恒成立问题常见类型及解法
高中数学恒成立问题解法小结

数学恒成立问题解法小结函数的内容作为高中数学知识体系的核心,也是历年高考的一个热点.函数类问题的解决最终归结为对函数性质、函数思想的应用.恒成立问题,在高中数学中较为常见.这类问题的解决涉及到一次函数、二次函数、三角函数、指数与对数函数等函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用.恒成立问题在解题过程中有以下几种策略:①赋值型;②一次函数型;③二次函数型;④变量分离型;⑤数形结合型.题型一、赋值型——利用特殊值求解例1.如果函数y =f (x )=sin2x +a cos2x 的图象关于直线x =8π- 对称,那么a =( ). A .1 B .-1 C .2 D . -2.题型二、一次函数型——利用单调性求解给定一次函数y=f (x )=ax+b (a ≠0),若y=f (x )在[m ,n ]内恒有f (x )>0,则根据函数的图象(线段)(如下图) 可得上述结论等价于ⅰ)⎩⎨⎧>>0)(0m f a ,或 ⅱ)⎩⎨⎧><0)(0n f a 可合并定成⎩⎨⎧>>0)(0)(n f m f同理,若在[m,n]内恒有f (x )<0,则有⎩⎨⎧<(0)(n f m f例2.对于满足|a|≤2的所有实数a ,求使不等式x 2+ax +1>2a+x 恒成立的x 的取值范围.题型三、二次函数型——利用判别式,韦达定理及根的分布求解对于二次函数f (x )=ax 2+bx+c =0(a ≠0)在实数集R 上恒成立问题可利用判别式直接求解,即f (x )>0恒成立⇔⎩⎨⎧<∆>00a ;f (x )<0恒成立⇔⎩⎨⎧<∆<0a . 若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解. 例3. 若函数12)1()1()(22++-+-=a x a x a x f 的定义域为R ,求实数 a 的取值范围.例4.已知函数2()3f x x ax a =++-,在R 上()0f x ≥恒成立,求a 的取值范围.变式1:若[]2,2x ∈-时,()0f x ≥恒成立,求a 的取值范围.变式2:若[]2,2x ∈-时,()2f x ≥恒成立,求a 的取值范围.题型四、变量分离型——分离变量,巧妙求解运用不等式的相关知识不难推出如下结论:若对于x 取值范围内的任何一个数都有f (x )>g (a )恒成立,则g (a )<f (x )min ;若对于x 取值范围内的任何一个数,都有f (x )<g (a )恒成立,则g (a )>f (x )max .(其中f (x )max 和f (x )min 分别为f (x )的最大值和最小值)例 5.已知三个不等式①0342<+-x x ,②0862<+-x x ,③0922<+-m x x .要使同时满足①②的所有x 的值满足③,求m 的取值范围.例6. 函数)(x f 是奇函数,且在]1,1[-上单调递增,又1)1(-=-f ,若12)(2+-≤at t x f 对所有的]1,1[-∈a 都成立,求t 的取值范围 .题型五、数形结合——直观求解例7. a a x x x 恒成立,求实数,不等式对任意实数>--+21的取值范围.例8:如果对任意实数x ,不等式kx x ≥+1恒成立,则实数k 的取值范围是__________小试牛刀:1.求使不等式x a x a x cos 1cos sin 22+≥++对一切x ∈R 恒成立的负数a 的取值范围。
高考数学导数恒成立问题的解法及例题

高考数学导数恒成立问题的解法
对于恒成立问题,一般采取的方法有两种:一是利用函数的单调性,二是利用函数的最值。
1. 利用函数的单调性
如果函数f(x)在区间D上单调,可以根据函数的单调性来解决问题。
例如,不等式f(x) > 0在区间D上恒成立,那么只需要找到满足f(x)min > 0的x值即可。
2. 利用函数的最值
如果函数f(x)在区间D上不是单调的,那么可以转化为求函数的最值问题。
例如,不等式f(x) > 0在区间D上恒成立,可以转化为求f(x)的最小值,只要最小值大于0,那么不等式就恒成立。
例题:已知函数f(x) = x2 + ax + 4在区间[-1,2]上都不小于2,求a的取值范围。
解法:首先根据题意得到函数f(x) = x2 + ax + 4在区间[-1,2]上的最小值为2,然后根据二次函数的性质得到对称轴为x=-b/2a=-a/2。
我们需要分三种情况讨论:
1. 当-a/2≤-1时,即a≥2时,函数在[-1,2]上是增函数,只需要满足f(-1)=1-a+4≥2即可,解得a≤3,所以2≤a≤3;
2. 当-a/2≥2时,即a≤-4时,函数在[-1,2]上是减函数,只需要满足
f(2)=4+2a+4≥2即可,解得a≥-4,但是此时a没有合适的取值,故舍去;
3. 当-1<-a/2<2时,即-4<a<2时,函数在对称轴左侧是减函数,右侧是增函数,只需要满足f(-a/2)=(-a/2)2-a2/4+4≥2即可,解得-4<a≤-2。
综上可得a的取值范围为:[-4,-2]∪[2,3]。
恒成立问题

恒成立、存在性问题对于有关恒成立、存在性问题,一直是高考命题的热点,往往以全称命题或特称命题的形式出现,同时结合函数的单调性、极值、最值等知识进行考查,在高考中多以压轴题或压轴题中的压轴问的形式出现。
如何突破这一难关呢?关键是细心审题及恰当地转化。
现就如何求解恒成立、存在性问题中的参数问题加以分析。
方法1:分离参数法例1.设函数f(x)=lnx-ax, g(x)=ex-ax,其中a为实数。
若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围。
解:因为f`(x)=-a,g`(x)=ex-a,由题意得f`(x)≤0对x∈(1,+∞)恒成立,即a≥对x∈(1,+∞)恒成立,所以a≥1。
因为g`(x)=ex-a在x∈(1,+∞)上是单调增函数,所以g`(x)>g`(1)=e-a。
又g(x)在(1,+∞)上有最小值,则必有e-a<0,即a>e。
综上,可知a的取值范围是(e,+∞)。
点评:求解问题的切入点不同,求解的难度就有差异。
在恒成立问题中有时需要取交集,有时需要取并集,本题解法需要取交集。
一般而言:在同一问题中,若是对自变量作分类讨论,其结果要取交集;若是对参数作分类讨论,其结果要取并集。
方法2:构造函数法例2.已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()。
A.(-∞,0]B.(-∞,1]C.[-2,1]D.[-2,0]解:当x≤0时,|f(x)|≥axx2-(2+a)x≥0,对x≤0恒成立。
记g(x)=x2-(2+a)x=(x-)2-。
当<0即a<-2时,g(x)的最小值为-,不可能满足条件。
当≥0即a≥-2时,g(x)的最小值为0,满足题意。
当x>0时,|f(x)|≥axln(1+x)-ax≥0a≤,对x>0恒成立。
令θ(x)=,则θ`(x)=。
设t=x+1,则t>1。
记L(t)=-lnt,则L`(t)=<0,所以L(t)在t∈(1,+∞)上为减函数。
求解恒成立问题的常见方法

求解恒成立问题的常见方法摘要:恒成立问题是高考中常见的一类问题,常见类型有:第一类是关于x的一元二次不等式对任意x∈R恒成立,求参数取值范围;第二类是不等式在给定区间上恒成立求参数的取值范围。
因这类问题综合性强,思维容量大,因而成为高考一直常考不衰的热点问题。
关键词:恒成立;参数;解题方法一、一元二次不等式中的恒成立问题例1.已知函数f(x)=x2+ax+3对任意x∈R时恒有f(x)≥a成立,求a的取值范围。
解:∵f(x)≥a对x∈R恒成立,∴x2+ax+3-a≥0对x ∈R恒成立∵x∈R,∴Δ≥0,即a2-4(3-a)≥0∴a≤-6或a≥2 例2.已知函数y=lg(mx2-6mx+m+8)的定义域为R,求m的取值范围。
解:由已知得mx2-6mx+m+8>0对任意x∈R恒成立①当m=0时显然成立②当m≠0时有m>0(6m)2+4m(m+8)<0∴0<m<1综上可知0<m<1方法归纳:令f(x)=ax2+bx+c,若f(x)>0(或f(x)≥0)对任意x∈R恒成立,则有a>0Δ0Δ≤0),若f(x)<0(或f(x)≤0)对任意x∈R恒成立,则有a<0Δ<0(或a<0Δ≤0)等价转化即可。
二、在给定区间上恒成立问题例3.已知函数f(x)= (x≠0)在(4,+∞)上恒大于0,求a的取值范围。
解:令f(x)=0则>0,∴a>-(x+ )令g(x)=x+ ,易知g(x)在(4,+∞)上为增函数,∴g(x)min=g(4)=5∴g(x)>5∴-(x+ )<-5∴a≥-5例4.已知函数f(x)=x2+2x+a lnx,在区间(0,1]上为单调函数,求实数a的取值范围。
分析:求f ′(x)→由题意转化为恒成立问题→求最值→求得a的取值范围解:易知f ′(x)=2x+2+ ,∵f ′(x)在f ′(x)上单调∴f ′(x)≥0或f ′(x)<0在(0,1]上恒成立,即2x2+2x+a≥0或2x2+2x+a≤0恒成立∴a≥-(2x2+2x)或a≤-(2x2+2x)在(0,1]上恒成立又-(2x2+2x)=-2(x+ )2+ ∈[-4,0)∴a≥0或a≤-4方法归纳:解决此类恒成立问题通常分离参变量通过等价变形,将参数a从整体中分离出来,转化为a>(或f(x)(或a≥f(x)恒成立?圳a>m(或a≥m);(2)若f(x)在定义域内存在最小值m,则a<f(x)或(a≤f(x))恒成立?圳a<m(或a≤m);(3)若f(x)在其定义域内不存在最值,只需找到f(x)在定义域上的最大界(或最小下界)m,即f(x)在定义域上增大(或减小)时无限接近但永远达不到的那个位置来代替上述两种情况下的m,此时要注意结果所求参数范围在端点处是否要取到等号。
导数中恒成立问题的几种解法

j一
: —— 一
分开, 化 为 求 g( 转 )=二 _ 在 区 间 _ =
由厂( )< , 0 得 < < ’. . .
为 ( ,2 . 1 )
3
) 的递 减 区 问
[ 一 】的 值 可 一 上 最 即 . ,
解法 二 : 数形 结合
・ .
解法. 问题 : 已知 函数
. ‘ .
. . .
. 2 ’ 一a≥ . .
.
( ), 一 ≤ 0
)= 。+a + +1 a∈R, x ,
・ .
‘
若 数 (在 间 一 ,了内 减 数求口 函 , ) 区 【了 一 ]是 函 , 2 1
的取值 范 围. 解 法一 : 分离 参变 量
画厂 ( 的 草 图 ( 右 ) 如 图 ) 由数形 结合得 : ,
・
【了 一 ]成 , 的僦 匦(转 7页 一 ,3 立 】 2 都 求 汉 下 第4 )
7 ・ 2
《 数学之友》
21 0 0年第 8期
分析 : 本题 只有 注 意到 已知条 件 与 根 的判 别式
2 2 利 用判 别式 , 断三 角形 的形状 . 判
应 用
23 利 用判 别式 , 明几何 不等 式 . 证
例 8 如 图 , T切 o0 于 P
,
直线 P Ⅳ交 oD于 点 , Ⅳ,
P
2 1 结合 三 角形 三边 关 系 , 明一元二 次方程根 的 . 证
情 况
求证 : +P 肼 Ⅳ> P . 2T
证 明 :由 切 割 线 定 理 得 P ・ N =P , 是 P P 是 方 程 一( M + M P 于 , Ⅳ P P ) P = Ⅳ + 0的两 实 根 , 为 删 ≠P 即方 程 有 因 N,
数学恒成立问题

“恒成立”问题的一般解法郸城希望高中 樊战胜“恒成立”问题是数学中常见的问题,经常与参数的范围联系在一起,在高考中频频出现,是高考中的一个难点问题。
“恒成立”问题常常涉及到一次函数、二次函数的性质和图象,渗透着换元、化归、数形结合、函数与方程等多种数学思想和方法,因此也成为历年高考的一个热点。
恒成立问题在解题过程中主要可分为以下几种类型:1、一次函数型;2、二次函数型;3、分离变量型;4、函数的性质型;5、数形结合型 例题解析1、一次函数型给定一次函数b ax x f y +==)((0≠a ),若)(x f y =在[m,n]内恒有)(x f >0,则根据函数的图象(直线)可得上述结论等价于(1)⎩⎨⎧>>0)(0m f a 或(2)⎩⎨⎧><0)(0n f a 可以等价于⎩⎨⎧>>0)(0)(n f m f 同理,若在[m,n]内恒有)(x f <0,则有⎩⎨⎧<<0)(0)(n f m f例1、 当||m ≤2时,不等式2112x m x ->-()恒成立,求x 的范围。
分析:在不等式中出现了两个字母:x 及m ,关键在于该把哪个字母看成是一个变量,另一个作为常数。
显然可将m 视作自变量,则上述问题即可转化为在[-2,2]内关于m 的一次函数f m x m x ()()()=---2121大于0恒成立的问题。
略解:原不等式可化为)12()1(2---x m x >0,设f m x m x ()()()=---2121,则)(m f 在[-2,2]上恒大于0,故有:⎩⎨⎧>>-)2(0)2(f f 即⎪⎩⎪⎨⎧>-->+--0122032222x x x x 解得:-+<<+172132x2、二次函数型若二次函数)0(2≠++=a c bx ax y 大于0恒成立,则有⎩⎨⎧<∆>00a 若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识结合二次函数的图象求解。
高考数学恒成立问题的解法 推荐
恒成立问题的解法在不等式的综合题中,经常会遇到当一个结论对于某一个字母的某一个取值范围内所有值都成立的恒成立问题。
恒成立问题的基本类型:类型1:设)0()(2≠++=a c bx ax x f ,(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ; (2)R x x f ∈<在0)(上恒成立00<∆<⇔且a 。
类型2:设)0()(2≠++=a c bx ax x f (1)当>a 时,],[0)(βα∈>x x f 在上恒成立⎪⎩⎪⎨⎧>>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a bab f a b 或或, ],[0)(βα∈<x x f 在上恒成立⎩⎨⎧<<⇔0)(0)(βαf f (2)当0<a 时,],[0)(βα∈>x x f 在上恒成立⎩⎨⎧>>⇔0)(0)(βαf f],[0)(βα∈<x x f 在上恒成立⎪⎩⎪⎨⎧<>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a bab f a b 或或 类型3:αα>⇔∈>min )()(x f I x x f 恒成立对一切αα>⇔∈<max )()(x f I x x f 恒成立对一切。
类型4:)()()()()()()(max min I x x g x f x g x f I x x g x f ∈>⇔∈>的图象的上方或的图象在恒成立对一切 恒成立问题的解题的基本思路是:根据已知条件将恒成立问题向基本类型转化,正确选用函数法、最小值法、数形结合等解题方法求解。
一、一次函数对于一次函数],[,)(n m x b kx x f ∈+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔>0)(0)(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立 1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。
函数的恒成立问题
函数的恒成立问题函数的恒成立问题是一个重要的数学概念,它涉及到函数的性质和不等式的解法。
这类问题在数学高考和数学竞赛中经常出现,是考察学生数学思维和解题能力的重要题型。
函数的恒成立问题是指对于某个区间内的所有x值,函数f(x)都满足某个条件或不等式,即f(x)恒成立。
解决这类问题通常需要运用函数的性质、导数、参数分离等多种方法。
具体来说,解决函数的恒成立问题可以通过以下几种方法:1. 函数性质法:利用函数的性质,如单调性、奇偶性、周期性等,来证明函数恒成立。
2. 导数法:通过求函数的导数,研究函数的单调性和最值,进而证明函数恒成立。
3. 参数分离法:将参数与变量分离,转化为求函数的最值问题,再证明该最值满足条件。
4. 数形结合法:将函数与图形结合,通过观察图形的性质来证明函数恒成立。
举个例子,假设我们要求证函数f(x) = x^2 - 2x在区间[0,3]上恒成立。
我们可以采用以下步骤:1. 首先求出函数f(x)的导数f'(x),得到f'(x) = 2x - 2。
2. 然后通过分析f'(x)的符号,确定函数的单调性。
当f'(x) > 0时,f(x)单调递增;当f'(x) < 0时,f(x)单调递减。
由此可知,f(x)在区间[0,1]上单调递减,在区间[1,3]上单调递增。
3. 接下来求出函数在区间端点的值,即f(0)、f(1)、f(3)。
计算得到f(0) = 0,f(1) = -1,f(3) = 3。
4. 最后比较这些值,发现f(0)、f(1)、f(3)都满足条件,因此可以证明函数f(x)在区间[0,3]上恒成立。
以上是解决函数恒成立问题的一种基本思路和方法,当然具体的解题过程可能因题目的不同而有所差异。
在解决这类问题时,需要灵活运用数学知识,注重思维方法的训练和解题技巧的提升。
八种解法解决不等式恒成立问题
八种解法解决不等式恒成立问题1最值法例1.已知函数)0(ln )(44>-+=x c bx x ax x f 在1=x 处取得极值c --3,其中c b a ,,为常数.(I )试确定b a ,的值;(II )讨论函数)(x f 的单调区间;(III )若对于任意0>x ,不等式22)(c x f -≥恒成立,求c 的取值范围.分析:不等式22)(c x f -≥恒成立,可以转化为2min 2)(c x f -≥解:(I )(过程略)3,12-==b a .(II )(过程略)函数)(x f 的单调减区间为)1,0(,函数)(x f 的单调增区间为),1(+∞. (III )由(II )可知,函数)(x f 在1=x 处取得极小值c f --=3)1(,此极小值也是最小值.要使22)(c x f -≥(0>x )恒成立,只需223c c -≥--,解得23≥c 或1-≤c . 所以c 的取值范围为),23[]1,(+∞⋃--∞.评注:最值法是我们这里最常用的方法.a x f ≥)(恒成立a x f ≥⇔)(min ;a x f ≤)(恒成立a x f ≤⇔)(max .2分离参数法例2.已知函数x x x x f +-+=1)1(ln )(22(I )求函数)(x f 的单调区间;(II )若不等式e n a n ≤++)11(对于任意*∈N n 都成立(其中e 是自然对数的底数),求a 的最大值.分析:对于(II )不等式e na n ≤++)11(中只有指数含有a ,故可以将函数进行分离考虑. 解:(I )(过程略)函数)(x f 的单调增区间为)0,1(-,)(x f 的单调减区间为),0(+∞(II )不等式e n a n ≤++)11(等价于不等式1)11ln()(≤++n a n ,由于111>+n ,知1)11ln()(≤++na n n n a -+≤⇔)11ln(1;设x x x g 1)1ln(1)(-+= ]1,0(∈x ,则221)1(ln )1(1)(x x x x g +++-=')1(ln )1()1(ln )1(2222x x x x x x ++-++=. 由(I )知,01)1(ln 22≤+-+x x x ,即0)1(ln )1(22≤-++x x x ;于是,0)(<'x g ]1,0(∈x ,即)(x g 在区间]1,0(上为减函数.故)(x g 在]1,0(上的最小值为12ln 1)1(-=g . 所以a 的最大值为12ln 1-. 评注:不等式恒成立问题中,常常先将所求参数从不等式中分离出来,即:使参数和主元分别位于不等式的左右两边,然后再巧妙构造函数,最后化归为最值法求解.3 数形结合法例3.已知当]2,1(∈x 时,不等式x x a log )1(2≤-恒成立,则实数a 的取值范围是___.直角坐标系内作出函数2)1()(-=x x f x x g a log )(=在]2,1(∈x 观、简捷求解.解:在同一平面直角坐标系内作出函数2)1()(-=x x f 与函数x x g a log )(=在(∈x 图象(如右),从图象中容易知道:当0<a )(x g 上方,不合题意;当1>a 且]2,1(∈x 或部分点重合,就必须满足12log ≥a ,即21≤<a .故所求的a 的取值范围为]2,1(.评注:对不等式两边巧妙构造函数,数形结合,直观形象,是解决不等式恒成立问题的一种快捷方法. 4 变更主元法例4.对于满足不等式11≤≤-a 的一切实数a ,函数)24()4(2a x a x y -+-+=的值恒大于0,则实数x 的取值范围是___.分析:若审题不清,按习惯以x 为主元,则求解将非常烦琐.应该注意到:函数值大于0对一定取值范围的谁恒成立,则谁就是主元.解:设)44()2()(2+-+-=x x a x a f ,]1,1[+-∈a ,则原问题转化为0)(>a f 恒成立的问题. 故应该有⎩⎨⎧>>-0)1(0)1(f f ,解得1<x 或3>x . 所以实数x 的取值范围是),3()1,(+∞⋃-∞.评注:在某些特定的条件下,若能变更主元,转换思考问题的角度,不仅可以避免分类讨论,而且可以轻松解决恒成立问题.5 特殊化法例5.设0a 是常数,且1123---=n n n a a (*∈N n ).(I )证明:对于任意1≥n ,012)1(]2)1(3[51a a n n n n n n ⋅-+⋅-+=-. (II )假设对于任意1≥n 有1->n n a a ,求0a 的取值范围.分析:常规思路:由已知的递推关系式求出通项公式,再根据对于任意1≥n 有1->n n a a 求出0a 的取值范围,思路很自然,但计算量大.可以用特殊值探路,确定目标,再作相应的证明.解:(I )递推式可以化归为31)3(32311+-=--n n nn a a ,]51)3[(3251311--=---n n n n a a ,所以数列}513{-n n a 是等比数列,可以求得对于任意1≥n ,012)1(]2)1(3[51a a n n n n n n ⋅-+⋅-+=-. (II )假设对于任意1≥n 有1->n n a a ,取2,1=n 就有⎩⎨⎧>=->-=-0603101201a a a a a a 解得3100<<a ; 下面只要证明当3100<<a 时,就有对任意*∈N n 有01>--n n a a 由通项公式得011111215)1(2)1(332)(5a a a n n n n n n n ⋅⋅⋅-+⋅-⋅+⋅=------当12-=k n (*∈N k )时,02523322152332)(511101111=⋅-⋅+⋅>⋅⋅-⋅+⋅=--------n n n n n n n n a a a当k n 2=(*∈N k )时,023*********)(51101111=⋅-⋅>⋅⋅+⋅-⋅=-------n n n n n n n a a a ,可见总有1->n n a a . 故0a 的取值范围是)31,0(评注:特殊化思想不仅可以有效解答选择题,而且是解决恒成立问题的一种重要方法. 6分段讨论法例6.已知2)(--=a x x x f ,若当[]0,1x ∈时,恒有()f x <0,求实数a 的取值范围. 解:(i )当0x =时,显然()f x <0成立,此时,a R ∈(ii )当(]0,1x ∈时,由()f x <0,可得2x x -<a <2+x x , 令 (](]22(),(0,1);()(0,1)g x x x h x x x x x=-∈=+∈ 则221)(xx g +='>0,∴()g x 是单调递增,可知[]max ()(1)1g x g ==- 221)(xx h -='<0,∴()h x 是单调递减,可知[]min ()(1)3h x h == 此时a 的范围是(—1,3)综合i 、ii 得:a 的范围是(—1,3) .例7.若不等式032>+-ax x 对于]21,21[-∈x 恒成立,求a 的取值范围. 解:(只考虑与本案有关的一种方法)解:对x 进行分段讨论,当0=x 时,不等式恒成立,所以,此时R a ∈; 当]21,0(∈x 时,不等式就化为x x a 3+<,此时x x 3+的最小值为213,所以213<a ; 当)0,21[-∈x 时,不等式就化为x x a 3+>,此时x x 3+的最大值为213-,所以213->a ; 由于对上面x 的三个范围要求同时满足,则所求的a 的范围应该是上三个a 的范围的交集即区间)213,213(- 说明:这里对变量x 进行分段来处理,那么所求的a 对三段的x 要同时成立,所以,用求交集的结果就是所求的结果.评注:当不等式中左右两边的函数具有某些不确定的因素时,应该用分类或分段讨论方法来处理,分类(分段)讨论可使原问题中的不确定因素变化成为确定因素,为问题解决提供新的条件;但是最后综合时要注意搞清楚各段的结果应该是并集还是别的关系.7单调性法例8.若定义在),0(+∞的函数)(x f 满足)()()(xy f y f x f =+,且1>x 时不等式0)(<x f 成立,若不等式)()()(22a f xy f y x f +≤+对于任意),0(,+∞∈y x 恒成立,则实数a 的取值范围是___.解:设210x x <<,则112>x x ,有0)(12<x x f .这样,0)()()()()()()()(121112111212<=-+=-⋅=-x x f x f x f x x f x f x x x f x f x f ,则)()(12x f x f <,函数)(x f 在),0(+∞为减函数. 因此)()()(22a f xy f y x f +≤+⇔)()(22xy a f y x f ≤+⇔xy a y x ≥+22xy y x a 22+≤⇔;而2222=≥+xy xyxy y x (当且仅当y x =时取等号),又0>a ,所以a 的取值范围是]2,0(.评注:当不等式两边为同一函数在相同区间内的两个函数值时,可以巧妙利用此函数的单调性,把函数值大小关系化归为自变量的大小关系,则问题可以迎刃而解.8判别式法例9.若不等式012>++ax ax 对于任意R x ∈恒成立.则实数a 的取值范围是___. 分析:此不等式是否为一元二次不等式,应该先进行分类讨论;一元二次不等式任意R x ∈恒成立,可以选择判别式法.解:当0=a 时,不等式化为01>,显然对一切实数恒成立; 当0≠a 时,要使不等式012>++ax ax 一切实数恒成立,须有⎩⎨⎧<-=∆>0402a a a ,解得40<<a .综上可知,所求的实数a 的取值范围是)4,0[.不等式恒成立问题求解策略一般做法就是上面几种,这些做法是通法,对于具体问题要具体分析,要因题而异,如下例.例10.关于x 的不等式ax xx x ≥-++232525在]12,1[∈x 上恒成立,求 实数a 的取值范围.通法解:用变量与参数分离的方法,然后对变量进行分段处理;∵]12,1[∈x ,∴不等式可以化为a x x x x ≥-++5252;下面只要求x x xx x f 525)(2-++=在]12,1[∈x 时的最小值即可,分段处理如下.当]5,1[∈x 时,x x x x f 256)(2++-=,223225622562)(x x x x x x f -+-=-+-=',再令2562)(231-+-=x x x f ,0126)(21=+-='x x x f ,它的根为2,0;所以在区间)2,1[上有0)(1>'x f ,)(x f 递增,在区间]5,2(上有0)(1<'x f ,)(x f 递减,则就有2562)(231-+-=x x x f 在]5,1[∈x 的最大值是017)2(1<-=f ,这样就有0)(<'x f ,即)(x f 在区间]5,1[是递减.同理可以证明)(x f 在区间]12,5[是递增;所以,x x xx x f 525)(2-++=在]12,1[∈x 时的最小值为10)5(=f ,即10≤a . 技巧解:由于]12,1[∈x ,所以,25225≥+xx ,052≥-x x 两个等号成立都是在5=x 时;从而有10525)(2≥-++=x x x x x f (5=x 时取等号),即10≤a . 评注:技巧解远比通法解来得简单、省力、省时但需要扎实的数学基本功.。
最全总结之导数恒成立问题
恒成立问题类型一由恒成立求参数之参数分离例1.(宜昌市2019届)已知函数.(1)求函数的单调区间;(2)若关于的不等式在上恒成立,求实数的取值范围.解析:(1)依题意,当时,令,得或,令,得,可知的增区间为,,减区间为;当时,令,得,令,得或,可知的增区间为,减区间为,.综上,当时,的增区间为,,减区间为;当时,的增区间为,减区间为,.(2)方法一:,即,令,则,令,则.①若,当时,,从而在上单调递增,因为,故当时,,即,从而在上单调递增,因为,故当时,恒成立,符合题意;②若,当时,恒成立,从而在上单调递减,则,即时,,从而在上单调递减,此时,不符合题意;③若,由,得,当时,,故在上单调递减,则,即,故在上单调递减,故当时,,不符合题意;综上所述,实数的取值范围为方法二 分离参数法(好处是不用讨论参数,坏处是可能计算比较复杂),即,x x xe x e a 221-->即的最大值问题转化成求函数令)(1)(22x g xex e x g xx --=x x e x e x x x g 2222122)('-++=x e x x x h 22122)(-++=令x x e x x e x x h 22224)(224)('-+=-+=ϕ,令则 )1(4)('2x e x -=ϕ则00)('==x x 得:令ϕ上单调递减上单调递增,在在所以),0()0,()(+∞-∞x ϕ0)0()(=≤ϕϕx 0)('≤x h 即0)0()()(')(=<=h x h x g x h 单调递减,则所以)0()()(g x g x g <单调递减,则所以0lim )0(→=x g x xxe x e 221--1)12(12lim )'()'1(lim 220220=+-=--=→→x e e xe x e x x x x x x 用到洛必达法则)( 11)(≥⇒<a x g 所以跟踪训练一1. (长春实验高中2019届 )已知函数.(1)证明:当时,函数在上是单调函数;(2)当时,恒成立,求实数的取值范围. 解析:(1),令,则.则当时,,当时,.所以函数在取得最小值,.故,即函数在上是单调递增函数.(2)当时,,即令(),则令(),则.当时,单调递增,.则当时,,所以单调递减.当时,,所以单调递增.所以,所以.点睛:导数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为,若恒成立,转化为;(3)若恒成立,可转化为.2.(2019届高三毕业班)已知函数.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)若恒成立,求的取值范围.解析:(Ⅰ)当时,,则,∴,,∴曲线在点处的切线方程为.(Ⅱ)若对恒成立,即对恒成立,设,可得,由,可得,当时,,单调递增;当时,,单调递减.∴在处取得极大值,且为最大值,∴的取值范围为.【点睛】曲线的切线问题要区分是“在点”还是“过点”切线问题,在点相比容易,“过点”则需要对此点进行分情况讨论;恒成立问题常见解法是分离变量,构造新函数求解最值,有时也可分情况讨论。