理论力学-动量矩定理
合集下载
第十三章动量矩定理_理论力学

式中
分别为作用于质点上的内力和外力。求 n 个方程的矢量和有
式中
,
于 点的主矩。交换左端求和及求导的次序,有
为作用于系统上的外力系对
令 (13-3)
为质系中各质点的动量对 点之矩的矢量和,或质系动量对于 点的主矩,称为质系对 点的动量矩。由此得
(13-4) 式(13-4)为质系动量矩定理,即:质系对固定点 的动量矩对于时间的一阶导数等于外力 系对同一点的主矩。
设 Q 为体积流量, 为密度, 和 分别为水流进口处和出口处的绝对速度, 和 分别为涡轮外圆和内圆的半径, 为 与涡轮外圆切线的夹角, 为 与涡轮内圆切线的
夹角,则
由动量矩定理 得
为叶片作用于水流上的力矩。若水涡轮共有 个叶片,则水流作用于涡轮的转动力矩为
方向与图示方向相反。 §13-2 刚体绕定轴转动微分方程
解:取两叶片间的水流为研究对象(图 13-4 中的兰色部分)。作用于质系上的的外力有 重力和叶片的约束力,重力平行于 z 轴,对转动轴之矩为零。所以外力主矩为叶片对水流
的约束力对 z 轴之矩 。
计算 时间间隔内动量矩的增量 。设 t 瞬时占据 ABCD 的水流,经过 时间间隔
后,运动至占据
,设流动是稳定的,则
有
式中
得
(13-8)
或
(13-9)
此式称为刚体绕定轴转动的微分方程。
为刚体绕定轴转动的角加速度,所以上式
可写为
(13-10)
1.由于约束力对 z 轴的力矩为零,所以方程中只需考虑主动力的矩。 2.比较刚体绕定轴转动微分方程与刚体平动微分方程,即
与
形式相似,求解问题的方法和步骤也相似。 转动惯量与质量都是刚体惯性的度量,转动惯量在刚体转动时起作用,质量在刚体平动
理论力学动量矩定理

四. 平行移轴定理
刚体对某轴的转动惯量等于刚体对通过质心且与该轴平行 的轴的转动惯量,加上刚体的质量与两轴间距离的平方之乘积。
J z ' J zC m d 2
证明:设刚体的质量为m,质心为C。
O ' z '//Cz
J zC mi ri 2 mi ( xi 2 yi 2 )
J z ' mi ri ' 2 mi ( xi ' 2 yi ' 2 )
xi xi ', yi ' yi d
J z ' mi [ xi 2 ( yi d )2 ]
mi ( xi 2 yi 2 ) ( mi )d 2 2d mi yi
质点对O点的动量矩与对 z 轴的动量矩之间的关系:
M O (mv )
注意:要求 z 轴通过O点。
z
M z (mv )
二.质点系的动量矩
质点系对O点动量矩: LO 质点系对 z 轴动量矩: 同样有关系式: 例:平动刚体的动量矩。
M
O
Lz M z (mi vi )
(mv i i ) r i mv i i
( e)
PA PB d g ( d t r PA PB P / 2
)
[例4] 已知猴子A重=猴子B重,初始静止,后猴B以相对绳 速度 v 上爬,猴A相对绳不动。问猴B向上爬时,猴A将如何 动?动的速度多大?(轮重不计)
解: 设猴A向上的绝对速度为 vA,则
猴B向上的绝对速度为 vB= vvA 。
平动刚体对固定点(轴)的动量矩就等于刚体质心的动量 对该点(轴)的动量矩。
理论力学-动量矩定理

d rC d vC vC , aC , dt dt
n d LC ri Fi e dt i
vC vC 0 ,
m a C Fie
n dLC M C (Fie ) dt i
相对质心的动量矩定理
质点系相对质心的动量矩定理
n n d LC e e ri Fi M C ( Fi ) i dt i
m v
i
i
m vC
LO rC m vC LC
相对质心的动量矩定理
质点系相对质心的动量矩定理
根据上式和质点系对固定点的动量矩定理,
n d LO d ( rC m vC LC ) ri Fi e dt dt i
ri rC rr
n n d rC d vC d LC e rC Fi ri Fi e m vC rC m dt dt dt i i
即有
LC ri mi vir
相对质心的动量矩定理
质点系相对质心的动量矩
质点系相对固定点的动量矩与质点系相对质心的动量矩 之间存在确定的关系。 质点系相对固定点的动量矩为
LO ri mi vi
i
因为 所以有 因为 所以有
ri rC rr
LO rC mi v i ri mi v i
刚体定轴转动微分方程
例 题 1
图示钟摆简化模型中,已知均质细杆 和均质圆盘的质量分别为m1 、m2 ,杆 长为l,圆盘直径为d。
ϕ
试求:钟摆作小摆动时的周期。 解:摆绕O轴作定轴转动。设ϕ 为任意 时刻转过的角度,规定逆时针为正。根 据定轴转动的微分方程
J z M z
理论力学12—动量矩定理

MO (Fi(i) )
由于内力总是成对出现,因此上式右端的底二项
n
MO (Fi(i) ) 0
i 1
12.2.2 质点系的动量矩定理
上式左端为
n
i 1
d dt
MO (mivi )
d dt
n i 1
MO (mivi )
d dt
LO
于是得
d
dt
LO
n i 1
MO (Fi(e) )
定轴转动的转动微分方程
例6 如图所示,已知滑轮半径为R,转动惯量为J,带动滑
轮的皮带拉力为F1和F2 。求滑轮的角加速度 。
解:由刚体定轴转动的微分方程
J R(F1 F2 )
F1
R O
于是得 (F1 F2 )R
F2
J
由上式可见,只有当定滑轮 匀速转动(包括静止)或虽 非匀速转动,但可忽略滑轮 的转动惯量时,跨过定滑轮 的皮带拉力才是相等的。
q
O
r
x
A mv
Q y
A Q
质点的动量矩
类似于力对点之矩和力对轴之矩的关系,质点 对点O的动量矩矢在 z 轴上的投影,等于对 z 的动 量矩。
[MO(mv)]z=Mz(mv)
在国际单位制中,动量矩的单位是 kg·m2/s。
质点系的动量矩
2 质点系的动量矩
质点系对某点O的动量矩等于各质点对同一点O的 动量矩的矢量和。
质点的动量矩定理
例2 图示为一单摆(数学摆),摆锤质量为m,摆线长为l, 如给摆锤以初位移或初速度(统称初扰动),它就在经过O点 的铅垂平面内摆动。求此单摆在微小摆动时的运动规律。
解:以摆锤为研究对象,受力如图,建立
理论力学:第11章 动量矩定理

对定点 O: LO mO (MvC ) IC
对瞬心 C': LC IC
11.2 动量矩定理
一、 质点动量矩定理
由牛顿第二定律: ma F
易证:
dmO (mv )
dt
mO
(F)
微分形式动量矩定理
其中 O 为定点。
或
dmO (mv) mO (dS )
LH
P vr
b
1
Q r2
Q vC
r
b
sin
1
Q r2
g 2 2 g
g 2 2g
(P
2Q)r
P
b b
(1
sin
)
vC g
系统外力对 H 的力矩:
11-3
ΣmH
(F
(e)
)
m
P
r
b
Q
b
Q
sin
绳子剪断前为静力学问题,易求反力。
绳子剪断后为定轴转动动力学问题,用质心运动定理求: MaC
F (e)
但需要先求出 aC ,用刚体定轴转动微分方程可求: Iz mz (F (e) )
11-5
解:I. 绳子剪断前,受力如图(a)。 W
由对称性: N A0 2
II. 绳子剪断瞬时,受力、运动如图(b)。
11-2
欲用动量矩定理求 aC , aC 只跟三个运动物体有关,并且有一个“轴”O,如图。 但其中的 N 如何处理?
事实上,滚子沿斜面法向是静平衡的, N = Q cosα。 解:① 求加速度 aC 。
对瞬心 C': LC IC
11.2 动量矩定理
一、 质点动量矩定理
由牛顿第二定律: ma F
易证:
dmO (mv )
dt
mO
(F)
微分形式动量矩定理
其中 O 为定点。
或
dmO (mv) mO (dS )
LH
P vr
b
1
Q r2
Q vC
r
b
sin
1
Q r2
g 2 2 g
g 2 2g
(P
2Q)r
P
b b
(1
sin
)
vC g
系统外力对 H 的力矩:
11-3
ΣmH
(F
(e)
)
m
P
r
b
Q
b
Q
sin
绳子剪断前为静力学问题,易求反力。
绳子剪断后为定轴转动动力学问题,用质心运动定理求: MaC
F (e)
但需要先求出 aC ,用刚体定轴转动微分方程可求: Iz mz (F (e) )
11-5
解:I. 绳子剪断前,受力如图(a)。 W
由对称性: N A0 2
II. 绳子剪断瞬时,受力、运动如图(b)。
11-2
欲用动量矩定理求 aC , aC 只跟三个运动物体有关,并且有一个“轴”O,如图。 但其中的 N 如何处理?
事实上,滚子沿斜面法向是静平衡的, N = Q cosα。 解:① 求加速度 aC 。
理论力学 动量矩定律

MO (mv) 恒矢量
作用于质点的力对某定轴的矩恒为零,则质点对该轴的动量矩 保持不变,即
M z (mv ) 恒量
以上结论称为质点动量矩守恒定律 2)质点系动量矩守恒定理 当外力对某定点(或某定轴)的主矩等于零时,质点系对 于该点(或该轴)的动量矩保持不变,这就是质点系动量矩 守恒定律。 15 另外,质点系的内力不能改变质点系的动量矩。
24
动力学 2. 回转半径 定义:
转动惯量
z
Jz m
则
J z m z
2
即物体转动惯量等于该物体质量与回转半径平方的乘
积; 对于均质物体,仅与几何形状有关,与密度无关。
对于几何形状相同而材料不同(密度不同)的均质刚 体,其回转半径是相同的。
25
动力学
转动惯量
3. 平行移轴定理 刚体对于某轴的转动惯量,等于刚体对于过质心、并与该轴平 行的轴的转动惯量,加上刚体质量与轴距平方的乘积,即
LC LC
这样刚体作平面运动时,对过质心C且垂直于平面图形的 轴的动量矩为
J C LC LC
12
动力学
质点系动量矩定理
2.质点系的动量矩定理
n个质点,由质点动量矩定理有
d M O (mi vi ) M O ( Fi ( i ) ) M O ( Fi ( e ) ) dt
n d (e) Lx M x ( Fi ) dt i 1 n d Ly M y ( Fi ( e ) ) dt i 1 n d Lz M z ( Fi ( e ) ) dt i 1
14
动力学
质点系动量矩定理
3.动量矩守恒定理 1)质点动量矩守恒定理 如果作用于质点的力对某定点O的矩恒为零,则质点对该 点的动量矩保持不变,即
理论力学第十一章动量矩定理

JO
d 2
dt 2
mga
即:
d 2
dt 2
mga
JO
0
解: 令 2 mga
JO
——固有频率
得
2 0
通解为 O sin(
mgat )
JO
周期为 T 2 2 JO
mga
例11-3 用于测量圆盘转动惯量的三线摆中,
三根长度相等(l)的弹性线,等间距悬挂被测量的圆盘。
已知圆盘半径为 R、重量为W。
dt
dt dt
v dr dt
r d(mv) d(r mv)
dt
dt
dLO dt
MO F
矢量式
质点对固定点的动量矩对时间的导数等于作 用于质点上的力对该点的矩。
★ 质点系的动量矩定理
0
d
dt
i
ri mivi
i
MO (Fii )
i
MO (Fie )
MO (Fie )
i
F2
z
F1
LO rC mvC LC
dLO d
dt dt
rC mvC LC
ri Fie (rC + ri) Fie
rC Fie ri Fie
③
即
drC dt
mvC
rC
d dt
mvC
dLC dt
rC
Fie
dLC dt
由于
① ① drC dt
② vC ,
drC dt
mvC
★ 相对质心的动量矩
LC MC mivi ri mivi
vi vC vir
LC = rimivC rimivir
其中
ri mivC ( miri)vC 0 (rC
理论力学第十一章动量矩定理

当物体作直线运动时,可以用质量作为物体运动惯性的度量; 而当物体绕某轴转动时,转动惯性的大小不仅与质量有关,而 且与半径有关。物体的质量分布距转轴的距离越远,转动惯性 就越大,亦即,越不容易改变转动运动的状态。
2.规则几何形状物体的转动惯量
J Z = ∫ r 2 dm
均质圆环:
J z = ∑ ΔmR 2 =MR 2
往三个坐标轴投影:得到质点对轴的动量矩定理: d m x (mv ) = m x ( F ) dt d m y (mv ) = m y ( F ) dt d m z (mv ) = m z ( F ) dt (1)若Σmo(F)≡0, mo(mv)=常矢量; 两种特殊情况: (2)若Σmx(F)≡0, mx(mv)=常量。 以上两种情况均称为动量矩守恒
R 别为J 1 和J 2 ,两轮的半径分别为 R1 、 2 ,传 动比 i12 = R2 / R1 。轴Ⅰ上作用主动力矩 M 1 , 轴Ⅱ上有阻力矩 M 2,转向如图。忽略摩擦。 求轴Ⅰ的角加速度。
例 图示传动轴,轴Ⅰ和轴Ⅱ的转动惯量分
Ⅱ
M2
M1
Ⅰ
解 :分别取轴Ⅰ和Ⅱ为研究对象。受力如图。 两轴对各自轴心的转动微分方程分别为
体积
2π R
π R2
4 π R3 3
4π R 2
Δm
1 1 J O = ∑ ΔMR 2 = MR 2 2 2
N维球
均质直杆:
J z = ∫ x 2 ρ l dx =
0
l
ρl l 3
3
1 2 J z = Ml 3
z
1 1 2 2 J z = ∑ (Δm)l = Ml 3 3
l
x
z
dx
Δm
x
2.规则几何形状物体的转动惯量
J Z = ∫ r 2 dm
均质圆环:
J z = ∑ ΔmR 2 =MR 2
往三个坐标轴投影:得到质点对轴的动量矩定理: d m x (mv ) = m x ( F ) dt d m y (mv ) = m y ( F ) dt d m z (mv ) = m z ( F ) dt (1)若Σmo(F)≡0, mo(mv)=常矢量; 两种特殊情况: (2)若Σmx(F)≡0, mx(mv)=常量。 以上两种情况均称为动量矩守恒
R 别为J 1 和J 2 ,两轮的半径分别为 R1 、 2 ,传 动比 i12 = R2 / R1 。轴Ⅰ上作用主动力矩 M 1 , 轴Ⅱ上有阻力矩 M 2,转向如图。忽略摩擦。 求轴Ⅰ的角加速度。
例 图示传动轴,轴Ⅰ和轴Ⅱ的转动惯量分
Ⅱ
M2
M1
Ⅰ
解 :分别取轴Ⅰ和Ⅱ为研究对象。受力如图。 两轴对各自轴心的转动微分方程分别为
体积
2π R
π R2
4 π R3 3
4π R 2
Δm
1 1 J O = ∑ ΔMR 2 = MR 2 2 2
N维球
均质直杆:
J z = ∫ x 2 ρ l dx =
0
l
ρl l 3
3
1 2 J z = Ml 3
z
1 1 2 2 J z = ∑ (Δm)l = Ml 3 3
l
x
z
dx
Δm
x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§11-5 质点系相对于质心的动量矩定理
1.对质心的动量矩
vi vC vir
LC MC mivi ri mivi
?
ri 'mivir
LC ri0 mivC ri mivir
z
ri mivC ( mir 'i ) vC 0
LC ri mivir
LO
(rC
r
')
JzC mi (x12 y12 )
Jz m i r2 m i (x2 y2) mi[x12 ( y1 d )2 ]
0 mi (x12 y12 ) 2d mi y1 d 2 mi
Jz JzC md 2
4.组合法
已知:杆长为 l质量为 m,1 圆盘半径为 ,d质量为 . m2
2g
运动方程为
s v0
3R
2g
r
sin
2g
3R
r
t
例11-11 已知:如图所示均质圆环半径为r,质量为m,其上焊接 刚杆OA,杆长为r,质量也为m。用手扶住圆环使其在OA 水平位置静止。设圆环与地面间为纯滚动。 求:放手瞬时,圆环的角加速度,地面的摩擦力及法向 约束力。
A O
解: 整体质心为C,其受力如图所示
解: (1) LO JO m1v1r1 m2v2r2
(JO m1r12 m2r22 )
MO (F (e) ) (m1r1 m2r2 )g
由
dLO dt
MO (F(e))
,得
d
dt
(m1r1 m2r2 )g JO m1r12 m2r22
FN
(2)由质心运动定理
FN (m m1 m2 )g (m m1 m2 )aCy
J
mlv0 (1 cos) l 2 r 2 2lr cos
v0
O
ve
v0 M
M0 y
l
x
§11-3 刚体绕定轴的转动微分方程
主动力: F1, F2,
, Fn
约束力: FN1 , FN2
d dt
(J
z)
M
z
(Fi
)
M
z
(FNi
)
M z (Fi )
即:
Jz
d
dt
M z (Fi )
为 。
求:圆盘对A、C、P三点的动量矩。
C
A
P
解:
点C为质心
LC
JC
mR 2 2
点P为瞬心
LP
J P
3mR 2 2
或
LP
mvC R
LC
mR 2
1 2
mR 2
3mR 2 2
C
A
P
LA mvC
2 2 R LC
2 mR 2 1 mR 2 (
2
2
2 1)mR 2
2
是否可以如下计算:
LA
J A
(JC
J z
l 0
l x2dx
ll 3
3
由 m ,l得l
Jz
1 ml2 3
(2)均质薄圆环对中心轴的转动惯量
J z mi R2 R2 mi mR2
(3)均质圆板对中心轴的转动惯量
mi 2π ri dri A
式中:
A
m π R2
JO
R
(2π
0
r Adr
r2)
2π
A
R4 4
或
JO
1 2
rC Fie ri Fie
dLC
dt
r 'i Fie
dLC dt
MC (Fie )
z
--质点系相对于质心的动量矩定理
质点系相对于质心的动量矩对
O
时间的导数,等于作用于质点系的
外力对质心的主矩.
x
z'
rC
x'
C ri
ri '
mi
y
y'
例11-8
已知:均质圆盘质量为m,半径为R,沿地面纯滚动,角速度
Jz
1 2
π l(R14
R24 )
1 2
π l(R12
R22 )(R12
R22 )
由 π l(R12 ,R22得) m
Jz
1 2
m(
R12
R22 )
5.实验法 思考:如图所示复摆如何确定对转轴的转动惯量?
将曲柄悬挂在轴 O上,作微幅摆动.
由 T 2 J
mgl
其中 m,已l 知, 可T测得,从而求得 . J
)
d dt
MO
(mv )
MO
(F)
投影式:
质点对某定点的动量矩对时间的
d dt
M
x
(mv
)
M
x
(F
)
d dt
M
y
(mv
)
M
y
(F
)
一阶导数,等于作用力对同一点的矩.
--质点的动量矩定理
d dt
M
z
(mv )
M
z
(F
)
2.质点系的动量矩定理
d dt
MO
(mivi
)
MO
(Fi(i) )
MO
( Fi ( e )
代数量,从 z 轴正向看, 逆时针为正,顺时针为负.
2.质点 (mivi ) i 1
对轴的动量矩
n
Lz M z (mivi ) i 1
即 LO Lxi Ly j Lzk
二者关系
[LO ]z Lz
(1) 刚体平移 LO MO (mvC ) Lz Mz (mvC )
建立平面运动微分方程
2maCx Fs
r
4 C
O
A
2mg
2maCy 2mg FN
FS
JC
FN
r 4
Fr
FN
(a)
其中:
JC
mr 2 12
m( r ) 2 4
mr 2
m( r ) 2 4
29 24
mr 2
由求加速度基点法有
aC
aO
acno
acto
投影到水平和铅直两个方向
aCx aO r
)
0
d dt
MO
(mivi
)
MO
( Fi (i )
)
MO
(Fi(e) )
d dt
MO
(mivi
)
d dt
MO
(mivi
)
dLO dt
dLO dt
M O (Fi(e) )
质点系对某定点O的动量矩对
投影式:
dLx dt
M x (Fi(e) )
dLy dt
M y (Fi(e) )
dLz dt
例11-3
已知:两小球质量皆为 m,初始角速度 。0
求:剪断绳后, 角时的 .
解: 0 时,
Lz1 2ma0a 2ma20
0 时,
Lz2 2m(a l sin )2
Lz1 Lz2
a 2 0
(a l sin )2
例11-4
已知:质点质量m,速度 v0 为常值,r,l,圆盘的转动惯
mC2
M
Fr
aC r
aC m
Mr
C2 r 2
,
F
M
r 2 C2
,
r
F maC , FN mg
纯滚动的条件: F fsFN
即
M
fsmg
r2
C2
r
例11-10
已知:均质圆轮半径为r 质量为m ,受到轻微扰动后,
在半径为R 的圆弧上往复滚动,如图所示.设表面足够
粗糙,使圆轮在滚动时无滑动. 求:质心C 的运动规律.
mivi
O
rC mmvCivi r 'LCmivi ) x
z'
rC
x'
C ri
ri '
mi
y
y'
LO rC mvC LC
2 相对质心的动量矩定理
dLO d
dt dt
rC mvC LC
ri Fie
0 ddvrtCC
mvC
rC
d dt
mFiv(eC)
dLC dt
M z (Fi(e) )
时间的导数,等于作用于质点系的 外力对于同一点的矩的矢量和.
问题:内力能否改变质 点系的动量矩?
--质点系的动量矩定理
3.动量矩守恒定律
若 MO (F (e) ) 0 则 LO常 矢量, 若 M z (F (e)则) 0常量。Lz
面积速度定理: 质点在有心力作用下其面积速度守恒.
第十一章 动量矩定理
问题的引出
C
p mvC 0
如何描述绕转轴的转动?
§11-1 质点和质点系的动量矩
1.质点的动量矩
MO (mv)
mv
M z (mv)
r
[MO (mv)]z Mz (mv)
对点 O 的动量矩
MO (mv) r mv 对 z 轴的动量矩
M z (mv) MO (mv)xy
, M1, M 2 。
求:1
。
解:
J11 M1 FtR1
J 2 2 Ft R2 M 2
因
Ft
Ft
,
1 2
i12
R2 R1
,得
1
M1 J1
M2
i12 J2 i122
§11-4 刚体对轴的转动惯量
n
J z mi ri2 i 1
1. 简单形状物体的转动惯量计算