函数为工具分析和综合控制系统的方法称为频域法。

它不但是经典控制理论的基础,而且在以时域方法为基础的现代控制理论发展过程中,也不断发展形成了多变量频域控制理论,成为研究多变量控制系统的有力工具。

传递函数中的复变量s在实部为零、虚部为角频率时就是频率响应。

传递函数是《积分变换》里的概念。

对复参数s,函数f(t)*e^(-st)在[0,+∞)的积分,称为函数f(t)的拉普拉斯变换,简称拉氏变换,记作F(s),这是个复变函数。

设一个系统的输入函数为x(t),输出函数为y(t),则y(t)的拉氏变换Y(s)与x(t)的拉氏变换X(s)的商:W(s)=Y(s)/X(s)称为这个系统的传递函数。

传递函数是由系统的本质特性确定的,与输入量无关。

知道传递函数以后,就可以由输入量求输出量,或者根据需要的输出量确定输入量了。

传递函数的概念在自动控制理论里有重要应用。

编辑本段传递函数的常识
传递函数概念的适用范围限于线性常微分方程系统.当然,在这类系统的分析和设计中,传递函数方法的应用是很广泛的.下面是有关传递函数的一些重要说明(下列各项说明中涉及的均为线性常微分方程描述的系统).
1. 系统的传递函数是一种数学模型,它表示联系输出变量与输入变量的微分方程的一种运算方法.
2. 传递函数是系统本身的一种属性,它与输入量或驱动函数的大小和性质无关.
3. 传递函数包含联系输入量与输出量所必需的单位,但是它不提供有关系统物理结构的任何信息(许多物理上完全不同的系统,可以具有相同的传递函数,称之为相似系统).
4. 如果系统的传递函数已知,则可以针对各种不同形式的输入量研究系统的输出或响应,以便掌握系统的性质.
5. 如果不知道系统的传递函数,则可通过引入已知输入量并研究系统输出量的实验方法,确定系统的传递函数.系统的传递函数一旦被确定,就
能对系统的动态特性进行充分描述,它不同于对系统的物理描述.
6. 用传递函数表示的常用连续系统有两种比较常用的数学模型.
编辑本段传递函数的性质
1、传递函数是一种数学模型,与系统的微分方程相对应。

2、是系统本身的一种属性,与输入量的大小和性质无关。

3、只适用于线性定常系统。

4、传递函数是单变量系统描述,外部描述。

5、传递函数是在零初始条件下定义的,不能反映在非零初始条件下系统的运动情况。

6、一般为复变量S 的有理分式,即n ≧ m。

且所有的系数均为实数。

7、如果传递函数已知,则可针对各种不同形式的输入量研究系统的输出或响应。

8、如果传递函数未知,则可通过引入已知输入量并研究系统输出量的实验方法,确定系统的传递函数。

9、传递函数与脉冲响应函数一一对应,脉冲响应函数是指系统在单位脉冲输入量作用下的输出。

编辑本段特性
传递函数 transfer function
把具有线性特性的对象的输入与输出间的关系,用一个函数(输出波形的拉普拉斯变换与输入波形的拉普拉斯变换之比)来表示的,称为传递函数。

原是控制工程学的用语,在生理学上往往用来表述心脏、呼吸器官、瞳孔等的特性。

编辑本段极点和零点
系统传递函数G(s)的特征可由其极点和零点在s复数平面上的分布来完全决定。

用D(s)代表G(s)的分母多项式,M(s)代表G(s)的分子多项式,
则传递函数G(s)的极点规定为特征方程D(s)=0的根,传递函数G(s)的零点规定为方程M(s)=0的根。

极点(零点)的值可以是实数和复数,而当它们为复数时必以共轭对的形式出现,所以它们在s复数平面上的分布必定是对称于实数轴(横轴)的。

系统过渡过程的形态与其传递函数极点、零点(尤其是极点)的分布位置有密切的关系。

编辑本段传递函数的应用
传递函数主要应用在三个方面。

1、确定系统的输出响应。

对于传递函数G(s)已知的系统,在输入作用u(s)给定后,系统的输出响应y(s)可直接由G(s)U(s)运用拉普拉斯反变换方法来定出。

2、分析系统参数变化对输出响应的影响。

对于闭环控制系统,运用根轨迹法可方便地分析系统开环增益的变化对闭环传递函数极点、零点位置的影响,从而可进一步估计对输出响应的影响。

3、用于控制系统的设计。

直接由系统开环传递函数进行设计时, 采用根轨迹法。

根据频率响应来设计时,采用频率响应法。

编辑本段局限性
1960年以来关于能控性和能观测性的研究表明,传递函数只是对系统内部结构的一种不完全的描述,只能表征其中直接或间接地由输入可控制和从输出中可观测到的那一部分。

引入状态空间描述(见状态空间法),可弥补这种缺陷。

相关文档
最新文档