传递函数
传递函数

2.3.6 典型环节及其传递函数
比例环节传递函数
输出量与输入量成正比的环节称为比例环节。 输出量与输入量成正比的环节称为比例环节。即 则传递函数为
y(t) = K (t) , x
G(s) =
Y(s) = K ,式中 式中K——放大系数 放大系数 X(s)
惯性环节(非周期环节 惯性环节 非周期环节) 非周期环节
Y(s)=0的根称为零点。 的根称为零点。 的根称为零点 X(s)=0的根称为极点。 的根称为极点。 的根称为极点 零点和极点的数值取决于系统的参数。 零点和极点的数值取决于系统的参数。
G(s)的零极点分布决定系统动态特性。 的零极点分布决定系统动态特性。 的零极点分布决定系统动态特性
2.3.5 传递函数的特点
传递函数是经典控制理论的基础,是极其重要的基本概念。 传递函数是经典控制理论的基础,是极其重要的基本概念。
2.3.2 传递函数的概念
在零初始条件下,线性定常系统输出象函数Y(s)和输入象函数 在零初始条件下,线性定常系统输出象函数 和输入象函数X(s)之比,称为系统的传 之比, 和输入象函数 之比 递函数, 表示。 递函数,用G(s)表示。即 表示
d2 y(t) dy(t) m 2 +f +ky(t) = x(t) dt dt
2 ωn Y(s) 1 k G(s) = = 2 = 2 2 2 X(s) k s +2 ns +ωn T s +2 Ts +1 ξω ξ
则传递函数为
式中ω
k = n m
—— 无阻尼固有频率; ξ = 无阻尼固有频率;
f 1 —— 阻尼比; 阻尼比; 2 m k
dy(t) T + y(t) = Kx(t) dt
2.2 传递函数

3、典型环节的形式
G (s) K
( s 1) (T s 1)
j 1 j i 1 n i
m
上式中 τi──分子各因子的时间常数 ; Tj──分母各因子的时间常数 ;
K ──时间常数形式传递函数的增益;通常称为传递系数。
五、传递函数的求取
1、解析法
建立微分方程,根据微分方程按定义求取
介绍一种方法:复阻抗法
i
U R
du iC dt
i
1 udt L
U (s) I (s) R
U (s) I (s) Z (s)
I ( s) CsU ( s) U ( s )
1 Cs
1 Cs
I (s)
U (s) Ls
R
Ls
1 , Ls 分别成为电阻、电容和电感的复阻抗 把 R, Cs
传递函数是经典控制理论中最重要的数学模型之 一。利用传递函数,在系统的分析和综合中可解决如 下问题:
不必求解微分方程就可以研究初始条件为零的系统在输 入信号作用下的动态过程。 可以研究系统参数变化或结构变化对系统动态过程的影 响,因而使分析系统的问题大为简化。 可以把对系统性能的要求转化为对系统传递函数的要求, 使综合问题易于实现。
11/17/2013 8:53:46 PM
3
一、定义
零初始条件下,线性定常系统输出量的拉氏变换 与输入量的拉氏变换之比,称为该系统的传递函数,
记为G(s),即:
L[ y (t )] Y ( s ) G( s) L[r (t )] R( s )
意义:
R( s )
G (s )
Y ( s)
Y (s) R(s)G(s)
1 1 Y ( s) G s) R s) ( ( Ts 1 s
传递函数

2-6 传递函数求解控制系统的微分方程,可以得到在确定的初始条件及外作用下系统输出响应的表达式,并可画出时间响应曲线,因而可直观地反映出系统的动态过程。
如果系统的参数发生变化,则微分方程及其解均会随之而变。
为了分析参数的变化对系统输出响应的影响,就需要进行多次重复的计算。
微分方程的阶次愈高,这种计算愈复杂。
因此,仅仅从系统分析的角度来看,就会发现采用微分方程这种数学模型,当系统阶次较高时,是相当不方便的。
以后将会看到,对于系统的综合校正及设计,采用微分方程这一种数学模型将会遇到更大的困难。
目前在经典控制理论中广泛使用的分析设计方法——频率法和根轨迹法,不是直接求解微分方程,而是采用与微分方程有关的另一种数学模型——传递函数,间接地分析系统结构参数对响应的影响。
所以传递函数是一个极其重要的基本概念。
一、传递函数的概念及定义在[例2-7]中,曾建立了RC 网络微分方程,并用拉氏变换法对微分方程进行了求解。
其微分方程(2-44)为)()(t u t u dtdu RC r c c =+ 假定初始值0)0(=c u ,对微分方程进行拉氏变换,则有)()()1(s U s U RCs r c =+网络输出的拉氏变换式为)(11)(s U RCs s U r c += (2-48)这是一个以s 为变量的代数方程,方程右端是两部分的乘积;一部分是)(s U r ,这是外作用(输入量)的拉氏变换式,随)(t u r 的形式而改变;另一部分是11+RCs ,完全由网络的结构参数确定。
将上式(2-48)改写成如下形式 11)()(+=RCs s U s U r c 令11)(+=RCs s G ,则输出的拉氏变换式可写成 )()()(s U s G s U r c =可见,如果)(s U r 给定,则输出)(s U c 的特性完全由)(s G 决定。
)(s G 反映了系统(网络)自身的动态本质。
这很显然,因为)(s G 是由微分方程经拉氏变换得到的,而拉氏变换又是一种线性变换,只是将变量从实数t 域变换(映射)到复数s 域,所得结果不会改变原方程所反映的系统本质,对照)(s G 与原微分方程(2-44)的形式,也可看出二者的联系。
第二章 传递函数-梅逊公式

2.3 传递函数与系统动态结构图
2.3.1 传递函数的定义
设系统的标准微分方程为
an
dnc(t) dt n
a n1
dn1c(t) dt n 1
……
a1
dc(t) dt
a0c(t)
bm
dmr(t) dt m
bm1
d m 1r ( t ) dt m1
……
b1
dr(t) dt
点
上图所示的是
G(s)
(s
(s 1)(s 2) 3)(s 2 2s
2)
的零、极点分布图。
2.2 传递函数
比
比例环节(无惯性环节): c(t)=kr(t)
例
传递函数:G(S)=C(S)/R(S)=k
c(t)
环
阶跃响应:R(S)=1/S
r(t)
节
C(S)=kR(S)=k/S C(t)=k
0
方框图: R(S) k/s C(S)
3
传
递
积分调节器:
C
在A点列方程可得:
函 数
Ur(t)
R
i2
i1
A
Uc(t) i2=i1, i1=Uc(t)/R Uc(t)=1/C∫i2(t)dt=1/(RC)∫Uc(t)dt
设RC=T(积分时间常数),则有:Uc(t)=1/T∫Uc(t)dt
拉氏变换后为:Uc(S)=1/(TS)Uc(S)
5)传递函数具有正、负号(输入量和输出量的变化方向)。
6)传递函数的单位是输出量的单位与输入量的单位之比。
m
(s z j )
7)传递函数可以写成
G(s)
Kg
j1 n
自控理论 2-2传递函数

当 ui ( t ) = 1( t )时,
− t 1 −1 τs 则u0 ( t ) = L ⋅ =e τ τs + 1 s 1
图2-8 RC电路 电路
当 τ << 1 时,可近似认为 G ( s ) ≈ τs
5. 振荡环节
d 2 c( t ) dc( t ) 2 T + 2ζT + c( t ) = Kr ( t ) 2 dt dt
运放 2
U 2 ( s ) τs + 1 G2 ( s) = = U 1 ( s) Ts
( 2 − 38)
式中
τ = R3C
T = R2C
功放
U a ( s) G3 ( s) = = K2 U 2 ( s)
( 2 − 39)
附:电枢控制直流电动机的微分方程 电枢控制直流电动机的微分方程
dmc d 2n dn TaTm 2 + Tm + n = K u ua − K m (Ta + mc ) dt dt dt La ; 电磁时间常数 Ta = Ra 传递系数 1 Ku = Ce 机电时间常数 Tm Km = J ( 2 − 10)
m m −1
∏ (s − z
j =1 n i =1
m
j
)
∏ (s − p )
i
式中
z j ( j = 1 , 2 L m )为传递函数的零点; 为传递函数的零点; p i ( i = 1 , 2 L n )为传递函数的极点; 为传递函数的极点; K 1 = b0 为传递系数或根轨迹增 益。
② 时间常数表达式
n≥m
当初始条件均为零时,两边取拉氏变换 当初始条件均为零时,
(s
自动控制原理传递函数

y(t) y kt
S平面 j
x(t) 1(t)
0
t
0 Re
有一个0值极点。在图中极点用“ ”表示,零点用“ ”
表示。K表示比例系数,T称为时间常数。
3/18/2024 2:47:29 AM
20
积分环节实例
积分环节实例:
①
C
R
ui
ui (s) uo (s)
R
1 Cs
uo
uo (s) 1
LCs 2
1 RCs
1
3/18/2024 2:47:28 AM
2
传递函数的定义: 系统初始条件为零时,输出变量的拉普拉
斯变换与输入变量的拉普拉斯变换之比,称为 系统的传递函数。 记做: Y (s) G(s) 或 Y (s) G(s)U (s)
U (s)
U(s)
Y(s)
G(s)
3/18/2024 2:47:28 AM
R2 I2 (s) UO (s)
G(s) U0 (s) 1 1 Ts Ui (s) 1 Ts
T R1R2C R1 R2
R1 R2
R2
3/18/2024 2:47:28 AM
7
复习拉氏变换
②性质:
⑴线性性质:L[f1(t) f2 (t)] F1(s) F2 (s)
⑵微分定理:L[ f (t)] sF (s) f (0)
L[ f(t)] s2F (s) sf (0) f (0)
L[ f (n) (t)] sn F (s) sn1 f (0) sn2 f (0) ... f (n1) (0)
⑶积分定理:(设初值为零)
L[
f
(t)dt]
F (s) s
⑷时滞定理:L[ f (t T )] est f (t T )dt esT f (s) 0
第四章控制系统的传递函数

其中,
n
1 T
——环节的 固有频率
To 2
1 T
——环节的 阻尼比
如果0≤ξ<1,二阶环节称为振荡环节
例7 图示是由质量m、阻尼c、弹簧k组成的动力系统. 求G(s)
依动力平衡原理有 Xi(t) k m c
Xo(t)
d 2 xo dxo m 2 c kxo kxi dt dt
因此,系统的传递函数就是系统单位脉冲响应 的拉氏变换。
一般地,传递函数的表达式为
X o ( s) ao s n a1s n1 a2 s n2 an G( s ) X i ( s) bo s m b1s m1 b2 s m2 bm
2. 传递函数的性质
k
k为比例环节的增益或称为放大系数
例1
解
ni(t)
z1
求一对齿轮传动的传递函数 no z1 k ∴G(s)=k ni z2
最基本的运算放大器
no(t)
z2
例2
i 1= i 2
ei ea ea eo R1 R2
ei eo R1 R2
ei
R2 R1 e i2 a Ko a i3 i1 +
ZL=Ls
3.电容元件
dUC iC C dt
ZC(s) = 1/sC
例5
下图是一个由运算放大器组成的积分器, 求G(s)。 C R i + uc 取拉氏变换 uo Ui(s) R
Zc
i
+ Uo(s)
ui
解:
1 uc idt c
I ( s) U c ( s) cs
K s
1 Zc cs
ms2 X o ( s) csX o (s) kXo ( s) kXi (sG( s) 2 ms cs k
第六章 传递函数

第六章 传递函数对于线性定常系统,传递函数是常用的一种数学模型,它是在拉氏变换的基础上建立的。
用传递函数描述系统可以免去求解微分方程的麻烦,间接地分析系统结构及参数与系统性能的关系,并且可以根据传递函数在复平面上的形状直接判断系统的动态性能,找出改善系统品质的方法。
因此,传递函数是经典控制理论的基础,是一个极其重要的基本概念。
第一节 传递函数的定义一、传递函数的定义1、定义对于线性定常系统,在零初始条件下,系统输出量的拉氏变换与输入量的拉()()C s R s ==零初始条件输出信号的拉氏变换传递函数输入信号的拉氏变换2、推导设线性定常系统的微分方程的一般形式为1011110111()()()()()()()()n n n n nn m m m m mm d d d a c t a c t a c t a c t dtdtdtd d d b r t b r t b r t b r t dtdtdt------++⋅⋅⋅++=++⋅⋅⋅++◆ 式中c(t)是系统输出量,r(t)是系统输入量,r(t)、c(t)及其各阶导数在t=0时的值均为零,即零初始条件。
◆a , 1a ,…,na 及b , 1b ,…,mb 均为系统结构参数所决定的实常数。
对上式中各项分别求拉氏变换,并令C(s)=L[c(t)],R(s)=L[r(t)],可得s 的代数方程为:11011011[]()[]()nn mm n n m m a s a sa s a C sb sb sb s b R s ----++⋅⋅⋅++=++⋅⋅⋅++于是,由定义得到系统的传递函数为:10111011()()()()()m m m m nn n nb s b sb s b C s M s G s R s a s a sa s a N s ----++⋅⋅⋅++===++⋅⋅⋅++其中,1011()m m m m M s b s b s b s b --=++⋅⋅⋅++ 1011()n n n n N s a s a s a s a --=++⋅⋅⋅++ N(s)=0称为系统的特征方程,其根称为系统特征根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实用文档
因为控制理论着重分析系统的结构、参数与系统的动 态性能之间的关系,所以为简化分析,设系统的初始条 件为零。
例: 试求 RLC无源网络的传递函数
R
L
解: 该网络微分方程已求出,如式
ui(t)
i(t)
C uo(t) Ld C 2d uo2(tt)RdC d o(ut)tuo(t)ui(t)
实用文档
在零初始条件下,对上式进行拉氏变换,令 U0(s)=L[U0(t)], U i(s)=L[Ui(t)] 得: (L2 C Rs C 1 )U o ( s s) U i(s)
实用文档
于是,由定义得系统的传递函数为
G ( s ) C R ( ( s s ) ) b a 0 0 s s m n b a 1 1 s s m n 1 1 b a m n 1 1 s s b a m n M N ( ( s s ) )
式中
M ( s ) b 0 s m b 1 s m 1 b m 1 s b m N ( s ) a 0 s n a 1 s n 1 a n 1 s a n
R(s)
C(s)
G(s)
传递函数的图示
实用文档
说明:
传递函数是物理系统的数学模型,但不能 反应系统的物理性质,不同的物理系统可 以有相同的传递函数; 传递函数只适用于线性定常系统;
实用文档
⑶ 物理意义
传递函数是在零初始条件下定义的,控制系统的零初始 条件有两方面的含义:
一是指输入量是在t≥0时才作用于系统,因此在t=0-时 输入量及其各阶导数均为零;
d t
C s I(s)
电感 u (t)Ld i(t) U (s)L sI(s) L sU (s)
d t
I(s)
R (s) RC (s) C 1 s L (s) L s
实用文档
例2 对无源网络,求传递函数Uo(s)/Ui(s)。
实用文档
解:把图中各量用复阻抗表示
实用文档
根据分压定理写出Uo(s)表达式
设 r(t) 和 c(t) 及其各阶导数在 t=0 时的值均为零,即零初始条件, 对上式中各项分别求拉氏变换,令C(s)=L[c(t)], R(s)=L[r(t)],可 得 s 的代数方程为
(a0sna 1sn 1 an 1san)C (s) (b0smb 1sm 1 bm 1sbm )R (s)
由传递函数定义得网络传递函数为
G(s)U Uo i((ss))LC 21 sRC 1s
⑵ 性质
① 传递函数是复变量 s 的有理真分式函数,具有复变函数的所有 性质. 有m≤n且所有系数均为实数.
实用文档
②
传递函数是一种用系统参数表示输出量与输入量之间关 系的表达式,它只取决于系统或元件的结构和参数,而与输入 量的形式无关,也不反映系统内部的任何信息.因此,可以用下 图的方块图表示一个具有传递函数G(s)的线性系统.
二是指输入量加于系统之前,系统处于稳定的工作状态, 即输出量及其各阶导数在t=0-时的值也为零.现实的工程控 制系统多属此类情况.
实用文档
(4) 传递函数的建立
方法1:一般元件和系统传递函数的求取方法: (1)列写元件或系统的微分方程; (2)在零初始条件下对方程进行拉氏变换; (3)取输出与输入的拉氏变换之比。
自动控制原理
实用文档
第二章 控制系统的数学模型
实用文档
第2章 控制系统的数学模型 -----传递函数
1.传递函数的定义和性质 2.传递函数的零点和极点 3.典型环节的传递函数 4.典型元部件的传递函数
实用文档
问题的提出:
微分方程式的阶次一高,求解就有难度,且计算的工作量也 大。
对于控制系统的分析,不仅要了解它在给定信号作用下的 输出响应,而且更重视系统的结构、参数与其性能间的关系。 对于后者的要求,显然用微分方程式去描述是难于实现的。
实用文档
传递函数-系统的复数域数学模型
拉氏变换法求解系统微分方程时,可得到 控制系统在复数域中的数学模型—传递函数。
传递函数不仅可表征系统的动态性能,且 可用来研究系统的结构或参数变化对系统性 能的影响。
经典控制论中广泛应用的频率法和根轨 迹法,就是以传递函数为基础的,传递函数 是经典控制理论中最基本和最重要的概念。
(2)两边进行拉氏变换,可得
R C sU o(s) U o(s) U i(s)
(3) 取输出与输入的拉氏变换之比
G(s)Uo(s) 1 Ui(s) RCs1
实用文档
※电气网络的运算阻抗与传递函数 (重要)
运算(复)阻抗
电阻
u(t)i(t)R U (s)RI(s) RU (s) I(s)
电容 i(t) C d u (t) I(s) C sU (s) 1 U (s)
实用文档
例1 对RC无源网络,求传递函数Uo(s)/Ui(s)。
实用文档
解: (1)由KVL,得
又因为
ui(t)Ri(t)uo(t)
i(t) C duo (t) dt
消去中间变量 i(t)
标准化
ui(t)RCdudot(t)uo(t) RCdudot(t)uo(t)ui(t)
实用文档
RCdudot(t)uo(t)ui(t)
实用文档
1. 传递函数的定义和性质
⑴ 定义
线性定常系统的传递函数,定义为初始条件为零时, 输出量的拉氏变换与输入量的拉氏变换之比,记为 G(S),即:
G(s) C(s) R(s)
实用文档
设线性定常系统的n阶线性常微分方程为
a0d dn ntc(t)a1d dn n t 1 1c(t) an1d dc t(t)anc(t) b0d dm m tr(t)b1d dm m t 1 1r(t) bm1d drt(t)bmr(t)
( R2
1 C2s
)
1 C1s
U o (s)
1
C2s
R2
1 C2s
R2
1 C2s
1 C1s
( R2 R2
1 ) 1 C2 s C1s 11 C2 s CБайду номын сангаасs
R1
U i (s)
化简得传函表达式
复阻抗+分压定理
G (s ) U U o i( ( s s ) ) R 1 C 1 R 2 C 2 s 2 (R 1 C 1 1 R 2 C 2 R 1 C 2 )s 1