2020年江苏省南京市实验学校中考模拟数学试题一
南京市2020版数学中考一模试卷(I)卷

南京市2020版数学中考一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七下·合肥期中) 下列各数:,,,-0.34,,,0.101001(每两个1之间的0增加一个)中,无理数有()A . 1个B . 2个C . 3个D . 4个2. (2分)下面四个几何体中,其左视图为圆的是()A .B .C .D .3. (2分)如图,直线l1∥l2 ,∠1=50°,∠2=23°20′,则∠3的度数为()A . 26°40′B . 27°20′C . 27°40′D . 73°20′4. (2分) (2015八下·农安期中) 如果分式的值为0,那么x为()A . ﹣2B . 0C . 1D . 25. (2分)下列运算正确的是()A . a6÷a2=a3B . a6+a2=a8C . (a2)3=a6D . 2a×3a=6a6. (2分) (2017·天等模拟) 某市今年参加中考的学生人数大约为2.08×104人,对于这个用科学记数表示的近似数,下列说法中正确的是()A . 精确到百分位B . 精确到十分位C . 精确到个位D . 精确到百位7. (2分)(2019·凤翔模拟) 如图,⨀O是△ABC的外接圆,直径AD=4,∠ABC=∠DAC,则AC的长为()A . 2B . 2C . 4D . 68. (2分)不等式组的整数解的个数是()A . 3B . 5C . 7D . 无数个9. (2分)下列各选项的两个图形(实线部分),不属于位似图形的是()A .B .C .D .10. (2分)一个圆形人工湖如图所示,弦AB是湖上的一座桥,已知桥AB长100m,测得圆周角∠ACB=45°,则这个人工湖的直径AD为()A . mB . mC . mD . m二、填空题 (共4题;共4分)11. (1分) (2019八下·端州月考) 计算的结果是________.12. (1分) (2018八上·重庆期末) 如图,在四边形ABCD中,,,将AD、BC 分别平移到EF和EG的位置若,,,则AB的长是________cm.13. (1分)(2019·通辽) 如图,是我市6月份某7天的最高气温折线统计图,则这些最高气温的中位数是________℃.14. (1分) (2018九上·杭州期中) 若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上的数字为6,则从3,4,5,7,8中任选两数(不重复),与6组成“中高数”的概率是为________.三、解答题 (共10题;共64分)15. (5分)计算:(1)(x+3)2+x(x﹣6)(2)(x+1﹣)÷ .16. (5分) (2017九上·肇源期末) 解方程:.17. (2分) (2019八上·港南期中) 已知为的内角平分线,,,,请画出图形,(必须保留作图痕迹).18. (2分)每年5月的第二个星期日是“母亲节”,为了解同学们今年母亲节是怎样陪妈妈过的,随机对校园里的同学进行了调查,调查结果有以下几种:“给妈妈买礼物”,“帮妈妈做家务”,“陪妈妈看电影”,“今年忘了”,分别记为“A”,“B”,“C”,“D”.根据调查统计结果绘制了如下两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:(1)这次共调查了________名同学,扇形统计图中表示“C”的扇形的圆心角的度数为________度,请补全折线统计图;(2)现在要从选择“B”的同学和选择“D”的同学中分别选一位同学来谈谈各自对“母亲节”的感想,请用画树状图或列表法求选中的两人刚好是一位女同学和一位男同学的概率.19. (10分) (2017八上·乐清期中) 育英学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.20. (2分)如图,在△ABC中,∠ABC=90°,延长AB至E,使AE=AC,过E作EF⊥AC于F,EF交BC于G.(1)求证:AG平分∠BAC;(2)若∠E=40°,求∠AGB的度数.21. (2分)(2018·南京) 如图,为了测量建筑物的高度,在处树立标杆,标杆的高是 .在上选取观测点、,从测得标杆和建筑物的顶部、的仰角分别为、,从测得、的仰角分别为、 .求建筑物的高度(精确到) .(参考数据:,, .)22. (10分)(2018·兰州) 如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于点和.(1)求一次函数和反比例函数的表达式;(2)请直接写出时,x的取值范围;(3)过点B作轴,于点D,点C是直线BE上一点,若,求点C的坐标.23. (15分)(2018·宜宾) 在平面直角坐标系中,已知抛物线的顶点坐标为,且经过点 .如图,直线与抛物线交于点两点,直线为 .(1)求抛物线的解析式;(2)在上是否存在一点,使取得最小值?若存在,求出点的坐标;若不存在,请说明理由.(3)已知为平面内一定点,为抛物线上一动点,且点到直线的距离与点到点的距离总是相等,求定点的坐标.24. (11分)(2016·嘉兴) 我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究;如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展;如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、解答题 (共10题;共64分)15-1、15-2、16-1、17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、。
2019-2020南京市数学中考一模试卷含答案

2019-2020南京市数学中考一模试卷含答案一、选择题1.如图,下列四种标志中,既是轴对称图形又是中心对称图形的为( )A .B .C .D .2.在如图4×4的正方形网格中,△MNP 绕某点旋转一定的角度,得到△M 1N 1P 1,则其旋转中心可能是( )A .点AB .点BC .点CD .点D3.如图,将△ABC 绕点C (0,1)旋转180°得到△A'B'C ,设点A 的坐标为(,)a b ,则点的坐标为( )A .(,)a b --B .(,1)a b ---C .(,1)a b --+D .(,2)a b --+4.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是( )A .5{152x y x y =+=-B .5{1+52x y x y =+=C .5{2-5x y x y =+=D .-5{2+5x y x y ==5.如图,在菱形ABCD 中,E 是AC 的中点,EF ∥CB ,交AB 于点F ,如果EF=3,那么菱形ABCD 的周长为( )A .24B .18C .12D .96.如图,AB 是一垂直于水平面的建筑物,某同学从建筑物底端B 出发,先沿水平方向向右行走20米到达点C ,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD 到达点D ,然后再沿水平方向向右行走40米到达点E (A ,B ,C ,D ,E 均在同一平面内).在E 处测得建筑物顶端A 的仰角为24°,则建筑物AB 的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)( )A .21.7米B .22.4米C .27.4米D .28.8米7.2-的相反数是( ) A .2-B .2C .12D .12-8.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,所列方程组正确的是( )A .783230x y x y +=⎧⎨+=⎩B .782330x y x y +=⎧⎨+=⎩C .302378x y x y +=⎧⎨+=⎩D .303278x y x y +=⎧⎨+=⎩9.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为() A .()11362x x -= B .()11362x x += C .()136x x -= D .()136x x +=10.已知命题A :“若a 2a a =”.在下列选项中,可以作为“命题A 是假命题”的反例的是( ) A .a =1B .a =0C .a =﹣1﹣k (k 为实数)D .a =﹣1﹣k 2(k 为实数)11.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是( )A .15.5,15.5B .15.5,15C .15,15.5D .15,1512.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )A .B .C .D .二、填空题13.如图,直线l x ⊥轴于点P ,且与反比例函数11k y x=(0x >)及22ky x =(0x >)的图象分别交于A 、B 两点,连接OA 、OB ,已知OAB ∆的面积为4,则12k k =﹣________.14.如图,在菱形ABCD 中,AB=5,AC=8,则菱形的面积是 .15.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y=kx的图象上,则k的值为________.16.如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.17.在学习解直角三角形以后,某兴趣小组测量了旗杆的高度.如图,某一时刻,旗杆AB 的影子一部分落在水平地面L的影长BC为5米,落在斜坡上的部分影长CD为4米.测得斜CD的坡度i=1:.太阳光线与斜坡的夹角∠ADC=80°,则旗杆AB的高度_____.(精确到0.1米)(参考数据:sin50°=0.8,tan50°=1.2,=1.732)18.已知一组数据6,x,3,3,5,1的众数是3和5,则这组数据的中位数是_____.19.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.20.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿N→P→Q→M 方向运动至点 M 处停止,设点 R 运动的路程为 x,△MNR 的面积为 y,如果 y 关于 x 的函数图象如图②所示,则矩形 MNPQ 的面积是________.三、解答题21.2x=600答:甲公司有600人,乙公司有500人.点睛:本题考查了分式方程的应用,关键是分析题意找出等量关系,通过设未知数并根据等量关系列出方程.22.如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=4cm,以BC为直径作⊙O交AB于点D.(1)求线段AD的长度;(2)点E是线段AC上的一点,试问:当点E在什么位置时,直线ED与⊙O相切?请说明理由.23.如图,AB是⊙O的直径,点C是的中点,连接AC并延长至点D,使CD=AC,点E是OB上一点,且,CE的延长线交DB的延长线于点F,AF交⊙O于点H,连接BH.(1)求证:BD是⊙O的切线;(2)当OB=2时,求BH的长.24.先化简(31a+-a+1)÷2441a aa-++,并从0,-1,2中选一个合适的数作为a的值代入求值.25.某校在宣传“民族团结”活动中,采用四种宣传形式:A.器乐,B.舞蹈,C.朗诵,D.唱歌.每名学生从中选择并且只能选择一种最喜欢的,学校就宣传形式对学生进行了抽样调查,并将调查结果绘制了如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次调查的学生共有人;(2)补全条形统计图;(3)该校共有1200名学生,请估计选择“唱歌”的学生有多少人?(4)七年一班在最喜欢“器乐”的学生中,有甲、乙、丙、丁四位同学表现优秀,现从这四位同学中随机选出两名同学参加学校的器乐队,请用列表或画树状图法求被选取的两人恰好是甲和乙的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】解:A.不是轴对称图形,是中心对称图形,不符合题意;B.既是轴对称图形,也是中心对称图形,符合题意;C.不是轴对称图形,是中心对称图形,不符合题意;D.不是轴对称图形,也不是中心对称图形,不符合题意.故选B.2.B解析:B【解析】【分析】根据旋转中心的确认方法,作对应点连线的垂直平分线,再找到交点即可得到.【详解】解:∵△MNP绕某点旋转一定的角度,得到△M1N1P1,∴连接PP1、NN1、MM1,作PP1的垂直平分线过B、D、C,作NN1的垂直平分线过B、A,作MM1的垂直平分线过B,∴三条线段的垂直平分线正好都过B,即旋转中心是B.故选:B.【点睛】此题主要考查旋转中心的确认,解题的关键是熟知旋转的性质特点.3.D解析:D试题分析:根据题意,点A 、A′关于点C 对称,设点A 的坐标是(x ,y ),则0122a xb y++==,,解得2x a y b =-=-+,,∴点A 的坐标是(2)a b --+,.故选D . 考点:坐标与图形变化-旋转.4.A解析:A 【解析】 【分析】设索长为x 尺,竿子长为y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x 、y 的二元一次方程组. 【详解】设索长为x 尺,竿子长为y 尺,根据题意得:5152x y x y =+⎧⎪⎨=-⎪⎩.故选A . 【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5.A解析:A 【解析】【分析】易得BC 长为EF 长的2倍,那么菱形ABCD 的周长=4BC 问题得解. 【详解】∵E 是AC 中点, ∵EF ∥BC ,交AB 于点F , ∴EF 是△ABC 的中位线, ∴BC=2EF=2×3=6, ∴菱形ABCD 的周长是4×6=24, 故选A .【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的关键.6.A解析:A 【解析】 【分析】作BM ⊥ED 交ED 的延长线于M ,CN ⊥DM 于N .首先解直角三角形Rt △CDN ,求出CN ,DN ,再根据tan24°=AMEM,构建方程即可解决问题.作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵140.753CNDN==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=AM EM,∴0.45=866AB +,∴AB=21.7(米),故选A.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.7.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .8.A解析:A【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.9.A解析:A【解析】【分析】共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.【详解】解:设有x个队参赛,根据题意,可列方程为:12x(x﹣1)=36,故选:A.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系. 10.D解析:D【解析】【分析】a=可确定a的范围,排除掉在范围内的选项即可.【详解】解:当a≥0a=,当a<0a=-,∵a=1>0,故选项A不符合题意,∵a=0,故选项B不符合题意,∵a=﹣1﹣k,当k<﹣1时,a>0,故选项C不符合题意,∵a=﹣1﹣k2(k为实数)<0,故选项D符合题意,故选:D.【点睛】a aaa a≥⎧==⎨-≤⎩,正确理解该性质是解题的关键. 11.D解析:D【解析】【分析】【详解】根据图中信息可知这些队员年龄的平均数为:132146158163172181268321⨯+⨯+⨯+⨯+⨯+⨯+++++=15岁,该足球队共有队员2+6+8+3+2+1=22人,则第11名和第12名的平均年龄即为年龄的中位数,即中位数为15岁, 故选D .12.D解析:D 【解析】 【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解. 【详解】∵二次函数图象开口方向向上, ∴a >0,∵对称轴为直线02bx a=->,∴b <0,二次函数图形与x 轴有两个交点,则24b ac ->0, ∵当x =1时y =a +b +c <0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交,反比例函数a b cy x++=图象在第二、四象限, 只有D 选项图象符合. 故选:D. 【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.二、填空题13.【解析】【分析】根据反比例函数的几何意义可知:的面积为的面积为然后两个三角形面积作差即可求出结果【详解】解:根据反比例函数的几何意义可知:的面积为的面积为∴的面积为∴∴故答案为8【点睛】本题考查反比解析:【解析】 【分析】根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k ,然后两个三角形面积作差即可求出结果.【详解】 解:根据反比例函数k 的几何意义可知:AOP ∆的面积为112k ,BOP ∆的面积为212k , ∴AOB ∆的面积为121122k k -,∴1211422k k -=,∴128k k -=. 故答案为8.【点睛】 本题考查反比例函数k 的几何意义,解题的关键是正确理解k 的几何意义,本题属于基础题型.14.【解析】【分析】连接BD 交AC 于点O 由勾股定理可得BO=3根据菱形的性质求出BD 再计算面积【详解】连接BD 交AC 于点O 根据菱形的性质可得AC⊥BDAO=CO=4由勾股定理可得BO=3所以BD=6即可解析:【解析】【分析】连接BD ,交AC 于点O ,由勾股定理可得BO=3,根据菱形的性质求出BD ,再计算面积.【详解】连接BD ,交AC 于点O ,根据菱形的性质可得AC ⊥BD ,AO=CO=4,由勾股定理可得BO=3,所以BD=6,即可得菱形的面积是12×6×8=24.考点:菱形的性质;勾股定理.15.-6【解析】因为四边形OABC 是菱形所以对角线互相垂直平分则点A 和点C 关于y 轴对称点C 在反比例函数上设点C 的坐标为(x)则点A 的坐标为(-x)点B 的坐标为(0)因此AC=-2xOB=根据菱形的面积等解析:-6【解析】因为四边形OABC 是菱形,所以对角线互相垂直平分,则点A 和点C 关于y 轴对称,点C 在反比例函数上,设点C 的坐标为(x ,k x ),则点A 的坐标为(-x ,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得: ()OABC 122122k S x x=⨯-⨯=菱形,解得 6.k =- 16.2【解析】由D 是AC 的中点且S△ABC=12可得;同理EC=2BE 即EC=可得又等量代换可知S△ADF-S△BEF=2解析:2【解析】由D 是AC 的中点且S △ABC =12,可得1112622ABD ABC S S ∆∆==⨯=;同理EC=2BE 即EC=13BC ,可得11243ABE S ∆=⨯=,又,ABE ABF BEF ABD ABF ADF S S S S S S ∆∆∆∆∆∆-=-=等量代换可知S △ADF -S △BEF =217.2m 【解析】【分析】延长AD 交BC 的延长线于点E 作DF ⊥CE 于点F 解直角三角形求出EFCF 即可解决问题【详解】延长AD 交BC 的延长线于点E 作DF ⊥CE 于点F 在△DCF 中∵CD =4mDF :CF =1:3解析:2m .【解析】【分析】延长AD 交BC 的延长线于点E ,作DF ⊥CE 于点F .解直角三角形求出EF ,CF ,即可解决问题.【详解】延长AD 交BC 的延长线于点E ,作DF ⊥CE 于点F .在△DCF 中,∵CD =4m ,DF :CF =1:,∴tan ∠DCF =, ∴∠DCF =30°,∠CDF =60°.∴DF =2(m ),CF =2(m ),在Rt △DEF 中,因为∠DEF =50°,所以EF =≈1.67(m )∴BE =EF+FC+CB =1.67+2+5≈10.13(m ), ∴AB =BE•tan50°≈12.2(m ),故答案为12.2m.【点睛】本题主要考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.18.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主解析:4【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6,∴这组数据的中位数为352=4,故答案为:4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键.19.110°或70°【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时腰上的高在外部根据三角形的一个外角等于与它不相邻的两个内角的和即可求得顶角是90°+20°=110°;当等腰三角形的顶角解析:110°或70°.【解析】试题分析:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.20.20【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x=4时点R到达Px=9时点R到Q点则PN=4QP=5∴矩形MNPQ的面积是20【点睛】本题为动点问题的函数图象探究题考查了动点到达解析:20【解析】【分析】根据图象横坐标的变化,问题可解.【详解】由图象可知,x=4时,点R到达P,x=9时,点R到Q点,则PN=4,QP=5∴矩形MNPQ的面积是20.【点睛】本题为动点问题的函数图象探究题,考查了动点到达临界点前后图象趋势的趋势变化.解答时,要注意数形结合.三、解答题21.无22.(1)AD=95;(2)当点E是AC的中点时,ED与⊙O相切;理由见解析.【解析】【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED与 O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE 即可.【详解】(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【点睛】本题考查了圆周角定理、切线的判定、相似三角形的判定与性质,熟练掌握该知识点是本题解题的关键.23.(1)证明见解析;(2)BH=.【解析】【分析】(1)先判断出∠AOC=90°,再判断出OC∥BD,即可得出结论;(2)先利用相似三角形求出BF,进而利用勾股定理求出AF,最后利用面积即可得出结论.【详解】(1)连接OC,∵AB是⊙O的直径,点C是的中点,∴∠AOC=90°,∵OA=OB,CD=AC,∴OC是△ABD是中位线,∴OC∥BD,∴∠ABD=∠AOC=90°,∴AB⊥BD,∵点B在⊙O上,∴BD是⊙O的切线;(2)由(1)知,OC∥BD,∴△OCE∽△BFE,∴,∵OB=2,∴OC=OB=2,AB=4,,∴,∴BF=3,在Rt△ABF中,∠ABF=90°,根据勾股定理得,AF=5,∵S△ABF=AB•BF=AF•BH,∴AB•BF=AF•BH,∴4×3=5BH,∴BH=.【点睛】此题主要考查了切线的判定和性质,三角形中位线的判定和性质,相似三角形的判定和性质,求出BF=3是解本题的关键.24.【解析】试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.试题解析:原式=223111(2)a aa a-++⨯+-=2(2)(2)11(2)a a aa a-+-+⨯+-=22aa+--;当a=0时,原式=1.考点:分式的化简求值.25.(1)本次调查的学生共有100人;(2)补图见解析;(3)选择“唱歌”的学生有480人;(4)被选取的两人恰好是甲和乙的概率是16.【解析】【分析】(1)根据A项目的人数和所占的百分比求出总人数即可;(2)用总人数减去A、C、D项目的人数,求出B项目的人数,从而补全统计图;(3)用该校的总人数乘以选择“唱歌”的学生所占的百分比即可;(4)根据题意先画出树状图,得出所有等情况数和选取的两人恰好是甲和乙的情况数,然后根据概率公式即可得出答案.【详解】(1)本次调查的学生共有:30÷30%=100(人);(2)喜欢B类项目的人数有:100﹣30﹣10﹣40=20(人),补图如下:(3)选择“唱歌”的学生有:1200×40100=480(人);(4)根据题意画树形图:共有12种情况,被选取的两人恰好是甲和乙有2种情况,则被选取的两人恰好是甲和乙的概率是212=16.【点睛】本题考查列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.。
2020年江苏省南京市中考数学模拟检测试卷附解析

2020年江苏省南京市中考数学模拟检测试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.∠A 是锐角,tanA>33,则∠A ( ) A .小于30° B .大于30° C .小于60° D .大于60°2.下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同一个圆中,相等的圆周角所对的弦相等;④三个点确定一个圆. 其中正确命题的个数为( )A .1 个B .2 个C .3 个D .4 个 3.已知ABC △内接于⊙O ,OD AC ⊥于D ,如果32COD =∠,那么B ∠的度数为( )A .16°B .32°C .16°或164°D .32°或148°4.如图,一块等边三角形的木板,边长为 1,现将木板沿水平线翻滚(如图),那么B 点从开始至结束所走过的路程长度为( )A .32πB .43πC .4D .322π+5.用反证法证明“a b >”时应假设( )A .a b >B .a b <C .a b =D .a b ≤6.证明下列结论不能运用公理“同位角相等,两直线平行”的是 ( )A .同旁内角互补,两直线平行B .内错角相等,两直线平行C .对顶角相等D .平行于同一直线的两条直线平行7.编织一副手套收费3.5元,则加工费y (元)与加工件数x (副)之间的函数解析式为 ( )A .y=3.5+xB .y=3.5-xC .y=3.5xD . 3.5y x = 8.2421-可以被在60 和 70 之间的两个数整除,这两个数是( )A .61,63B .63,65C . 65,67D . 67,699.从1 到 20 的 20 个自然数中任取一个,既是2 的倍数,又是 3 的倍数的概率是( )A .120B .310C . 12 D .320 10.下列英文字母中是轴对称图形的是( )A .SB .HC .PD .Q二、填空题11.在一个有两层的书架中,上层放有语文、数学两本书,下层放有科学、英语、社会 3 本书,由于封面都被同样的纸包起来,无法辨认,现分别从上下层中各抽出一本书,恰好分别是数学和社会的概率是 .12.已知矩形的面积为 24㎝2,那么矩形的长y(㎝)与宽 x(cm)之间的函数解析式为 ,比例系数是 .13.已知223x x --与7x +的值相等,则x 的值是 .14.如图所示,□ABCD 中,AB=8 cm ,64ABCD S =cm 2,OE ⊥AB 于E ,则OE= cm .15.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点:观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第l0个正方形(实线)四条边上的整点个数共有 个.16.在正数种运算“*”,其规则为a *b =11a b+,根据这个规则(1)*(1)0x x -+=的解为 . 17.(12a 3-8a 2+25a )÷4a= . 18.3227xy z -的次数是 ,系数是 . 19.33亿精确到 位,有 个有效数字,它们是 ;26.5万精确到 位,有 个有效数字,它们是 .三、解答题20.如图所示:大王站在墙前,小明站在墙后,大王不能让小明看见,请你画出小明的活动区域.21.已知:如图,P是正方形ABCD内一点,在正方形ABCD外有一点E,满足∠ABE=∠CBP,BE=BP,(1) 求证:△CPB≌△AEB;(2) 求证:PB⊥BE;(3) 若PA∶PB=1∶2,∠APB=135°,求PA∶AE的值.22.若规定两数a,b通过“※”运算,得到4ab,即a※b=4ab,例如 2※6=4×2×6 =48.(1)求3※5 的值;(2)求x※x+2※x-2※4=0中x的值.23.如图,在矩形ABCD中,AB=2BC,在CD上取一点E.使AE=AB,求∠EBC的度数.24.解不等式,并把不等式的解在数轴上表示出来:(1)3(3)4(1)2y y-<++;(2)323 228x x-≥-25.阅读下列解题过程:已知:a、b、c为△ABC一的三边,且满足222244a cbc a b-=-,试判定△ABC的形状.解:∵222244a cbc a b-=-(A)∴2222222()()()c a b a b a b-=+-,(B)∴222c a b=+, (C)∴△ABC是直角三角形.问:(1)上述解题过程中,从哪一步开始出现错误?请你写出该步的代号:.(2)错误的原因为:.(3)本题正确的结论是:.26.如图,已知∠ABC = 50°,∠ACB = 80°,∠ABC、∠ACB 的平分线交于点O.过点O 作BC 的平行线,分别交 AB、AC 于点D、E.求∠BOC的度数.27.探索发现:两个多项式相除,可以先把这两个多项式都按照同一字母降幂排列,然后再仿照两个多位数相除的计算方法,用竖式进行计算,例如(7x+2+6x2)÷(2x+1)•,•仿照672÷21计算如下:F E D C B A 因此(7x+2+6x 2)÷(2x+1)=3x+2,阅读上述材料后,试判断x 3-x 2-5x-3能否被x+1•整除,说明理由.28.如图,BD =CD ,∠ABD =∠ACD ,DE 、DF 分别垂直于AB 及AC 交延长线于E 、F . 求证:DE =DF .29. 已知一个角的补角比这个角小 30°,求这个角的度数.30.如图,射线OC 和OD 把平角AOB 三等分,OE 平分∠AOC ,OF 平分∠BOD .(1)求∠COD 的度数;(2)写出图中所有的直角;(3)写出∠COD 的所有余角和补角.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.D4.B5.D6.C7.C8.B9.D10.B二、填空题11. 1612. 24y x=,24 13.5 或-214.415.4016.0x =17.85232+-a a 18. 4,87- 19.亿两;3,3;千,三;2,6,5三、解答题20.如图,阴影部分即为小明的活动区域.21.解(1) 正方形ABCD ,∴AB=BC , ∠ABE =∠CBP ,BE =BP ,∴△CPB ≌△AEB(2) ∠ABC =∠CBP+∠ABP =90°,∠PBE =∠EBA+∠ABP而∠ABE =∠CBP ,∴∠ABC =∠PBE=90°,∴PB ⊥BE .(3)连结PE , △CPB ≌△AEB ∴PB=EB PB ⊥BE ,∴△EPB 为等腰直角三角形,∴∠BPE =∠BEP=45°,∠APB =135°,∴∠APE =90°,PA ∶PB =1∶2,设PA=x ,则PB=2x ,PE=x 22,∴由勾股定理得AE=22)22(x x +=3x ,∴PA ∶AE=x ∶3x =1∶3. 22.(1) 60 (2)12x =,24x =-23.15°24.(1)y>-15;(2)x ≤412图略 25.(1)C ;(2)220a b -=可能成立;(3)△ABC 为等腰三角形或直角三角形26.115°27.能,商式为322--x x .28.∠ABD=∠ACD ,则∠E+∠BDE =∠F+∠CDF, 由于 ∠E=∠F ,∴∠BDE =∠CDF ,∴△BED ≌△CFD(AAS),∴DE=DF .29.105°30.(1)60° (2)∠DOE 与∠COF (2)∠COD 的余角:∠AOE 、∠EOC 、∠DOF 、∠FOB ;∠COD 的补角:∠AOD 、∠EOF 、∠BOC。
2020中考数学模拟试卷1+参考答案+评分标准

2020中考数学模拟试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1. 在-4,2,-1,3这四个数中,比-2小的数是( )A. -4B. 2C. -1D. 32. 计算 8×2的结果是( )A. 10B. 4C. 6D. 23. 移动互联网已经全面进入人们的日常生活.截至2015年3月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为( )A. 1.62×104B. 162×106C. 1.62×108D. 0.162×109 4. 下列几何体中,俯视图是矩形的是( )5. 与1+5最接近的整数是( )A. 4B. 3C. 2D. 16. 我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的年平均增长率为x ,则下列方程正确的是( )A. 1.4(1+x )=4.5B. 1.4(1+2x )=4.5C. 1.4(1+x )2=4.5D. 1.4(1+x )+1.4(1+x )2=4.57. 某校九年级(1)班全体学生2015年初中毕业体育学业考试的成绩统计如下表:成绩(分) 35 39 42 44 45 48 50 人数2566876根据上表中的信息判断,下列结论中错误..的是( ) A. 该班一共有40名同学B. 该班学生这次考试成绩的众数是45分C. 该班学生这次考试成绩的中位数是45分D. 该班学生这次考试成绩的平均数是45分8. 在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED =60°,则一定有( ) A. ∠ADE =20° B. ∠ADE =30° C. ∠ADE =12∠ADC D. ∠ADE =13∠ADC9. 如图,矩形ABCD 中,AB =8,BC =4,点E 在AB 上,点F 在CD 上,点G 、H 在对角线AC 上,若四边形EGFH 是菱形,则AE 的长是( )第9题图A. 25B. 35C. 5D. 610. 如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 的图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能为( )二、填空题(本大题共4小题,每小题5分,满分20分)11. -64的立方根是________.12. 如图,点A 、B 、C 在⊙O 上,⊙O 的半径为9,AB ︵的长为2π,则∠ACB 的大小是________.第12题图13. 按一定规律排列的一列数:21,22,23,25,28,213,…,若x 、y 、z 表示这列数中的连续三个数,猜测x 、y 、z 满足的关系式是________.14. 已知实数a 、b 、c 满足a +b =ab =c ,有下列结论:①若c ≠0,则1a +1b=1;②若a =3,则b +c =9; ③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8.其中正确的是________.(把所有正确结论的序号都选上) 三、(本大题共2小题,每小题8分,满分16分)15. 先化简,再求值:(a 2a -1+11-a )·1a ,其中a =-12.16. 解不等式:x3>1-x -36.四、(本大题共2小题,每小题8分,满分16分)17. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.第17题图18. 如图,平台AB 高为12米,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度.(3≈1.7)第18题图五、(本大题共2小题,每小题10分,满分20分)19. A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的接球者将球随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.20. 在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图①,当PQ∥AB时,求PQ长;(2)如图②,当点P在BC上移动时,求PQ长的最大值.第20题图六、(本题满分12分)21. 如图,已知反比例函数y=k1x与一次函数y=k2x+b的图象交于A(1,8),B(-4,m).(1)求k1、k2、b的值;(2)求△AOB的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=k1x图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限,并简要说明理由.第21题图七、(本题满分12分)22. 为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度是x 米,矩形区域ABCD 的面积为y 平方米.(1)求y 与x 之间的函数关系式,并注明自变量x 的取值范围; (2)x 取何值时,y 有最大值?最大值是多少?第22题图八、(本题满分14分)23. 如图①,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接GA 、GB 、GC 、GD 、EF ,若∠AGD =∠BGC .(1)求证:AD =BC ;(2)求证:△AGD ∽△EGF ;(3)如图②,若AD 、BC 所在直线互相垂直,求ADEF的值.图① 图②第23题图参考答案与试题解析1. A 【解析】把-4,2,1,3和-2在数轴上分别表示出来如解图,由数轴上左边的数总比右边的数小,即-4<-2,故选A.第1题解图2. B 【解析】根据二次根式的运算法则可得8×2=8×2=16=4. 【一题多解】对于二次根式的运算,也可以先将二次根式化为最简二次根式,然后进行计算.8×2=22×2=22×2=24=4.3. C 【解析】大数的科学记数法的表示形式为a ×10n ,其中1≤a <10,n 的值等于原数的整数位数减1.含计数单位的数用科学记数法表示时,要把计数单位转化为数字.因为1亿=108,所以1.62亿=1.62×108.4. B 【解析】选项 逐项分析正误 A 圆锥的俯视图是带圆心的圆 B 水平放置的圆柱的俯视图是矩形 √ C 三棱柱的俯视图是三角形D球的俯视图是圆5. B 【解析】∵5≈2.236,∴1+5≈3.236,即1+5介于整数3和4之间,且距离3较近,故选B.【一题多解】∵22<5<32,∴2<5<3,∵(5)2=5,(52)2=6.25,∴5<52,1+5<72,∴1+5距离3较近.6. C 【解析】根据题意可知,2014年与2015年这两年的平均增长率均为x ,所以2014年的快递业务量为1.4(1+x ) 亿件,2015年的快递业务量1.4(1+x )(1+x )亿件,即1.4(1+x )2=4.5 亿件,故选C .选项 逐项分析正误 A 把表格中的人数相加,得:2+5+6+6+8+7+6=40,所以该班一共有40名同学 √ B由表格可知,这7列数据中成绩45出现的次数最多,出现了8次,所以众数是45分 √C中位数是把这7列数据中的分数按照从小到大的顺序排列,位于最中间的两个数(第20,21个数)的平均数,所以中位数为45+452=45分√ D平均数为:35×2+39×5+42×6+44×6+45×8+48×7+50×640=44.425分≠45分× =120°-x ,而在四边形ABCD 中,∠ADC =360°-∠A -∠B -∠C =360°-3x ,∵120°-x =13(360°-3x ),∴∠ADE =13∠ADC .第8题解图9. C 【解析】如解图①,连接EF ,交AC 于点O ,由四边形EGFH 是菱形,可得FH =GE ,FH ∥GE ,∴∠FHG =∠EGH ,所以∠AGE =∠CHF , 在矩形ABCD 中,AB =8,BC =4,则由勾股定理得AC =82+42=4 5.由矩形性质,可得∠GAE =∠HCF ,则△GAE ≌△HCF (AAS),∴AG =CH ,由菱形的对角线 EF 垂直平分GH ,可得OG =OH ,EO ⊥AC .∴AG +OG =CH +OH ,即OA =OC .∴AO =12AC =25,∵∠B =∠AOE =90°,∠BAC =∠OAE ,∴Rt △AOE ∽Rt △ABC .则AO AB =AE AC ,即258=AE45,解得AE =5.第9题解图① 第9题解图②【一题多解——最优解】如解图②,设G 点和A 点重合,H 点和C 点重合,设AE =x ,则CE =x ,EB =8-x ,在Rt △BCE 中,有x 2=42+(8-x )2,解得x =5,∴AE =5.10. A 【解析】本题考查二次函数与一元二次方程的关系.根据一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象在第一象限相交于P 、Q 两点,观察图象可知一元二次方程ax 2+bx +c = x 的根为两个正根,即关于x 的一元二次方程ax 2+bx +c -x =0有两个正实数根,故函数y =ax 2+(b -1)x +c 的图象与x 轴交点的横坐标均为正数,故选A.第10题解图11. -4 【解析】∵(-4)3=-64 ,∴-64的立方根是-4.12. 20° 【解析】如解图,连接OA 、OB ,由已知可得:l AB ︵=n πr 180=n π×9180=2π,解得n =40,即∠AOB=40°,∴∠ACB =12∠AOB =20°.第12题解图13. xy =z 【解析】观察这一列数可得:23=21·22,25=22·23,28=23·25,213=25·28,…,即从第三个数起每个数都等于前两个数之积 ,由x 、y 、z 表示这列数中的连续三个数,则有xy =z .序号 逐个分析正误 ①若c ≠0,则a ≠0,b ≠0,对于a +b =ab 两边同除以ab ,可得1b +1a=1√ ② 若a =3,则3+b =3b ,则b =32,c =ab =92, b +c =32+92=6× ③若a =b =c ,则2c =c 2=c ,所以c =0,则a =b =0, 则abc =0 √④ 若a 、b 、c 中只有两个数相等,假设a =b ≠c ,则c =b 2=2b ,有b =2,则a =2,c =4, 则a +b +c =8;若b =c ≠a ,a +c =ac =c ,由ac =c 可得a =1,由a +c =c ≠b ,可得a =0,矛盾;同理若a =c ≠b ,可得b =0,b =1,矛盾.故只能是a =b√15. 解:原式=(a 2a -1 - 1a -1)·1a=a 2-1a -1·1a.............(3分) =(a +1)(a -1)a -1·1a =a +1a. ......................(6分) 当a =-12时,原式=a +1a =-12+1-12=-1. ............(8分)16. 解:去分母得:2x >6-(x -3), .........(3分) 去括号得:2x >6-x +3,移项、合并同类项得:3x >9, 系数化为1得:x >3,所以,不等式的解集为x >3. .............(8分)17. (1)解:△A 1B 1C 1如解图①所示. ...................(4分)第17题解图①(2)解:线段A 2C 2和△A 2B 2C 2如解图②所示(符合条件的△A 2B 2C 2不唯一)......(8分)第17题解图②18. 解:如解图,作BE ⊥CD 于点E ,则CE =AB =12.在Rt △BCE 中,BE =CE tan ∠CBE =12tan30°=12 3. ...........(3分)第18题解图在Rt △BDE 中,∵∠DBE =45°,∠DEB =90°, ∴∠BDE =45°,∴DE =BE =123, ..............(5分) ∴CD =CE +DE =12+123≈32.4,∴楼房CD 的高度约为32.4米. ............(8分)19. (1)解:根据题意画树状图如解图①所示: .............(3分)第19题解图①由树状图知,两次传球共有4种等可能的情况,球恰在B 手中的情况只有一种, 所以两次传球后,球恰在B 手中的概率为:P =14 . .................(5分)(2)解:根据题意画树状图如解图②所示: .................(7分)第19题解图②由树状图知,三次传球共有8种等可能的情况,球恰在A 手中的情况有2种, 所以三次传球后,球恰在A 手中的概率为:P =28=14. .........(10分)20. (1)解:∵OP ⊥PQ ,PQ ∥AB ,∴OP ⊥AB .在Rt △OPB 中,OP =OB ·tan ∠ABC =3·tan30°= 3. ............(3分) 如解图①,连接OQ ,在Rt △OPQ 中,PQ =OQ 2-OP 2=32-(3)2= 6. ..........(5分) (2)解:如解图②,连接OQ ,∵OP ⊥PQ , ∴△OPQ 为直角三角形, ∴PQ 2=OQ 2-OP 2=9-OP 2,∴当OP 最小时,PQ 最大,此时OP ⊥BC . ..........(7分)OP =OB·sin ∠ABC =3·sin30°=32.∴PQ 长的最大值为9-(32)2=332. ...........(10分)图① 图②第20题解图21. (1)解:把A (1,8),代入y =k 1x ,得k 1=8,∴y =8x ,将B (-4,m )代放y =8x,得m =-2.∵A (1,8),B (-4,-2)在y =k 2x +b 图象上,∴⎩⎪⎨⎪⎧k 2+b =8-4k 2+b =-2, 解得k 2=2,b =6. ................(4分)(2)解:设直线y =2x +6与x 轴交于点C ,当y =0时,x =-3, ∴OC =3.∴S △AOB =S △AOC +S △BOC =12×3×8+12×3×2=15. ....................(8分)(3)解:点M 在第三象限,点N 在第一象限. ............(9分) 理由:由图象知双曲线y =8x在第一、三象限内,因此应分情况讨论:①若x 1<x 2<0,点M 、N 在第三象限分支上,则y 1>y 2,不合题意; ②若0<x 1<x 2,点M 、N 在第一象限分支上,则y 1>y 2,不合题意;③若x 1<0<x 2,点M 在第三象限,点N 在第一象限,则y 1<0<y 2,符合题意. .....(11分) ∴点M 在第三象限,点N 在第一象限. ..........(12分) 22. (1)解:设AE =a ,由题意,得AE ·AD =2BE ·BC ,AD =BC , ∴BE =12a ,AB =32a . ..........(3分)由题意,得2x +3a +2·12a =80,∴a =20-12x . ..............(4分)∵BC =x >0,AE =a =20-12x >0,∴0<x <40,∴y =AB ·BC =32a ·x =32(20-12x )x ,即y =-34x 2+30x (0<x <40). ........................(8分)(2)解:∵y =-34x 2+30x =-34(x -20)2+300, ...........(10分)∴当x =20时,y 有最大值,最大值是300平方米. .......(12分)23. (1)证明:∵点E 、F 分别是AB 、CD 的中点,且GE ⊥AB ,GF ⊥CD , .......(2分) ∴GE 、GF 分别是线段AB 、CD 的垂直平分线, ∴GA =GB ,GC =GD ,在△AGD 和△BGC 中,⎩⎪⎨⎪⎧GA =GB ∠AGD =∠BGC GD =GC ,∴△AGD ≌△BGC (SAS),∴AD =BC . ...........(5分)(2)证明:∵∠AGD =∠BGC ,∴∠AGB =∠DGC . 在△AGB 和△DGC 中,GA GD =GBGC ,∠AGB =∠DGC ,∴△ABG ∽△DCG , ........(8分) ∴AG DG =EGFG,∠GAE =∠GDF , 又∵∠GEA =∠GFD =90°,∴∠AGE =∠GEA -∠GAE ,∠DGF =∠GFD -∠GDF , 即∠AGE =∠DGF , ∴∠AGD =∠EGF ,∴△AGD ∽△EGF . .................(10分)(3)解:如解图①,延长AD 交GB 于点M ,交BC 的延长线于点H ,则AH ⊥BH . 由△AGD ≌△BGC ,知∠GAD =∠GBC .在△GAM 和△HBM 中,∠GAD =∠GBC ,∠GMA =∠HMB , ∴△GMA ∽△HMB , ∴∠AGB =∠AHB =90°, ...............(12分) ∴∠AGE =12∠AGB =45°,∴AG EG= 2.又∵△AGD ∽△EGF ,∴AD EF =AGEG= 2. ..............(14分)第23题解图【一题多解】解法一:如解图②,过点F 作FM ∥BC 交BD 于点M ,连接EM . ∵GF 是DC 的垂直平分线, ∴DF =CF ,∵FM ∥BC ,FM =12BC .∴DM =BM .∵GE 是AB 的垂直平分线, ∴AE =BE ,∴EM ∥AD ,EM =12AD .∵AD ⊥BC , ∴EM ⊥FM . ∵AD =BC , ∴EN =FM , ∴EF =2EM , ∴AD EF =2EM EF= 2. 解法二:如解图③,过点D 作DH ⊥AD ,交BF 的延长线于点H . ∵AD ⊥BC ,DH ⊥AD , ∴DH ∥BC ,∴∠DHF =∠CBF ,∠HDF =∠BCF , 又DF =CF ,∴△DHF ≌△CBF ,∴DH =BC ,HF =BF ,∴DH =AD . 在Rt △ADH 中,∠ADH =90°,AD =DH , ∴AH =2AD .∵AE =BE ,HF =BF , ∴EF ∥AH ,EF =12AH ,∴EF =22AD , ∴ADEF= 2.。
2020年江苏省南京市建邺区中考数学一模试卷含答案解析

2020年江苏省南京市建邺区中考数学一模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列计算结果为负数的是()A.﹣1+2B.|﹣1|C.D.﹣2﹣12.计算a5•(﹣)2的结果是()A.﹣a3B.a3C.a7D.a103.若a<2<b,其中a、b为两个连续的整数,则ab的值为()A.2B.5C.6D.124.如图是一几何体的三视图,这个几何体可能是()A.三棱柱B.三棱锥C.圆柱D.圆锥5.如图,已知a∥b,∠1=115°,则∠2的度数是()A.45°B.55°C.65°D.85°6.在学习“一次函数与二元一次方程”时,我们知道了两个一次函数图象的交点坐标与其相应的二元一次方程组的解之间的关系,请通过此经验推断:在同一平面直角坐标系中,函数y=5x2﹣3x+4与y=4x2﹣x+3的图象交点个数有()A.0个B.1个C.2个D.无数个二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.若式子在实数范围内有意义,则x的取值范围是.8.若a﹣b=3,a+b=﹣2,则a2﹣b2=.9.据统计,2020年春节“黄金周”(2月7日至13日)期间,南京共接待游客4 880000人.将4880000用科学记数法表示为.10.若△ABC∽△A′B′C′,相似比为1:3,则△ABC与△A′B′C′的面积之比为.11.已知圆锥的底面半径是1cm,母线长为3cm,则该圆锥的侧面积为cm2.12.已知方程x2+mx﹣3=0的一个根是1,则它的另一个根是.13.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示.甲乙丙丁平均数/环9.7 9.5 9.5 9.7方差/环2 5.1 4.7 4.5 4.5请你根据表中数据选一人参加比赛,最合适的人选是.14.在同一平面直角坐标系中,正比例函数y=k1x的图象与反比例函数y=的图象一个交点的坐标是(﹣2,3),则它们另一个交点的坐标是.15.如图,在正十边形A1A2A3A4A5A6A7A8A9A10中,连接A1A4、A1A7,则∠A4A1A7=°.16.如图①,在等边△ABC中,CD⊥AB,垂足为D,⊙O的圆心与点D重合,⊙O与线段CD交于点E,且CE=4cm.将⊙O沿DC方向向上平移1cm后,如图②,⊙O恰与△ABC 的边AC、BC相切,则等边△ABC的边长为cm.三、解答题(本大题共有11小题,共计88分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.先化简,再求值:(﹣)÷,其中a=+1,b=﹣1.18.解不等式组并写出不等式组的整数解.19.如图,在四边形ABCD中,AB∥CD,点E、F在对角线AC上,且∠ABF=∠CDE,AE=CF.(1)求证:△ABF≌△CDE;(2)当四边形ABCD满足什么条件时,四边形BFDE是菱形?为什么?20.“低碳环保,你我同行”.近两年,南京市区的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.(1)求AD的长;(2)求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)21.甲、乙两名同学从《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目中随机选择一个观看.(1)甲同学观看《最强大脑》的概率是;(2)求甲、乙两名同学观看同一节目的概率.22.“世界那么大,我想去看看”一句话红遍网络,随着国际货币基金组织正式宣布人民币2020年10月1日加入SDR(特别提款权),以后出国看世界更加方便.为了解某区6000名初中生对“人民币加入SDR”知晓的情况,某校数学兴趣小组随机抽取区内部分初中生进行问卷调查,将问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不了解”四个等级,并将调查结果整理分析,得到下列图表:某区抽取学生对“人民币加入SDR”知晓情况频数分布表(1)本次问卷调查抽取的学生共有人,其中“不了解”的学生有人;(2)在扇形统计图中,学生对“人民币加入SDR”基本了解的区域的圆心角为°;(3)根据抽样的结果,估计该区6000名初中生对“人民币加入SDR”了解的有多少人(了解是指“非常了解”、“比较了解”和“基本了解”)?23.某商场将进货价为每只30元的台灯以每只40元售出,平均每月能售出600只.调查表明,这种台灯的售价每上涨1元,其销售量将减少10只.当这种台灯的售价定为多少元时,每个月的利润恰为10 000元?24.货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发2.4h后休息,直至与货车相遇后,以原速度继续行驶.设货车出发xh后,货车、轿车分别到达离甲地y1km 和y2km的地方,图中的线段OA、折线BCDE分别表示y1、y2与x之间的函数关系.(1)求点D的坐标,并解释点D的实际意义;(2)求线段DE所在直线的函数表达式;(3)当货车出发h时,两车相距200km.25.数学活动课上,小君在平面直角坐标系中对二次函数图象的平移进行了研究.图①是二次函数y=(x﹣a)2+(a为常数)当a=﹣1、0、1、2时的图象.当a取不同值时,其图象构成一个“抛物线簇”.小君发现这些二次函数图象的顶点竟然在同一条直线上!(1)小君在图①中发现的“抛物线簇”的顶点所在直线的函数表达式为;(2)如图②,当a=0时,二次函数图象上有一点P(2,4).将此二次函数图象沿着(1)中发现的直线平移,记二次函数图象的顶点O与点P的对应点分别为O1、P1.若点P1到x 轴的距离为5,求平移后二次函数图象所对应的函数表达式.26.如图,直线AB交⊙O于C、D两点,CE是⊙O的直径,CF平分∠ACE交⊙O于点F,连接EF,过点F作FG∥ED交AB于点G.(1)求证:直线FG是⊙O的切线;(2)若FG=4,⊙O的半径为5,求四边形FGDE的面积.27.问题提出平面上,若点P与A、B、C三点中的任意两点均构成等腰三角形,则称点P是A、B、C 三点的巧妙点.若A、B、C三点构成三角形,也称点P是△ABC的巧妙点.初步思考(1)如图①,在等边△ABC的内部和外部各作一个△ABC的巧妙点.(尺规作图,不写作法,保留作图痕迹)(2)如图②,在△ABC中,AB=AC,∠BAC=36°,点D、E是△ABC的两个巧妙点,其中AD=AB,AE=AC,BD=BC=CE,连接DE,分别交AB、AC于点M、N.求证:DA2=DB•DE.深入研究(3)在△ABC中,AB=AC,若存在一点P,使PB=BA,PA=PC.点P可能为△ABC的巧妙点吗?若可能,请画出示意图,并直接写出∠BAC的度数;若不可能,请说明理由.2020年江苏省南京市建邺区中考数学一模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列计算结果为负数的是()A.﹣1+2B.|﹣1|C.D.﹣2﹣1【考点】算术平方根;绝对值;有理数的加法;负整数指数幂.【分析】先化简各项,再根据负数的定义,即可解答.【解答】解:A、﹣1+2=1,故错误;B、|﹣1|=1,故错误;C、=2,故错误;D、﹣2﹣1=﹣,正确;故选:D.2.计算a5•(﹣)2的结果是()A.﹣a3B.a3C.a7D.a10【考点】分式的乘除法.【分析】首先计算分式的乘方,然后再相乘即可.【解答】解:原式=a5•=a3,故选:B.3.若a<2<b,其中a、b为两个连续的整数,则ab的值为()A.2B.5C.6D.12【考点】估算无理数的大小.【分析】依据平方数越大对应的算术平方根越大可求得a、b的值,最后依据有理数的乘法法则求解即可.【解答】解:∵4<8<9,∴2<<3,即2<2<3.∴a=2,b=3.∴ab=6.故选:C.4.如图是一几何体的三视图,这个几何体可能是()A.三棱柱B.三棱锥C.圆柱D.圆锥【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是三角形可判断出这个几何体应该是三棱柱.故选A.5.如图,已知a∥b,∠1=115°,则∠2的度数是()A.45°B.55°C.65°D.85°【考点】平行线的性质.【分析】根据两直线平行,同旁内角互补求出∠3,再根据对顶角相等解答.【解答】解:如图,∵a∥b,∠1=115°,∴∠3=180°﹣∠1=180°﹣115°=65°,∴∠3=∠2=65°.故选C.6.在学习“一次函数与二元一次方程”时,我们知道了两个一次函数图象的交点坐标与其相应的二元一次方程组的解之间的关系,请通过此经验推断:在同一平面直角坐标系中,函数y=5x2﹣3x+4与y=4x2﹣x+3的图象交点个数有()A.0个B.1个C.2个D.无数个【考点】二次函数的性质;一次函数与二元一次方程(组).【分析】由题意知函数y=5x2﹣3x+4与y=4x2﹣x+3的图象交点个数即方程组的解的个数,即可判断.【解答】解:根据题意,函数y=5x2﹣3x+4与y=4x2﹣x+3的图象交点个数即方程组的解的个数,解方程组得:,所以函数y=5x2﹣3x+4与y=4x2﹣x+3的图象交点只有一个交点(1,6),故选:B.二、填空题(本大题共10小题,每小题2分,共计20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.若式子在实数范围内有意义,则x的取值范围是x≥2.【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式进行计算即可得解.【解答】解:根据题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.8.若a﹣b=3,a+b=﹣2,则a2﹣b2=﹣6.【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式,进而将已知代入求出答案.【解答】解:∵a2﹣b2=(a+b)(a﹣b),∴把a﹣b=3,a+b=﹣2代入得:原式=3×(﹣2)=﹣6.故答案为:﹣6.9.据统计,2020年春节“黄金周”(2月7日至13日)期间,南京共接待游客4 880000人.将4880000用科学记数法表示为 4.88×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:4880000=4.88×106,故答案为:4.88×10610.若△ABC∽△A′B′C′,相似比为1:3,则△ABC与△A′B′C′的面积之比为1:9.【考点】相似三角形的性质.【分析】根据相似三角形面积的比等于相似比的平方解答.【解答】解:∵△ABC∽△A′B′C′,相似比为1:3,∴△ABC与△A′B′C′的面积之比为1:9.故答案为:1:9.11.已知圆锥的底面半径是1cm,母线长为3cm,则该圆锥的侧面积为3πcm2.【考点】圆锥的计算.【分析】圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解.【解答】解:圆锥的侧面积=2π×3×1÷2=3π.故答案为:3π.12.已知方程x2+mx﹣3=0的一个根是1,则它的另一个根是﹣3.【考点】根与系数的关系.【分析】由于该方程的一次项系数是未知数,所以求方程的另一解可以根据根与系数的关系进行计算.【解答】解:设方程的另一根为x1,根据根与系数的关系可得:x1•1=﹣3,解得x1=﹣3.故答案为:﹣3.13.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示.甲乙丙丁平均数/环9.7 9.5 9.5 9.7方差/环2 5.1 4.7 4.5 4.5请你根据表中数据选一人参加比赛,最合适的人选是丁.【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵S甲2=5.1,S乙2=4.7,S丙2=4.5,S丁2=4.5,∴S甲2>S乙2>S2丁=S2丙,∵丁的平均数大,∴最合适的人选是丁.故答案为:丁14.在同一平面直角坐标系中,正比例函数y=k1x的图象与反比例函数y=的图象一个交点的坐标是(﹣2,3),则它们另一个交点的坐标是(2,﹣3).【考点】反比例函数与一次函数的交点问题.【分析】反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称.【解答】解:根据题意,直线y=k1x经过原点与双曲线y=相交于两点,又由于双曲线y=与直线y=k1x均关于原点对称.则两点关于原点对称,一个交点的坐标为(﹣2,3),则另一个交点的坐标为(2,﹣3).故答案为:(2,﹣3).15.如图,在正十边形A1A2A3A4A5A6A7A8A9A10中,连接A1A4、A1A7,则∠A4A1A7=54°.【考点】正多边形和圆.【分析】找出正十边形的圆心O,连接A7O,A4O,再由圆周角定理即可得出结论.【解答】解:如图,连接A7O,A4O,∵正十边形的各边都相等,∴∠A7OA4=×360°=108°,∴∠A4A1A7=×108°=54°.故答案为:54.16.如图①,在等边△ABC中,CD⊥AB,垂足为D,⊙O的圆心与点D重合,⊙O与线段CD交于点E,且CE=4cm.将⊙O沿DC方向向上平移1cm后,如图②,⊙O恰与△ABC的边AC、BC相切,则等边△ABC的边长为cm.【考点】切线的性质;等边三角形的性质;平移的性质.【分析】如图,设圆O与BC的切点为M,连接OM,根据切线的性质可以得到∠OMC=90°,而根据已知条件可以得到∠DCB=30°,设AB为2xcm,根据等边三角形得到CD=xcm,而CE=2cm,又将量角器沿DC方向平移1cm,由此得到半圆的半径为(x﹣4)cm,OC=(x﹣1)cm,然后在Rt△OCM中利用三角函数可以列出关于x的方程,解方程即可求解.【解答】解:如图,设图②中圆O与BC的切点为M,连接OM,则OM⊥MC,∴∠OMC=90°,依题意知道∠DCB=30°,设AB为2xcm,∵△ABC是等边三角形,∴CD=xcm,而CE=4cm,又将量角器沿DC方向平移1cm,∴半圆的半径为(x﹣4)cm,OC=(x﹣1)cm,∴sin∠DCB==,∴=,∴x=,∴等边△ABC的边长为=2x=2(cm),故答案为:.三、解答题(本大题共有11小题,共计88分.请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.先化简,再求值:(﹣)÷,其中a=+1,b=﹣1.【考点】分式的化简求值.【分析】先算括号里面的,再算除法,分式化为最简后把a、b的值代入进行计算即可.【解答】解:原式=()•=﹣.当a=+1,b=﹣1时,原式=﹣=﹣=﹣.18.解不等式组并写出不等式组的整数解.【考点】一元一次不等式组的整数解;解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式,得x≥﹣1.解不等式2x﹣3<0,得x<.所以不等式组的解集是﹣1≤x<.故不等式组的整数解为﹣1、0、1.19.如图,在四边形ABCD中,AB∥CD,点E、F在对角线AC上,且∠ABF=∠CDE,AE=CF.(1)求证:△ABF≌△CDE;(2)当四边形ABCD满足什么条件时,四边形BFDE是菱形?为什么?【考点】菱形的判定;全等三角形的判定与性质.(1)由平行线的性质得出∠BAC=∠DCA.证出AF=CE.由AAS证明△ABF≌△CDE 【分析】即可;(2)先证明四边形ABCD是菱形,得出BD⊥AC,再证明四边形BFDE是平行四边形,即可得出结论.【解答】(1)证明:∵AB∥CD,∴∠BAC=∠DCA.∵AE=CF,∴AE+EF=CF+EF,即AF=CE.在△ABF和△CDE中,,又∵∠ABF=∠CDE,∴△ABF≌△CDE(AAS);(2)解:当四边形ABCD满足AB=AD时,四边形BEDF是菱形.理由如下:连接BD交AC于点O,如图所示:由(1)得:△ABF≌△CDE,∴AB=CD,BF=DE,∠AFB=∠CED,∴BF∥DE.∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形.又∵AB=AD,∴平行四边形ABCD是菱形.∴BD⊥AC.∵BF=DE,BF∥DE,∴四边形BEDF是平行四边形,∴四边形BEDF是菱形.20.“低碳环保,你我同行”.近两年,南京市区的公共自行车给市民出行带来了极大的方便.图①是公共自行车的实物图,图②是公共自行车的车架示意图,点A、D、C、E在同一条直线上,CD=30cm,DF=20cm,AF=25cm,FD⊥AE于点D,座杆CE=15cm,且∠EAB=75°.(1)求AD的长;(2)求点E到AB的距离.(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)【考点】解直角三角形的应用.【分析】(1)根据勾股定理求出AD的长;(2)作EH⊥AB于H,求出AE的长,根据正弦的概念求出点E到车架AB的距离.【解答】解:(1)在Rt△ADF中,由勾股定理得,AD===15(cm;(2)AE=AD+CD+EC=15+30+15=60(cm),如图②,过点E作EH⊥AB于H,在Rt△AEH中,sin∠EAH=,则EH=AE•sin∠EAH=AB•sin75°≈60×0.97=58.2(cm).答:点E到AB的距离为58.2 cm.21.甲、乙两名同学从《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目中随机选择一个观看.(1)甲同学观看《最强大脑》的概率是;(2)求甲、乙两名同学观看同一节目的概率.【考点】列表法与树状图法.【分析】(1)由甲、乙两名同学从《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目中随机选择一个观看,直接利用概率公式求解即可求得答案;(2)首先根据题意列出表格,然后由表格即可求得所有等可能的结果与甲、乙两名同学观看同一节目的情况,再利用概率公式即可求得答案.【解答】解:(1)∵甲、乙两名同学从《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目中随机选择一个观看,∴甲同学观看《最强大脑》的概率是:.故答案为:;(2)分别用A,B,C表示《奔跑吧兄弟》、《极限挑战》、《最强大脑》三个综艺节目,用表格列出所有可能出现的结果:甲乙 A B CA (A,A)(B,A)(C,A)B (A,B)(B,B)(C,B)C (A,C)(B,C)(C,C)∵一共有9种可能的结果,它们是等可能的,其中符合要求的有3种.∴P (甲、乙两名同学观看同一节目)==.答:甲、乙两名同学观看同一节目的概率为:.22.“世界那么大,我想去看看”一句话红遍网络,随着国际货币基金组织正式宣布人民币2020年10月1日加入SDR(特别提款权),以后出国看世界更加方便.为了解某区6000名初中生对“人民币加入SDR”知晓的情况,某校数学兴趣小组随机抽取区内部分初中生进行问卷调查,将问卷调查的结果划分为“非常了解”、“比较了解”、“基本了解”、“不了解”四个等级,并将调查结果整理分析,得到下列图表:某区抽取学生对“人民币加入SDR”知晓情况频数分布表(1)本次问卷调查抽取的学生共有100人,其中“不了解”的学生有20人;(2)在扇形统计图中,学生对“人民币加入SDR”基本了解的区域的圆心角为72°;(3)根据抽样的结果,估计该区6000名初中生对“人民币加入SDR”了解的有多少人(了解是指“非常了解”、“比较了解”和“基本了解”)?【考点】扇形统计图;用样本估计总体;频数(率)分布表.【分析】(1)根据非常了解的有26人,所占的比例是26%,据此即可求得抽取的总人数,然后利用总人数减去其它组的人数即可求得“不了解”的学生数;(2)利用360°乘以对应的百分比即可求得;(3)利用总人数乘以对应的比例即可求得.【解答】解:(1)调查抽取的总人数是26÷26%=100(人),不了解的人数是100﹣26﹣34﹣20=20(人).故答案是:100,20;(2)基本了解的区域的圆心角是360°×=72°,故答案是:72;(3)该区6000名初中生对“人民币加入SDR”了解的有:6 000×80%=4 800(人).答:估计该校6 000名初中生中对“人民币加入SDR”了解的有4 800人.23.某商场将进货价为每只30元的台灯以每只40元售出,平均每月能售出600只.调查表明,这种台灯的售价每上涨1元,其销售量将减少10只.当这种台灯的售价定为多少元时,每个月的利润恰为10 000元?【考点】一元二次方程的应用.【分析】设这种台灯的售价为x元,根据一台的利润×总的台数=总的利润和这种台灯的售价每上涨1元,其销售量将减少10只,列出方程,再求解即可.【解答】解:设这种台灯的售价为x元,根据题意得:[600﹣10(x﹣40)](x﹣30)=10000,解得x1=50,x2=80,答:当这种台灯的售价定为50或80元时,每个月的利润恰为10000元.24.货车和轿车分别从甲、乙两地同时出发,沿同一公路相向而行.轿车出发2.4h后休息,直至与货车相遇后,以原速度继续行驶.设货车出发xh后,货车、轿车分别到达离甲地y1km 和y2km的地方,图中的线段OA、折线BCDE分别表示y1、y2与x之间的函数关系.(1)求点D的坐标,并解释点D的实际意义;(2)求线段DE所在直线的函数表达式;(3)当货车出发2或5h时,两车相距200km.【考点】一次函数的应用.【分析】(1)待定系数求出OA解析式,继而根据点D的纵坐标为300求得其横坐标,即可得答案;(2)根据休息前2.4小时行驶300km可得行驶后行驶300km也需要2.4h,即可得点E坐标,待定系数法即可求得DE所在直线解析式;(3)先求出BC所在直线解析式,再根据①轿车休息前与货车相距200km,②轿车休息后与货车相距200km,分别列出方程求解可得.【解答】解:(1)设OA所在直线解析式为y=mx,将x=8、y=600代入,求得m=75,∴OA所在直线解析式为y=75x,令y=300得:75x=300,解得:x=4,∴点D 坐标为(4,300 ),其实际意义为:点D是指货车出发4h后,与轿车在距离A地300 km处相遇.(2)由图象知,轿车在休息前2.4小时行驶300km,∴根据题意,行驶后300km需2.4h,故点E 坐标(6.4,0 ).设DE所在直线的函数表达式为y=kx+b,将点D (4,300 ),E ( 6.4,0)代入y=kx+b得:,解得,∴DE所在直线的函数表达式为y=﹣125x+800.(3)设BC段函数解析式为:y=px+q,将点B(0,600)、C(2.4,300)代入,得:,解得:y=﹣125x+600,①当轿车休息前与货车相距200km时,有:﹣125x+600﹣75x=200,解得:x=2;②当轿车休息后与货车相距200km时,有:75x﹣(﹣125x+800)=200,解得:x=5;故答案为:2或5.25.数学活动课上,小君在平面直角坐标系中对二次函数图象的平移进行了研究.图①是二次函数y=(x﹣a)2+(a为常数)当a=﹣1、0、1、2时的图象.当a取不同值时,其图象构成一个“抛物线簇”.小君发现这些二次函数图象的顶点竟然在同一条直线上!(1)小君在图①中发现的“抛物线簇”的顶点所在直线的函数表达式为y=x;(2)如图②,当a=0时,二次函数图象上有一点P(2,4).将此二次函数图象沿着(1)中发现的直线平移,记二次函数图象的顶点O与点P的对应点分别为O1、P1.若点P1到x 轴的距离为5,求平移后二次函数图象所对应的函数表达式.【考点】二次函数图象与几何变换.【分析】(1)根据题意得出抛物线的顶点坐标,根据待定系数法即可求得;(2)根据平移的规律得出点O1的坐标为(3,1)或(﹣27,﹣9),从而求得解析式.【解答】解:(1)∵当a=﹣1时,抛物线的顶点为(﹣1,﹣),当a=0时,抛物线的顶点为(0,0),∴设直线为y=kx,代入(﹣1,﹣)得,﹣=﹣k,解得k=,∴“抛物线簇”的顶点所在直线的函数表达式为y=x,故答案为y=x.(2)由题意得:点P1D的纵坐标为5或﹣5,∴抛物线沿着直线向上平移了1个单位或向下平移了9个单位,∴此时点O1的纵坐标为1或﹣9,代入直线y=x求得横坐标为3或﹣27,∴点O1的坐标为(3,1)或(﹣27,﹣9),∴平移后的二次函数的表达式为y=(x﹣3)2+1或y=(x+27)2﹣9.26.如图,直线AB交⊙O于C、D两点,CE是⊙O的直径,CF平分∠ACE交⊙O于点F,连接EF,过点F作FG∥ED交AB于点G.(1)求证:直线FG是⊙O的切线;(2)若FG=4,⊙O的半径为5,求四边形FGDE的面积.【考点】切线的判定.【分析】(1)利用角平分线的性质以及等腰三角形的性质得出∠OFC=∠FCG,进而得出∠GFC+∠OFC=90°,即可得出答案;(2)首先得出四边形FGDH是矩形,进而利用勾股定理得出HO的长,进而得出答案.【解答】(1)证明:连接FO,∵OF=OC,∴∠OFC=∠OCF.∵CF平分∠ACE,∴∠FCG=∠FCE.∴∠OFC=∠FCG.∵CE是⊙O的直径,∴∠EDG=90°,又∵FG∥ED,∴∠FGC=180°﹣∠EDG=90°,∴∠GFC+∠FCG=90°∴∠GFC+∠OFC=90°,即∠GFO=90°,∴OF⊥GF,又∵OF是⊙O半径,∴FG与⊙O相切.(2)解:延长FO,与ED交于点H,由(1)可知∠HFG=∠FGD=∠GDH=90°,∴四边形FGDH是矩形.∴FH⊥ED,∴HE=HD.又∵四边形FGDH是矩形,FG=HD,∴HE=FG=4.∴ED=8.∵在Rt△OHE中,∠OHE=90°,∴OH==3.∴FH=FO+OH=5+3=8.=(FG+ED)•FH=×(4+8)×8=48.S四边形FGDH27.问题提出平面上,若点P与A、B、C三点中的任意两点均构成等腰三角形,则称点P是A、B、C 三点的巧妙点.若A、B、C三点构成三角形,也称点P是△ABC的巧妙点.初步思考(1)如图①,在等边△ABC的内部和外部各作一个△ABC的巧妙点.(尺规作图,不写作法,保留作图痕迹)(2)如图②,在△ABC中,AB=AC,∠BAC=36°,点D、E是△ABC的两个巧妙点,其中AD=AB,AE=AC,BD=BC=CE,连接DE,分别交AB、AC于点M、N.求证:DA2=DB•DE.深入研究(3)在△ABC中,AB=AC,若存在一点P,使PB=BA,PA=PC.点P可能为△ABC的巧妙点吗?若可能,请画出示意图,并直接写出∠BAC的度数;若不可能,请说明理由.【考点】三角形综合题.【分析】(1)根据“巧妙点”的定义利用:点P在三角形的内部时,点P到△ABC的三个顶点的距离相等,所以点P是三角形的外心;点P在三角形的外部时,每条边的垂直平分线上的点只要能够使顶点这条边的两端点连接而成的三角形是等腰三角形即可;(2)先证明△ADB≌△ABC,△ACE≌△ABC,得到相等的角,再证明∠BMD=∠ABD,得到DB=DM.最后证明△DAM∽△DEA,得到=,即DA2=DM•DE,由DM=DB,所以DA2=DB•DE.(3)在△ABC中,AB=AC,若存在一点P,使PB=BA,PA=PC.点P能为△ABC的巧妙点,分别画出图形即可解答.【解答】解:(1)如图①;(2)∵AB=AC,∠BAC=36°,∴∠ABC=∠ACB=72°,在△ADB和△ABC中∴△ADB≌△ABC,同理:△ACE≌△ABC.∴∠BAD=∠BAC=∠CAE=36°,∠ADB=∠ABD=∠ABC=72°,∴∠DAE=∠BAD+∠BAC+∠CAE=108°,∵AD=AB=AC=AE,∴∠ADE=∠AED=36°=∠BAD,∴∠BDM=∠BDA﹣∠MDA=36°,∠BMD=∠ADM+∠DAM=72°=∠ABD,∴DB=DM.∵∠DBM=∠ABD,∠AED=∠BAD,∴△DAM∽△DEA,∴=,∴DA2=DM•DE,∵DM=DB,∴DA2=DB•DE.(3)第一种如图①或图②(只需画一个即可),∠BAC=60°.第二种如图③,∠BAC=36°;第三种如图④,∠BAC=108°;第四种如图⑤,∠BAC=120°.以上共四种:60°、36°、108°、120°.2020年7月21日。
2020年江苏省南京市联合体中考数学一模试卷含解析

2020年江苏省南京市联合体中考数学一模试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)4的算术平方根()A.2B.﹣2C.D.±2.(2分)2019年江苏省粮食总产达40540000吨,居全国第四位.用科学记数法表示40540000是()A.4054×104B.4.054×104C.4.054×107D.4054×107 3.(2分)计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a64.(2分)已知△ABC∽△DEF,△ABC与△DEF面积之比为1:4.若BC=1,则EF的长是()A.B.2C.4D.165.(2分)下列整数中,与7﹣最接近的是()A.1B.2C.3D.46.(2分)已知一次函数y=kx+b的图象如图所示,则y=﹣2kx﹣b的图象可能是()A.B.C.D.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)使式子1+有意义的x的取值范围是.8.(2分)计算﹣3的结果是.9.(2分)分解因式a(a﹣1)﹣a+1的结果是.10.(2分)已知1是关于x的方程x2+mx﹣3=0的一个根,则另一个根为,m =.11.(2分)若一组数据2,3,4,5,x的方差比另一组数据5,6,7,8,9的方差小,则x 可以为.(列举一个满足条件的值)12.(2分)如图,四边形ABCD是⊙O的内接四边形,若⊙O半径为4,且∠C=2∠A,则的长为.13.(2分)如图,将正六边形ABCDEF绕点D逆时针旋转27°得正六边形A′B′C′DE′F′,则∠1=°.14.(2分)反比例函数y=的图象过点(﹣2,a)、(2,b),若a﹣b=﹣6,则ab=.15.(2分)如图,在Rt△ACB中,∠C=90°,BC=4,AB=5,BD平分∠ABC交AC于点D,则AD=.16.(2分)如图,在平面直角坐标系中,点A的坐标是(2,1),点B的坐标是(2,0).作点B关于OA的对称点B′,则点B′的坐标是(,).三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)计算:(2﹣).18.(6分)解不等式组,并把解集在数轴上表示出来.19.(8分)课外兴趣小组为了解某段路上机动车的车速,抽查了一段时间内若干辆车的车速(车速取整数,单位:千米/时)并制成如图所示的频数分布直方图.已知车速在41千米/时到50千米/时的车辆数占车辆总数的.(1)在这段时间内他们抽查的车有辆;(2)被抽查车辆的车速的中位数所在速度段(单位:千米/时)是;A.30.5~40.5 B.40.5~50.5 C.50.5~60.5 D.60.5~70.5(3)补全频数分布直方图;(4)如果全天超速(车速大于60千米/时)的车有200辆,则当天的车流量约为多少辆?20.(8分)甲、乙、丙3名医生志愿报名参加新冠肺炎救治工作.(1)随机抽取1名,则恰是甲的概率是;(2)随机抽取2名,求甲在其中的概率.21.(7分)现有120台大小两种型号的挖掘机同时工作,大型挖掘机每小时可挖掘土方360立方米,小型挖掘机每小时可挖掘土方200立方米,20小时共挖掘土方704000立方米,求大小型号的挖掘机各多少台?22.(8分)一辆货车从A地出发以每小时80km的速度匀速驶往B地,一段时间后,一辆轿车从B地出发沿同一条路匀速驶往A地.货车行驶3小时后,在距B地160km处与轿车相遇.图中线段表示货车离B地的距离y1与货车行驶的时间x的关系.(1)AB两地之间的距离为km;(2)求y1与x之间的函数关系式;(3)若两车同时到达各自目的地,在同一坐标系中画出轿车离B地的距离y2与货车行驶时间x的函数图象,用文字说明该图象与x轴交点所表示的实际意义.23.(8分)(1)如图①,在四边形ABCD中,∠A=∠C=90°,AB=CD,求证:四边形ABCD是矩形;(2)如图②,若四边形ABCD满足∠A=∠C>90°,AB=CD,求证:四边形ABCD 是平行四边形.24.(8分)如图,B位于A南偏西37°方向,港口C位于A南偏东35°方向,B位于C 正西方向.轮船甲从A出发沿正南方向行驶40海里到达点D处,此时轮船乙从B出发沿正东方向行驶20海里至E处,E位于D南偏西45°方向,这时,E处距离港口C有多远?(参考数据:tan37°≈0.75,tan35°≈0.70)25.(9分)如图①,在矩形ABCD中,AB=6,BC=9,点E是BC边上一动点,连接AE、DE,作△ECD的外接⊙O,交AD于点F,交AE于点G,连接FG.(1)求证△AFG∽△AED;(2)当BE的长为时,△AFG为等腰三角形;(3)如图②,若BE=1,求证:AB与⊙O相切.26.(10分)已知二次函数y=x2﹣2mx+m2+m﹣1(m是常数).(1)求证:不论m为何值,该函数图象的顶点都在函数y=x﹣1的图象上.(2)若该函数图象与函数y=x+b的图象有两个交点,则b的取值范围为()A.b>0;B.b>﹣1;C.b>﹣;D.b>﹣2.(3)该函数图象与坐标轴交点的个数随m的值变化而变化,直接写出交点个数及对应的m取值范围.27.(10分)【概念认识】在同一个圆中两条互相垂直且相等的弦定义为“等垂弦”,两条弦所在直线的交点为等垂弦的分割点.如图①,AB、CD是⊙O的弦,AB=CD,AB⊥CD,垂足为E,则AB、CD 是等垂弦,E为等垂弦AB、CD的分割点.【数学理解】(1)如图②,AB是⊙O的弦,作OC⊥OA、OD⊥OB,分别交⊙O于点C、D,连接CD.求证:AB、CD是⊙O的等垂弦.(2)在⊙O中,⊙O的半径为5,E为等垂弦AB、CD的分割点,=.求AB的长度;【问题解决】(3)AB、CD是⊙O的两条弦,CD=AB,且CD⊥AB,垂足为F.①在图③中,利用直尺和圆规作弦CD(保留作图痕迹,不写作法);②若⊙O的半径为r,AB=mr(m为常数),垂足F与⊙O的位置关系随m的值变化而变化,直接写出点F与⊙O的位置关系及对应的m的取值范围.2020年江苏省南京市联合体中考数学一模试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)4的算术平方根()A.2B.﹣2C.D.±【分析】依据算术平方根的性质求解即可.【解答】解:4的算术平方根2.故选:A.【点评】本题主要考查的是算术平方根的性质,熟练掌握算术平方根的性质是解题的关键.2.(2分)2019年江苏省粮食总产达40540000吨,居全国第四位.用科学记数法表示40540000是()A.4054×104B.4.054×104C.4.054×107D.4054×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:40540000=4.054×107,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2分)计算(﹣a2)3的结果是()A.a5B.﹣a5C.a6D.﹣a6【分析】根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘,进行计算即可.【解答】解:(﹣a2)3=﹣a2×3=﹣a6.故选:D.【点评】本题主要考查了积的乘方的性质,熟记运算性质是解题的关键.4.(2分)已知△ABC∽△DEF,△ABC与△DEF面积之比为1:4.若BC=1,则EF的长是()A.B.2C.4D.16【分析】根据相似三角形面积的比等于相似比的平方计算,得到答案.【解答】解:∵△ABC∽△DEF,△ABC与△DEF面积之比为1:4,∴△ABC与△DEF相似比为1:2,即=,∵BC=1,∴EF=2,故选:B.【点评】本题考查的是相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解题的关键.5.(2分)下列整数中,与7﹣最接近的是()A.1B.2C.3D.4【分析】由于9<13<16,可判断与4最接近,从而可判断与7﹣最接近的整数为3.【解答】解:∵9<15<16,∴3<<4,∵3.82=14.44,3.92=15.21,∴3.8<<3.9,∴﹣3.9<﹣<﹣3.8,∴7﹣3.9<7﹣<7﹣3.8,∴3.1<7﹣<3.2,∴与7﹣最接近的是3.故选:C.【点评】此题考查了估算无理数的大小,熟练掌握估算无理数的方法是解本题的关键.6.(2分)已知一次函数y=kx+b的图象如图所示,则y=﹣2kx﹣b的图象可能是()A.B.C.D.【分析】根据一次函数图象可以确定k、b的符号,根据k、b的符号来判定函数y=﹣2kx ﹣b的图象所在的象限.【解答】解:∵一次函数y=kx+b的图象经过二、三、四象限,∴k<0,b<0.∴函数y=﹣2k﹣b的图象经过第一、二、三象限.∵因为|k|<|﹣2k|,所以一次函数y=kx+b的图象比y=﹣2kx﹣b的图象的倾斜度小,综上所述,符合条件的图象是C选项.故选:C.【点评】本题主要考查了一次函数的图象性质,要掌握它们的性质才能灵活解题.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)使式子1+有意义的x的取值范围是x≥1.【分析】根据二次根式有意义的条件可得x﹣1≥0,再解即可.【解答】解:由题意得:x﹣1≥0,解得:x≥1,故答案为:x≥1.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.8.(2分)计算﹣3的结果是2.【分析】先把各二次根式化为最减二次根式,再合并同类项即可.【解答】解:原式=3﹣=2.故答案为:2.【点评】本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.9.(2分)分解因式a(a﹣1)﹣a+1的结果是(a﹣1)2.【分析】直接提取公因式(a﹣1),进而分解因式得出答案.【解答】解:a(a﹣1)﹣a+1=a(a﹣1)﹣(a﹣1)=(a﹣1)(a﹣1)=(a﹣1)2.故答案为:(a﹣1)2.【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.10.(2分)已知1是关于x的方程x2+mx﹣3=0的一个根,则另一个根为﹣3,m=2.【分析】设方程的另一根为t,利用根与系数的关系得到1+t=﹣m,1×t=﹣3,然后先求出t的值,再计算m的值.【解答】解:设方程的另一根为t,根据题意得1+t=﹣m,1×t=﹣3,解得t=﹣3,m=2.故答案为﹣3,2.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.11.(2分)若一组数据2,3,4,5,x的方差比另一组数据5,6,7,8,9的方差小,则x 可以为2(答案不唯一).(列举一个满足条件的值)【分析】观察两组数据分布特点,根据方差的意义求解,也可先计算出后一组数据的方差,再取一个x的值计算出前一组数据的方差求解.【解答】解:数据5,6,7,8,9中,每2个数相差1,一组数据2,3,4,5,x前4个数据也是相差1,若x=1或x=6时,两组数据方差相等,而数据2,3,4,5,x的方差比另一组数据5,6,7,8,9的方差小,则x=2(答案不唯一),故答案为:2(答案不唯一).【点评】本题主要考查方差,解题的关键是掌握方差的定义和方差的意义:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.12.(2分)如图,四边形ABCD是⊙O的内接四边形,若⊙O半径为4,且∠C=2∠A,则的长为π.【分析】连接OB、OD,根据圆内接四边形的性质求出∠A的度数,根据圆周角定理求出∠BOD的度数,利用弧长公式计算即可.【解答】解:连接OB、OD,∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∵∠C=2∠A,∴3∠A=180°,∴∠A=60°,由圆周角定理得,∠BOD=2∠A=120°,∴的长:=π,故答案为.【点评】本题考查的是圆内接四边形的性质、圆周角定理以及弧长的计算,掌握圆内接四边形的对角互补、弧长公式是解题的关键.13.(2分)如图,将正六边形ABCDEF绕点D逆时针旋转27°得正六边形A′B′C′DE′F′,则∠1=147°.【分析】根据多边形的内角和公式可得∠1+∠B+∠C+∠CDE′+∠E′+∠F′=(6﹣2)×180°=720°,再根据正六边形每个内角为120°以及旋转的性质解答.【解答】解:根据题意得∠CDE=∠B=∠C=∠E′=∠F′==120°,∵∠1+∠B+∠C+∠CDE′+∠E′+∠F′=(6﹣2)×180°=720°,∴∠CDE′=120°﹣∠EDE′=93°,∴∠1=720°﹣120×4﹣93°=147°.故答案为:147.【点评】此题考查了正六边形的性质、旋转的性质以及旋转角的定义.此题难度不大,注意找到旋转角是解此题的关键.14.(2分)反比例函数y=的图象过点(﹣2,a)、(2,b),若a﹣b=﹣6,则ab=﹣9.【分析】根据已知条件得到﹣2a=2b,求得a+b=0,由于a﹣b=﹣6,解方程组得到a =﹣3,b=3,即可得到结论.【解答】解:∵反比例函数y=的图象过点(﹣2,a)、(2,b),∴﹣2a=2b,∴a+b=0,∵a﹣b=﹣6,∴a=﹣3,b=3,∴ab=﹣9,故答案为:﹣9.【点评】本题考查了反比例函数图象上点的坐标特征,解二元一次方程组,正确的理解题意是解题的关键.15.(2分)如图,在Rt△ACB中,∠C=90°,BC=4,AB=5,BD平分∠ABC交AC于点D,则AD=.【分析】根据勾股定理得到AC==3,过D作DE⊥AB于E,根据角平分线的性质得到CD=DE,根据全等三角形的性质得到BE=BC=4,根据勾股定理即可得到结论.【解答】解:在Rt△ACB中,∠C=90°,BC=4,AB=5,∴AC==3,过D作DE⊥AB于E,∵BD平分∠ABC,∠C=90°,∴CD=DE,在Rt△BCD与Rt△BED中,∴Rt△BCD≌Rt△BED(HL),∴BE=BC=4,∴AE=1,∵AD2=DE2+AE2,∴AD2=(3﹣AD)2+12,∴AD=,故答案为:.【点评】本题考查了勾股定理,角平分线的性质,全等三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.16.(2分)如图,在平面直角坐标系中,点A的坐标是(2,1),点B的坐标是(2,0).作点B关于OA的对称点B′,则点B′的坐标是(,).【分析】设OA交BB′于J.求出直线BB′,直线OA的解析式,构建方程组求出解答J的坐标,再利用中点坐标公式解决问题即可.【解答】解:设OA交BB′于J.∵A(2,1),∴直线OA是解析式为y=x,∵B(2,0),BB′⊥OA,∴可以设直线BB′是解析式为y=﹣2x+b,把(2,0)代入y=﹣2x+b中,得到b=4,∴直线BB′的解析式为y=﹣2x+4,由,解得,∴J(,),∵JB=JB′,设B′(m,n),∴=,=,∴m=,n=,∴B′(,).故答案为,.【点评】本题考查直线与图形变化﹣对称,一次函数的性质等知识,解题的关键是学会构建一次函数解决问题,属于中考常考题型.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)计算:(2﹣).【分析】先算括号内的减法,把除法变成乘法,最后算乘法即可.【解答】解:原式=•=•=.【点评】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解此题的关键.18.(6分)解不等式组,并把解集在数轴上表示出来.【分析】分别求出各不等式的解集,再求出其公共解集,并把解集在数轴上表示出来即可.【解答】解:,由①得x≤1,由②得x>﹣2,故不等式组的就为﹣2<x≤1.把解集在数轴上表示出来为:【点评】此题考查的是解一元一次方程组的方法,解一元一次方程组应遵循的法则:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.同时考查了在数轴上表示不等式的解集.19.(8分)课外兴趣小组为了解某段路上机动车的车速,抽查了一段时间内若干辆车的车速(车速取整数,单位:千米/时)并制成如图所示的频数分布直方图.已知车速在41千米/时到50千米/时的车辆数占车辆总数的.(1)在这段时间内他们抽查的车有40辆;(2)被抽查车辆的车速的中位数所在速度段(单位:千米/时)是B;A.30.5~40.5 B.40.5~50.5 C.50.5~60.5 D.60.5~70.5(3)补全频数分布直方图;(4)如果全天超速(车速大于60千米/时)的车有200辆,则当天的车流量约为多少辆?【分析】(1)用车速在41千米/时到50千米/时的车辆数除以即可得到;(2)根据中位数的定义直接求解即可;(3)用总数减去其他小组的频数即可得到50.5~60.5小组的频数即可补全统计图;(4)用200除以车速车速大于60千米/时的车辆所占的百分比即可求得车流量.【解答】解:(1)观察统计图知:车速在41千米/时到50千米/时的车辆数为12,占总数的,则在这段时间内他们抽查的车有:12÷=40(辆);故答案为:40;(2)∵共40辆车,处于中间位置的是第20、21辆车的速度的平均数,∴被抽查车辆的车速的中位数所在速度段(单位:千米/时)是40.5~50.5;故答案为:B;(3)50.5~60.5 的车辆数是:40﹣3﹣8﹣12﹣5﹣3=9(辆),补全统计图如下:(4)200÷=1000(辆),答:当天的车流量约为1000辆.【点评】本题考查了频数分布直方图、用样本估计总体、频数分布折线图及中位线的知识,解题的关键是仔细的审题并从直方图中整理出进一步解题的有关信息.20.(8分)甲、乙、丙3名医生志愿报名参加新冠肺炎救治工作.(1)随机抽取1名,则恰是甲的概率是;(2)随机抽取2名,求甲在其中的概率.【分析】(1)直接利用概率公式计算;(2)画树状图展示所有6种等可能的结果数,再找出甲在其中的结果数,然后根据概率公式求解.【解答】解:(1)随机抽取1名,则恰是甲的概率是;(2)画树状图为:共有6种等可能的结果数,其中甲在其中的结果数为4,所以甲在其中的概率==.故答案为,.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.21.(7分)现有120台大小两种型号的挖掘机同时工作,大型挖掘机每小时可挖掘土方360立方米,小型挖掘机每小时可挖掘土方200立方米,20小时共挖掘土方704000立方米,求大小型号的挖掘机各多少台?【分析】设大型挖掘机x台,则小型挖掘机(120﹣x)台.根据20小时共挖掘土方704000立方米列出方程,求解即可.【解答】解:设大型挖掘机x台,则小型挖掘机(120﹣x)台.根据题意得:20[360x+200(120﹣x)]=704000,解得x=70,则120﹣x=50,答:大型挖掘机70台,小型挖掘机50台.【点评】本题考查了一元一次方程的应用.解决问题的关键是读懂题意,依题意列出等式进行求解.22.(8分)一辆货车从A地出发以每小时80km的速度匀速驶往B地,一段时间后,一辆轿车从B地出发沿同一条路匀速驶往A地.货车行驶3小时后,在距B地160km处与轿车相遇.图中线段表示货车离B地的距离y1与货车行驶的时间x的关系.(1)AB两地之间的距离为400km;(2)求y1与x之间的函数关系式;(3)若两车同时到达各自目的地,在同一坐标系中画出轿车离B地的距离y2与货车行驶时间x的函数图象,用文字说明该图象与x轴交点所表示的实际意义.【分析】(1)根据“路程=速度×时间”,得出货车行驶3小时的路程,再加上相遇地点到B的的距离即可;(2)根据(1)的结论即可得出y1与x之间的函数关系式;(3)作出一次函数的图象并根据图象得到交点坐标所表示的意义是货车从A地出发1小时后轿车从B地出发.【解答】解:(1)80×3+160=400(km),即AB两地之间的距离为400km.故答案为:400;(2)由题意得y1=400﹣80x=﹣80x+400;(3)如图,线段y2即为所求的图象;货车行驶的时间为400÷80=5h,则可求出y2的函数表达式:y2=120x﹣200,该图象与x轴交点坐标为(,0).它表示的实际意义:货车从A地出发小时后,轿车从B地出发.【点评】本题考查了一次函数的应用,解题的关键是根据函数图象经过的点的坐标求的一次函数的解析式,题目中还渗透了数形结合的数学思想.23.(8分)(1)如图①,在四边形ABCD中,∠A=∠C=90°,AB=CD,求证:四边形ABCD是矩形;(2)如图②,若四边形ABCD满足∠A=∠C>90°,AB=CD,求证:四边形ABCD 是平行四边形.【分析】(1)如图①,连接BD,根据全等三角形的性质得到AD=CB,得到四边形ABCD 是平行四边形,根据矩形的判定定理即可得到结论;(2)如图②,分别过点B、D作BE⊥AD于点E,DF⊥BC于点F,根据全等三角形的性质得到BE=DF,AE=CF,得到ED=BF,根据平行四边形的判定定理即可得到结论.【解答】(1)证明:如图①,连接BD,∵∠A=∠C=90°,∵AB=CD,BD=DB,∴Rt△ABD≌Rt△CDB(HL),∴AD=CB,∴四边形ABCD是平行四边形,∵∠A=90°,∴四边形ABCD是矩形;(2)解:如图②,分别过点B、D作BE⊥AD于点E,DF⊥BC于点F,∵∠BAD=∠BCD,∴∠BAE=∠DCF,∵∠AEB=∠CFD=90°,AB=CD,∴△ABE≌△CDF(AAS),∴BE=DF,AE=CF,由(1)可得四边形EBFD是矩形,∴ED=BF,∴AD=BC,∵AB=CD,AD=BC,∴四边形ABCD是平行四边形.【点评】本题考查了矩形的判定和性质,平行四边形的判定,全等三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.24.(8分)如图,B位于A南偏西37°方向,港口C位于A南偏东35°方向,B位于C 正西方向.轮船甲从A出发沿正南方向行驶40海里到达点D处,此时轮船乙从B出发沿正东方向行驶20海里至E处,E位于D南偏西45°方向,这时,E处距离港口C有多远?(参考数据:tan37°≈0.75,tan35°≈0.70)【分析】证△PDE是等腰直角三角形,得出PD=PE,设PD=PE=x海里,则P A=40+x (海里),PB=20+x(海里),在Rt△ABP中,由三角函数定义求出PE=40海里,P A=80海里,再在Rt△ACP中,由三角函数定义求出PC=0.7P A=56海里,即可得答案.【解答】解:由题意得:∠BAP=37°,∠CAP=35°,AD=40海里,BE=20海里,∠PDE=45°,∠DPE=90°,∴△PDE是等腰直角三角形,∴PD=PE,设PD=PE=x海里,则P A=40+x(海里),PB=20+x(海里),在Rt△ABP中,tan∠BAP==tan37°≈0.75,即=,解得:x=40,∴PE=40海里,P A=80海里,在Rt△ACP中,tan∠CAP==tan35°≈0.70,∴PC=0.7P A=56海里,∴EC=PE+PC=40+56=96(海里);答:E处距离港口C有96海里远.【点评】本题考查了解直角三角形的应用﹣方向角问题、等腰直角三角形的判定以及三角函数等腰;熟练掌握三角函数定义是解题的关键.25.(9分)如图①,在矩形ABCD中,AB=6,BC=9,点E是BC边上一动点,连接AE、DE,作△ECD的外接⊙O,交AD于点F,交AE于点G,连接FG.(1)求证△AFG∽△AED;(2)当BE的长为或9﹣3或3时,△AFG为等腰三角形;(3)如图②,若BE=1,求证:AB与⊙O相切.【分析】(1)由圆内接四边形的性质得∠FGE+∠ADE=180°,证出∠AGF=∠ADE,再由公共角∠GAF=∠DAE,即可得出结论;(2)由相似三角形的性质得当△AED为等腰三角形时,△AFG为等腰三角形,连接EF,由圆周角定理得出DE是⊙O的直径,则∠DFE=90°,证四边形ABEF是矩形,得AF =BE,EF=AB=6,△AED为等腰三角形,分三种情况:①当AE=DE时,②当DE=AD=9时,③当AE=AD=9时,由等腰三角形的性质和勾股定理分别得出答案;(3)过O作OH⊥AB于点H,反向延长OH交CD于点I,证四边形AHID为矩形,得HI=AD=9,∠OID=90°,证出OI是△DCE的中位线,得DI=CD=3,OI=EC,求出OH=HI﹣OI=5,由勾股定理求出⊙O的半径OD=5,得OH是⊙O的半径,由切线的判定即可得出结论.【解答】(1)证明:∵四边形FGED是⊙O的内接四边形,∴∠FGE+∠ADE=180°,∵∠AGF+∠FGE=180°,∴∠AGF=∠ADE,又∠GAF=∠DAE,∴△AFG∽△AED;(2)解:由(1)得:△AFG∽△AED,∴当△AED为等腰三角形时,△AFG为等腰三角形,连接EF,如图①所示:∵四边形ABCD是矩形,AB=6,BC=9,∴CD=AB=6,AD=BC=9,∠BAD=∠ABC=∠BCD=∠ADC=90°,∵⊙O是△ECD的外接圆,∠ECD=90°,∴DE是⊙O的直径,∴∠DFE=90°,∴∠AFE=180°﹣∠DFE=180°﹣90°=90°,∴∠BAF=∠ABE=∠AFE=90°,∴四边形ABEF是矩形,∴AF=BE,EF=AB=6,△AED为等腰三角形,分三种情况:①当AE=DE时,∵∠DFE=90°,∴AF=DF=AD=×9=,∴BE=AF=;②当DE=AD=9时,在Rt△DCE中,由勾股定理得:CE===3,∴BE=BC﹣CE=9﹣3;③当AE=AD=9时,在Rt△ABE中,由勾股定理得:BE===3;综上所述,当BE的长为或9﹣3或3时,△AFG为等腰三角形,故答案为:或9﹣3或3;(3)证明:过O作OH⊥AB于点H,反向延长OH交CD于点I,如图②所示:则∠AHI=90°,∵四边形ABCD是矩形,∴CD=AB=6,∠BCD=∠BAD=∠ADC=90°,∴∠AHI=∠BAD=∠ADC=90°,∴四边形AHID为矩形,∴HI=AD=9,∠OID=90°,∴∠ECD=∠OID,∴OI∥CE,∵∠BCD=90°,∴DE为直径,∴OD=OE,∴OI是△DCE的中位线,∴DI=CD=3,OI=EC,∵BE=1,BC=9,∴EC=8,∴OI=×8=4,∴OH=HI﹣OI=9﹣4=5,在Rt△DEC中,由勾股定理得:DE===10,∴⊙O的半径OD=5∴OH是⊙O的半径,又OH⊥AB,∴AB与⊙O相切.【点评】本题是圆的综合题目,考查了切线的判定、圆周角定理、圆内接四边形的性质、相似三角形的判定与性质、等腰三角形的性质、矩形的判定与性质、三角形中位线定理、勾股定理等知识;本题综合性强,熟练掌握圆周角定理、切线的判定定理以及相似三角形的判定与性质是解题的关键.26.(10分)已知二次函数y=x2﹣2mx+m2+m﹣1(m是常数).(1)求证:不论m为何值,该函数图象的顶点都在函数y=x﹣1的图象上.(2)若该函数图象与函数y=x+b的图象有两个交点,则b的取值范围为()A.b>0;B.b>﹣1;C.b>﹣;D.b>﹣2.(3)该函数图象与坐标轴交点的个数随m的值变化而变化,直接写出交点个数及对应的m取值范围.【分析】(1)利用配方法得到抛物线的顶点坐标为(m,m﹣1),然后根据一次函数图象上点的坐标进行证明;(2)根据题意关于x的方程x2﹣2mx+m2+m﹣1=x+b有两个不相等的实数解,则△=(2m+1)2﹣4(m2+m﹣1﹣b)>0,然后解不等式即可;(3)先计算判别式△=﹣4m+4,当△>0,即﹣4m+4>0,抛物线与x轴有2个交点,而抛物线与y轴的交点过原点时m=,分抛物线与坐标轴有3个交点和2个交点讨论;当△=0,即﹣4m+4=0,抛物线与坐标有2个交点;当△<0,即﹣4m+4<0,抛物线与坐标轴有1个交点,然后分别解方程或不等式得到对应的m的值或范围.【解答】(1)证明:y=x2﹣2mx+m2+m﹣1=(x﹣m)2+m﹣1,∴抛物线的顶点坐标为(m,m﹣1),∵当x=m时,y=x﹣1=m﹣1,∴不论m为何值,该函数图象的顶点都在函数y=x﹣1的图象上;(2)x2﹣2mx+m2+m﹣1=x+b,整理得x2﹣(2m+1)x+m2+m﹣1﹣b=0,根据题意得△=(2m+1)2﹣4(m2+m﹣1﹣b)>0,解得b>﹣,故选C;(3)y=x2﹣2mx+m2+m﹣1△=4m2﹣4(m2+m﹣1)=﹣4m+4,当△>0,即﹣4m+4>0,抛物线与坐标轴有3个交点,此时m的范围为m<1且m≠;当m=抛物线与坐标轴有2个交点;当△=0,即﹣4m+4=0,抛物线与坐标有2个交点,此时m=1;当△<0,即﹣4m+4<0,抛物线与坐标轴有1个交点,此时m的范围为m>1.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.27.(10分)【概念认识】在同一个圆中两条互相垂直且相等的弦定义为“等垂弦”,两条弦所在直线的交点为等垂弦的分割点.如图①,AB、CD是⊙O的弦,AB=CD,AB⊥CD,垂足为E,则AB、CD 是等垂弦,E为等垂弦AB、CD的分割点.【数学理解】(1)如图②,AB是⊙O的弦,作OC⊥OA、OD⊥OB,分别交⊙O于点C、D,连接CD.求证:AB、CD是⊙O的等垂弦.(2)在⊙O中,⊙O的半径为5,E为等垂弦AB、CD的分割点,=.求AB的长度;【问题解决】(3)AB、CD是⊙O的两条弦,CD=AB,且CD⊥AB,垂足为F.①在图③中,利用直尺和圆规作弦CD(保留作图痕迹,不写作法);②若⊙O的半径为r,AB=mr(m为常数),垂足F与⊙O的位置关系随m的值变化而变化,直接写出点F与⊙O的位置关系及对应的m的取值范围.【分析】(1)连接BC,由圆心角相等可得AB=CD,由圆周角定理可得∠ABC=∠AOC =45°,∠BCD=∠BOD=45°,可证AB⊥CD,可得结论;(2)分两种情况讨论,过点O作OH⊥AB,作OG⊥CD,可证矩形OHEG为正方形,利用勾股定理可求解;(3)①如图所示;②先求出点F在⊙O上时,m的值,即可求解.【解答】证明:(1)如图②,连接BC,∵OC⊥OA、OD⊥OB,∴∠AOC=∠BOD=90°,∴∠AOB=∠COD,∴AB=CD,∵∠ABC=∠AOC=45°,∠BCD=∠BOD=45°,∴∠AEC=∠ABC+∠BCD=90°,即AB⊥CD,∵AB=CD,AB⊥CD,∴AB、CD是⊙O的等垂弦;(2)如图,若点E在⊙O内,过点O作OH⊥AB,垂足为H,作OG⊥CD,垂足为G,∵AB、CD是⊙O的等垂弦,∴AB=CD,AB⊥CD,∴四边形OHEG是矩形,∵OH⊥AB,OG⊥CD,∴AH=AB,DG=CD,∴AH=DG,又∵OA=OD,∴△AHO≌△DGO(HL),∴OH=OG,∴矩形OHEG为正方形,∴OH=HE.∵=,且AH=BH,∴AH=2BE=2OH,在Rt△AOH中,AO2=AH2+OH2.即(2OH)2+OH2=AO2=25,解得OH=,∴AB=4HE=4;。
2020年江苏省南京市中考数学试卷 (解析版)

2020年江苏省南京市中考数学试卷一、选择题(共6小题).1.(2分)计算3(2)--的结果是( ) A .5-B .1-C .1D .52.(2分)3的平方根是( )A .9B .3C .3-D .3±3.(2分)计算322()a a ÷的结果是( ) A .3aB .4aC .7aD .8a4.(2分)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是( ) A .2019年末,农村贫困人口比上年末减少551万人B .2012年末至2019年末,农村贫困人口累计减少超过9000万人C .2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D .为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务5.(2分)关于x 的方程2(1)(2)(x x p p -+=为常数)的根的情况,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根6.(2分)如图,在平面直角坐标系中,点P 在第一象限,P 与x 轴、y 轴都相切,且经过矩形AOBC 的顶点C ,与BC 相交于点D .若P 的半径为5,点A 的坐标是(0,8).则点D 的坐标是( )A .(9,2)B .(9,3)C .(10,2)D .(10,3)二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置上)7.(2分)写出一个负数,使这个数的绝对值小于3: . 8.(2分)若式子111x --在实数范围内有意义,则x 的取值范围是 . 9.(2分)纳秒()ns 是非常小的时间单位,9110ns s -=.北斗全球导航系统的授时精度优于20ns .用科学记数法表示20ns 是 s .10.(23312+的结果是 .11.(2分)已知x 、y 满足方程组31,23,x y x y +=-⎧⎨+=⎩,则x y +的值为 .12.(2分)方程112x x x x -=-+的解是 . 13.(2分)将一次函数24y x =-+的图象绕原点O 逆时针旋转90︒,所得到的图象对应的函数表达式是 .14.(2分)如图,在边长为2cm 的正六边形ABCDEF 中,点P 在BC 上,则PEF ∆的面积为 2cm .15.(2分)如图,线段AB 、BC 的垂直平分线11、2l 相交于点O ,若139∠=︒,则AOC ∠= .16.(2分)下列关于二次函数22()1(y x m m m =--++为常数)的结论:①该函数的图象与函数2y x =-的图象形状相同;②该函数的图象一定经过点(0,1);③当0x >时,y 随x 的增大而减小;④该函数的图象的顶点在函数21y x =+的图象上.其中所有正确结论的序号是 .三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算212(1)11a aa a a +-+÷++. 18.(7分)解方程:2230x x --=.19.(8分)如图,点D 在AB 上,点E 在AC 上,AB AC =,B C ∠=∠,求证:BD CE =.20.(8分)已知反比例函数ky x=的图象经过点(2,1)--. (1)求k 的值.(2)完成下面的解答.解不等式组21,1xkx->⎧⎪⎨>⋅⎪⎩①②解:解不等式①,得.根据函数kyx=的图象,得不等式②的解集.把不等式①和②的解集在数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集.21.(8分)为了了解某地居民用电量的情况,随机抽取了该地200户居民六月份的用电量(单位:)kW h进行调查,整理样本数据得到下面的频数分布表.组别用电量分组频数1893x<50293178x<1003178263x<344263348x<115348433x<16433518x<17518603x<28603688x<1根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第组内;(2)估计该地1万户居民六月份的用电量低于178kW h的大约有多少户.22.(8分)甲、乙两人分别从A、B、C这3个景点中随机选择2个景点游览.(1)求甲选择的2个景点是A、B的概率;(2)甲、乙两人选择的2个景点恰好相同的概率是.23.(8分)如图,在港口A处的正东方向有两个相距6km的观测点B、C.一艘轮船从A处出发,沿北偏东26︒方向航行至D处,在B、C处分别测得45ABD∠=︒、37C∠=︒.求轮船航行的距离AD.(参考数据:sin260.44︒≈,cos260.90︒≈,tan260.49︒≈,sin370.60︒≈,cos370.80︒≈,tan 370.75︒≈.)24.(8分)如图,在ABC ∆中,AC BC =,D 是AB 上一点,O 经过点A 、C 、D ,交BC 于点E ,过点D 作//DF BC ,交O 于点F . 求证:(1)四边形DBCF 是平行四边形; (2)AF EF =.25.(8分)小明和小丽先后从A 地出发沿同一直道去B 地.设小丽出发第x min 时,小丽、小明离B 地的距离分别为1y m 、2y m .1y 与x 之间的函数表达式是11802250y x =-+,2y 与x 之间的函数表达式是22101002000y x x =--+.(1)小丽出发时,小明离A 地的距离为 m .(2)小丽出发至小明到达B 地这段时间内,两人何时相距最近?最近距离是多少? 26.(9分)如图,在ABC ∆和△A B C '''中,D 、D '分别是AB 、A B ''上一点,AD A D AB A B ''=''.(1)当CD AC ABC D A C A B ==''''''时,求证ABC ∆∽△A B C ''. 证明的途径可以用下面的框图表示,请填写其中的空格.(2)当CD AC BCC D A C B C==''''''时,判断ABC∆与△A B C'''是否相似,并说明理由.27.(9分)如图①,要在一条笔直的路边l上建一个燃气站,向l同侧的A、B两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A关于l的对称点A',线段A B'与直线l的交点C的位置即为所求,即在点C处建燃气站,所得路线ACB是最短的.为了证明点C的位置即为所求,不妨在直线1上另外任取一点C',连接AC'、BC',证明AC CB AC C B'+<'+.请完成这个证明.(2)如果在A、B两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.参考答案一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上) 1.(2分)计算3(2)--的结果是( ) A .5-B .1-C .1D .5解:3(2)325--=+=. 故选:D .2.(2分)3的平方根是( )A .9B C .D .解:2(3)3±=,3∴的平方根.故选:D .3.(2分)计算322()a a ÷的结果是( ) A .3aB .4aC .7aD .8a解:322322624()a a a a a a ⨯-÷=÷==, 故选:B .4.(2分)党的十八大以来,党中央把脱贫攻坚摆到更加突出的位置.根据国家统计局发布的数据,2012~2019年年末全国农村贫困人口的情况如图所示.根据图中提供的信息,下列说法错误的是( ) A .2019年末,农村贫困人口比上年末减少551万人B .2012年末至2019年末,农村贫困人口累计减少超过9000万人C .2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上D .为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务解:A .2019年末,农村贫困人口比上年末减少166********-=(万人),此选项错误; B .2012年末至2019年末,农村贫困人口累计减少超过98995519348-=(万人),此选项正确;C .2012年末至2019年末,连续7年每年农村贫困人口减少1000万人以上,此选项正确;D .为在2020年末农村贫困人口全部脱贫,今年要确保完成减少551万农村贫困人口的任务,此选项正确; 故选:A .5.(2分)关于x 的方程2(1)(2)(x x p p -+=为常数)的根的情况,下列结论中正确的是( )A .两个正根B .两个负根C .一个正根,一个负根D .无实数根解:关于x 的方程2(1)(2)(x x p p -+=为常数),2220x x p ∴+--=,∴△22184940p p =++=+>,∴方程有两个不相等的实数根,两个的积为22p --, ∴一个正根,一个负根,故选:C .6.(2分)如图,在平面直角坐标系中,点P 在第一象限,P 与x 轴、y 轴都相切,且经过矩形AOBC 的顶点C ,与BC 相交于点D .若P 的半径为5,点A 的坐标是(0,8).则点D 的坐标是( )A .(9,2)B .(9,3)C .(10,2)D .(10,3)解:设O 与x 、y 轴相切的切点分别是F 、E 点,连接PE 、PF 、PD ,延长EP 与CD 交于点G ,则PE y ⊥轴,PF x ⊥轴, 90EOF ∠=︒, ∴四边形PEOF 是矩形,PE PF =,//PE OF , ∴四边形PEOF 为正方形,5OE OF PE OF ∴====,(0,8)A , 8OA ∴=, 853AE ∴=-=,四边形OACB 为矩形,8BC OA ∴==,//BC OA ,//AC OB , //EG AC ∴,∴四边形AEGC 为平行四边形,四边形OEGB 为平行四边形,3CG AE ∴==,EG OB =, PE AO ⊥,//AO CB , PG CD ∴⊥, 26CD CG ∴==,862DB BC CD ∴=-=-=, 5PD =,3DG CG ==, 4PG ∴=,549OB EG ∴==+=,(9,2)D ∴.故选:A .二、填空题(本大题共10小题,每小题2分,共20分.请把答案填写在答题卡相应位置上)7.(2分)写出一个负数,使这个数的绝对值小于3: 1-(答案不唯一) . 解:这个数的绝对值小于3, ∴这个数的绝对值等于0、1或2, ∴这个负数可能是2-、1-.故答案为:1-(答案不唯一). 8.(2分)若式子111x --在实数范围内有意义,则x 的取值范围是 1x ≠ . 解:若式子111x --在实数范围内有意义, 则10x -≠, 解得:1x ≠. 故答案为:1x ≠.9.(2分)纳秒()ns 是非常小的时间单位,9110ns s -=.北斗全球导航系统的授时精度优于20ns .用科学记数法表示20ns 是 8210-⨯ s .解:98202010210ns s s --=⨯=⨯,故答案为:8210-⨯.10.(2解:原式13===. 故答案为:13. 11.(2分)已知x 、y 满足方程组31,23,x y x y +=-⎧⎨+=⎩,则x y +的值为 1 . 解:3123x y x y +=-⎧⎨+=⎩①②, ①2⨯-②得:55y =-,解得:1y =-,①-②3⨯得:510x -=-,解得:2x =,则211x y +=-=, 故答案为1.12.(2分)方程112x x x x -=-+的解是 x = 解:方程112x x x x -=-+, 去分母得:22221x x x x +=-+, 解得:14x =, 经检验14x =是分式方程的解. 故答案为:14x =. 13.(2分)将一次函数24y x =-+的图象绕原点O 逆时针旋转90︒,所得到的图象对应的函数表达式是 122y x =+ . 解:在一次函数24y x =-+中,令0x =,则4y =,∴直线24y x =-+经过点(0,4),将一次函数24y x =-+的图象绕原点O 逆时针旋转90︒,则点(0,4)的对应点为(4,0)-, 旋转后得到的图象与原图象垂直,则对应的函数解析式为:12y x b =+, 将点(4,0)-代入得,1(4)02b ⨯-+=, 解得2b =,∴旋转后对应的函数解析式为:122y x =+, 故答案为122y x =+. 14.(2分)如图,在边长为2cm 的正六边形ABCDEF 中,点P 在BC 上,则PEF ∆的面积为 23 2cm . 解:连接BF ,BE ,过点A 作AT BF ⊥于TABCDEF 是正六边形,//CB EF ∴,AB AF =,120BAF ∠=︒,PEF BEF S S ∆∆∴=,AT BE ⊥,AB AF =,BT FT ∴=,60BAT FAT ∠=∠=︒,sin 603BT FT AB ∴==︒=,223BF BT ∴==,120AFE ∠=︒,30AFB ABF ∠=∠=︒,90BFE ∴∠=︒, 112232322PEF BEF S S EF BF ∆∆∴===⨯⨯=, 故答案为23.15.(2分)如图,线段AB 、BC 的垂直平分线11、2l 相交于点O ,若139∠=︒,则AOC ∠=78︒ .解:过O 作射线BP ,线段AB 、BC 的垂直平分线11、2l 相交于点O ,AO OB OC ∴==,90BDO BEO ∠=∠=︒,180DOE ABC ∴∠+∠=︒,1180DOE ∠+∠=︒,139ABC ∴∠=∠=︒,OA OB OC ==,A ABO ∴∠=∠,OBC C ∠=∠,AOP A ABO ∠=∠+∠,COP C OBC ∠=∠+∠,23978AOC AOP COP A ABC C ∴∠=∠+∠=∠+∠+∠=⨯︒=︒,故答案为:78︒.16.(2分)下列关于二次函数22()1(y x m m m =--++为常数)的结论:①该函数的图象与函数2y x =-的图象形状相同;②该函数的图象一定经过点(0,1);③当0x >时,y 随x 的增大而减小;④该函数的图象的顶点在函数21y x =+的图象上.其中所有正确结论的序号是 ①②④ .解:①二次函数2()1(y x m m m =--++为常数)与函数2y x =-的二次项系数相同, ∴该函数的图象与函数2y x =-的图象形状相同,故结论①正确; ②在函数22()1y x m m =--++中,令0x =,则2211y m m =-++=,∴该函数的图象一定经过点(0,1),故结论②正确;③22()1y x m m =--++,∴抛物线开口向下,对称轴为直线x m =,当x m >时,y 随x 的增大而减小,故结论③错误; ④抛物线开口向下,当x m =时,函数y 有最大值21m +,∴该函数的图象的顶点在函数21y x =+的图象上.故结论④正确,故答案为①②④.三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)计算212(1)11a a a a a +-+÷++. 解:原式211(2)()111a a a a a a -+=+÷+++ 211(2)a a a a a +=++ 2a a =+. 18.(7分)解方程:2230x x --=.解:原方程可以变形为(3)(1)0x x -+=30x -=,10x +=13x ∴=,21x =-.19.(8分)如图,点D 在AB 上,点E 在AC 上,AB AC =,B C ∠=∠,求证:BD CE =.【解答】证明:在ABE ∆与ACD ∆中A A AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩,ABE ACD ∴∆≅∆.AD AE ∴=.BD CE ∴=.20.(8分)已知反比例函数k y x =的图象经过点(2,1)--. (1)求k 的值. (2)完成下面的解答.解不等式组21,1x k x ->⎧⎪⎨>⋅⎪⎩①② 解:解不等式①,得 1x < .根据函数k y x=的图象,得不等式②的解集 . 把不等式①和②的解集在数轴上表示出来.从图中可以找出两个不等式解集的公共部分,得不等式组的解集 .解:(1)反比例函数k y x=的图象经过点(2,1)--, (2)(1)2k ∴=-⨯-=;(2)解不等式组21,1x k x ->⎧⎪⎨>⋅⎪⎩①② 解:解不等式①,得1x <.根据函数k y x=的图象,得不等式②的解集02x <<. 把不等式①和②的解集在数轴上表示为:∴不等式组的解集为01x <<,故答案为:1x <,02x <<,01x <<.21.(8分)为了了解某地居民用电量的情况,随机抽取了该地200户居民六月份的用电量(单位:)kW h 进行调查,整理样本数据得到下面的频数分布表. 组别用电量分组 频数 1893x < 50 293178x < 100 3178263x < 34 4263348x < 11 5348433x < 1 6433518x < 1 7518603x < 2 8 603688x <1 根据抽样调查的结果,回答下列问题:(1)该地这200户居民六月份的用电量的中位数落在第 2 组内;(2)估计该地1万户居民六月份的用电量低于178kW h 的大约有多少户.解:(1)有200个数据,∴六月份的用电量的中位数应该是第100个和第101个数的平均数,∴该地这200户居民六月份的用电量的中位数落在第2组内;故答案为:2;(2)50100100007500200+⨯=(户), 答:估计该地1万户居民六月份的用电量低于178kW h 的大约有7500户.22.(8分)甲、乙两人分别从A 、B 、C 这3个景点中随机选择2个景点游览.(1)求甲选择的2个景点是A 、B 的概率;(2)甲、乙两人选择的2个景点恰好相同的概率是13. 解:用列表法表示所有可能出现的结果如下:(1)共有9种可能出现的结果,其中选择A 、B 的有2种,(,)29A B P ∴=; (2)共有9种可能出现的结果,其中选择景点相同的有3种, ()3193P ∴==景点相同. 故答案为:13. 23.(8分)如图,在港口A 处的正东方向有两个相距6km 的观测点B 、C .一艘轮船从A 处出发,沿北偏东26︒方向航行至D 处,在B 、C 处分别测得45ABD ∠=︒、37C ∠=︒.求轮船航行的距离AD .(参考数据:sin 260.44︒≈,cos 260.90︒≈,tan 260.49︒≈,sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈.)解:如图,过点D 作DH AC ⊥于点H ,在Rt DCH ∆中,37C ∠=︒,tan 37DH CH ∴=︒, 在Rt DBH ∆中,45DBH ∠=︒,tan 45DH BH ∴=︒, BC CH BH =-,∴6tan 37tan 45DH DH -=︒︒, 解得18DH ≈,在Rt DAH ∆中,26ADH ∠=︒,20cos 26DH AD ∴=≈︒. 答:轮船航行的距离AD 约为20km .24.(8分)如图,在ABC ∆中,AC BC =,D 是AB 上一点,O 经过点A 、C 、D ,交BC 于点E ,过点D 作//DF BC ,交O 于点F .求证:(1)四边形DBCF 是平行四边形;(2)AF EF =.【解答】证明:(1)AC BC =,BAC B ∴∠=∠,//DF BC , ADF B ∴∠=∠,BAC CFD ∠=∠,ADF CFD ∴∠=∠,//BD CF ∴,//DF BC ,∴四边形DBCF 是平行四边形;(2)连接AE ,ADF B ∠=∠,ADF AEF ∠=∠,AEF B ∴∠=∠, 四边形AECF 是O 的内接四边形,180ECF EAF ∴∠+∠=︒,//BD CF ,180ECF B ∴∠+∠=︒,EAF B ∴∠=∠,AEF EAF ∴∠=∠,AE EF ∴=.25.(8分)小明和小丽先后从A 地出发沿同一直道去B 地.设小丽出发第x min 时,小丽、小明离B 地的距离分别为1y m 、2y m .1y 与x 之间的函数表达式是11802250y x =-+,2y 与x 之间的函数表达式是22101002000y x x =--+.(1)小丽出发时,小明离A 地的距离为 250 m .(2)小丽出发至小明到达B 地这段时间内,两人何时相距最近?最近距离是多少? 解:(1)11802250y x =-+,22101002000y x x =--+,∴当0x =时,12250y =,22000y =,∴小丽出发时,小明离A 地的距离为22502000250()m -=,故答案为:250;(2)设小丽出发第xmin 时,两人相距sm ,则222(1802250)(101002000)108025010(4)90s x x x x x x =-+---+=-+=-+, ∴当4x =时,s 取得最小值,此时90s =,答:小丽出发第4min 时,两人相距最近,最近距离是90m .26.(9分)如图,在ABC ∆和△A B C '''中,D 、D '分别是AB 、A B ''上一点,AD A D AB A B ''=''.(1)当CD AC AB C D A C A B ==''''''时,求证ABC ∆∽△A B C ''. 证明的途径可以用下面的框图表示,请填写其中的空格.(2)当CD AC BC C D A C B C ==''''''时,判断ABC ∆与△A B C '''是否相似,并说明理由. 【解答】(1)证明:AD A D AB A B ''='', ∴AD AB A D A B ='''', CD AC ABC D A C A B =='''''', ∴CD AC AD C D A C A D =='''''', ADC ∴∆∽△A D C '',A A ∴∠=∠',AC ABA C AB ='''', ABC ∴∆∽△A B C '''.故答案为:CD AC AD C D A C A D =='''''',A A ∠=∠'. (2)如图,过点D ,D '分别作//DE BC ,//D E B C '''',DE 交AC 于E ,D E ''交A C ''于E './/DE BC ,ADE ABC ∴∆∆∽, ∴AD DE AE AB BC AC==, 同理,A D D E A E AB BC A C ''''''=='''''', AD A DAB A B ''='', ∴DE D E BC B C ''='', ∴DE BC D E B C ='''', 同理,AE A E AC A C ''='', ∴AC AE A C A E AC A C -''-''='',即EC E C AC A C ''='', ∴EC AC E C A C ='''', CD AC BCC D A C B C =='''''', ∴CD DE EC C D D E E C =='''''', DCE ∴∆∽△D C E ''',CED C E D ∴∠=∠''',//DE BC ,90CED ACB ∴∠+∠=︒,同理,180C E D A C B ∠'''+∠'''=︒,ACB A B C ∴∠=∠''',AC CBA C CB ='''', ABC ∴∆∽△A B C '''.27.(9分)如图①,要在一条笔直的路边l 上建一个燃气站,向l 同侧的A 、B 两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图②,作出点A 关于l 的对称点A ',线段A B '与直线l 的交点C 的位置即为所求,即在点C 处建燃气站,所得路线ACB 是最短的.为了证明点C 的位置即为所求,不妨在直线1上另外任取一点C ',连接AC '、BC ',证明AC CB AC C B '+<'+.请完成这个证明.(2)如果在A 、B 两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.请分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图③所示;②生态保护区是圆形区域,位置如图④所示.【解答】证明:(1)如图②,连接A C '',点A ,点A '关于l 对称,点C 在l 上,CA CA '∴=,AC BC A C BC A B ''∴+=+=,同理可得AC C B A C BC '''''+=+,A B A C C B ''''<+,AC BC AC C B ''∴+<+;(2)如图③,在点C出建燃气站,铺设管道的最短路线是ACDB,(其中点D是正方形的顶点);如图④,在点C出建燃气站,铺设管道的最短路线是ACD DE EB++,(其中CD,BE都与圆相切)。
江苏省南京市2019-2020学年中考数学一模考试卷含解析

江苏省南京市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知△ABC ,D 是AC 上一点,尺规在AB 上确定一点E ,使△ADE ∽△ABC ,则符合要求的作图痕迹是( )A .B .C .D .2.如图,在ABC 中,D 、E 分别在边AB 、AC 上,//DE BC ,//EF CD 交AB 于F ,那么下列比例式中正确的是( )A .AF DEDF BC= B .DF AFDB DF= C .EF DECD BC= D .AF ADBD AB= 3.定义:若点P (a ,b )在函数y=的图象上,将以a 为二次项系数,b 为一次项系数构造的二次函数y=ax 2+bx 称为函数y=的一个“派生函数”.例如:点(2, )在函数y=的图象上,则函数y=2x 2+称为函数y=的一个“派生函数”.现给出以下两个命题:(1)存在函数y=的一个“派生函数”,其图象的对称轴在y 轴的右侧(2)函数y=的所有“派生函数”的图象都经过同一点,下列判断正确的是( ) A .命题(1)与命题(2)都是真命题 B .命题(1)与命题(2)都是假命题 C .命题(1)是假命题,命题(2)是真命题D .命题(1)是真命题,命题(2)是假命题4.给出下列各数式,①2?--() ②2-- ③2 2- ④22-() 计算结果为负数的有( ) A .1个 B .2个 C .3个 D .4个5.一、单选题如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°6.如图 1 是某生活小区的音乐喷泉, 水流在各个方向上沿形状相同的抛物线路径落下,其中一个喷水管喷水的最大高度为 3 m ,此时距喷水管的水平距离为 1 m ,在如图 2 所示的坐标系中,该喷水管水流喷出的高度y (m )与水平距离x (m )之间的函数关系式是( )A .()213y x =--+ B .()2213y x =-+ C .()2313y x =-++D .()2313y x =--+7.如图,将Rt ABC △绕直角顶点C 顺时针旋转90,得到A B C '',连接'A A ,若120︒∠=,则B 的度数是( )A .70︒B .65︒C .60︒D .55︒8.关于x 的一元二次方程x 2-2x-(m-1)=0有两个不相等的实数根,则实数m 的取值范围是( ) A .0m >且1m ≠ B .0m >C .0m ≥且1m ≠D .0m ≥9.如图,AB 是O 的直径,弦CD AB ⊥,垂足为点E ,点G 是AC 上的任意一点,延长AG 交DC 的延长线于点F ,连接,,GC GD AD .若25BAD ∠=︒,则AGD ∠等于( )A .55︒B .65︒C .75︒D .85︒10.如图,在ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,DE :EC=2:3,则S △DEF :S △ABF =( )A .2:3B .4:9C .2:5D .4:2511.当x=1时,代数式x 3+x+m 的值是7,则当x=﹣1时,这个代数式的值是( ) A .7B .3C .1D .﹣712.实数6 的相反数是 ( ) A .-6B .6C .16D .6-二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,将ABC △的边AB 绕着点A 顺时针旋转()090a α︒︒<<得到AB ',边AC 绕着点A 逆时针旋转()090ββ︒︒<<得到AC ',联结B C ''.当90αβ︒+=时,我们称AB C ''△是ABC △的“双旋三角形”.如果等边ABC △的边长为a ,那么它的“双旋三角形”的面积是__________(用含a 的代数式表示).14.若|a|=20160,则a=___________.15.如图,已知∠A+∠C=180°,∠APM=118°,则∠CQN=_____°.16.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C 的坐标是(0,-3),动点P在抛物线上. b =_________,c =_________,点B的坐标为_____________;(直接填写结果)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.17.若分式15x-有意义,则实数x的取值范围是_______.18.11201842-⎛⎫+- ⎪⎝⎭=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某种蔬菜的销售单价y1与销售月份x之间的关系如图(1)所示,成本y2与销售月份之间的关系如图(2)所示(图(1)的图象是线段图(2)的图象是抛物线)分别求出y1、y2的函数关系式(不写自变量取值范围);通过计算说明:哪个月出售这种蔬菜,每千克的收益最大?20.(6分)如图,在△ABC中,∠ACB=90°,O是AB上一点,以OA为半径的⊙O与BC相切于点D,与AB交于点E,连接ED并延长交AC的延长线于点F.(1)求证:AE=AF;(2)若DE=3,sin∠BDE=13,求AC的长.21.(6分)计算:025(3)tan 45π︒+--.化简:2(2)(1)x x x ---.22.(8分)已知:如图,抛物线y=ax 2+bx+c 与坐标轴分别交于点A (0,6),B (6,0),C (﹣2,0),点P 是线段AB 上方抛物线上的一个动点. (1)求抛物线的解析式;(2)当点P 运动到什么位置时,△PAB 的面积有最大值?(3)过点P 作x 轴的垂线,交线段AB 于点D ,再过点P 做PE ∥x 轴交抛物线于点E ,连结DE ,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.23.(8分)如图1,点P 是平面直角坐标系中第二象限内的一点,过点P 作PA ⊥y 轴于点A ,点P 绕点A 顺时针旋转60°得到点P',我们称点P'是点P 的“旋转对应点”.(1)若点P (﹣4,2),则点P 的“旋转对应点”P'的坐标为 ;若点P 的“旋转对应点”P'的坐标为(﹣5,16)则点P 的坐标为 ;若点P (a ,b ),则点P 的“旋转对应点”P'的坐标为 ; (2)如图2,点Q 是线段AP'上的一点(不与A 、P'重合),点Q 的“旋转对应点”是点Q',连接PP'、QQ',求证:PP'∥QQ';(3)点P 与它的“旋转对应点”P'的连线所在的直线经过点(3,6),求直线PP'与x 轴的交点坐标.24.(10分)如图,在平面直角坐标系中,矩形OABC 的顶点B 坐标为(4,6),点P 为线段OA 上一动点(与点O 、A 不重合),连接CP ,过点P 作PE ⊥CP 交AB 于点D ,且PE =PC ,过点P 作PF ⊥OP 且PF =PO (点F 在第一象限),连结FD 、BE 、BF ,设OP =t .(1)直接写出点E 的坐标(用含t 的代数式表示): ;(2)四边形BFDE 的面积记为S ,当t 为何值时,S 有最小值,并求出最小值; (3)△BDF 能否是等腰直角三角形,若能,求出t ;若不能,说明理由.25.(10分)某制衣厂某车间计划用10天加工一批出口童装和成人装共360件,该车间的加工能力是:每天能单独加工童装45件或成人装30件.(1)该车间应安排几天加工童装,几天加工成人装,才能如期完成任务;(2)若加工童装一件可获利80元, 加工成人装一件可获利120元, 那么该车间加工完这批服装后,共可获利多少元.26.(12分)如图,矩形ABCD 的两边AD 、AB 的长分别为3、8,E 是DC 的中点,反比例函数my x=的图象经过点E ,与AB 交于点F .若点B 坐标为(6,0)-,求m 的值及图象经过A 、E 两点的一次函数的表达式;若2AF AE -=,求反比例函数的表达式.27.(12分)如图,已知抛物线y =x 2﹣4与x 轴交于点A ,B (点A 位于点B 的左侧),C 为顶点,直线y =x+m 经过点A ,与y 轴交于点D .求线段AD 的长;平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D ,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD ,求新抛物线对应的函数表达式.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AB的交点即为所求作的点.【详解】如图,点E即为所求作的点.故选:A.【点睛】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作一角等于∠B或∠C,并熟练掌握做一个角等于已知角的作法式解题的关键.2.C【解析】【分析】根据平行线分线段成比例定理和相似三角形的性质找准线段的对应关系,对各选项分析判断.【详解】A、∵EF∥CD,DE∥BC,∴AF AEDF EC=,AE DEAC BC=,∵CE≠AC,∴AF DEDF BC≠,故本选项错误;B、∵EF∥CD,DE∥BC,∴AF AEDF EC=,AE ADEC BD=,∴AF ADDF BD=,∵AD≠D F,∴DF AFDB DF≠,故本选项错误;C、∵EF∥CD,DE∥BC,∴DE AEBC AC=,EF AECD AC=,∴EF DECD BC=,故本选项正确;D、∵EF∥CD,DE∥BC,∴AD AEAB AC=,AF AEAD AC=,∴AF ADAD AB=,∵AD≠DF,∴AF ADBD AB≠,故本选项错误.故选C.【点睛】本题考查了平行线分线段成比例的运用及平行于三角形一边的直线截其它两边,所得的新三角形与原三角形相似的定理的运用,在解答时寻找对应线段是关健.3.C【解析】试题分析:(1)根据二次函数y=ax2+bx的性质a、b同号对称轴在y轴左侧,a、b异号对称轴在y轴右侧即可判断.(2)根据“派生函数”y=ax 2+bx ,x=0时,y=0,经过原点,不能得出结论. (1)∵P (a ,b )在y=上, ∴a 和b 同号,所以对称轴在y 轴左侧, ∴存在函数y=的一个“派生函数”,其图象的对称轴在y 轴的右侧是假命题. (2)∵函数y=的所有“派生函数”为y=ax 2+bx , ∴x=0时,y=0, ∴所有“派生函数”为y=ax 2+bx 经过原点,∴函数y=的所有“派生函数”,的图象都进过同一点,是真命题. 考点:(1)命题与定理;(2)新定义型 4.B 【解析】∵①(2)2--=;②22--=-;③224-=-;④2(2)4-=; ∴上述各式中计算结果为负数的有2个. 故选B. 5.A 【解析】分析:依据AD 是BC 边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE 平分∠BAC ,即可得到∠DAE=5°,再根据△ABC 中,∠C=180°﹣∠ABC ﹣∠BAC=70°,可得∠EAD+∠ACD=75°. 详解:∵AD 是BC 边上的高,∠ABC=60°, ∴∠BAD=30°,∵∠BAC=50°,AE 平分∠BAC , ∴∠BAE=25°, ∴∠DAE=30°﹣25°=5°,∵△ABC 中,∠C=180°﹣∠ABC ﹣∠BAC=70°, ∴∠EAD+∠ACD=5°+70°=75°, 故选A .点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用. 6.D 【解析】 【分析】根据图象可设二次函数的顶点式,再将点(0,0)代入即可. 【详解】解:根据图象,设函数解析式为()2y a x h k =-+ 由图象可知,顶点为(1,3) ∴()213y a x =-+,将点(0,0)代入得()20013a =-+ 解得3a =- ∴()2313y x =--+ 故答案为:D . 【点睛】本题考查了是根据实际抛物线形,求函数解析式,解题的关键是正确设出函数解析式. 7.B 【解析】 【分析】根据旋转的性质可得AC =A′C ,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C ,最后根据旋转的性质可得∠B =∠A′B′C . 【详解】解:∵Rt △ABC 绕直角顶点C 顺时针旋转90°得到△A′B′C , ∴AC =A′C ,∴△ACA′是等腰直角三角形, ∴∠CAA′=45°,∴∠A′B′C =∠1+∠CAA′=20°+45°=65°, ∴∠B =∠A′B′C =65°. 故选B . 【点睛】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键. 8.A 【解析】 【分析】根据一元二次方程的系数结合根的判别式△>1,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围. 【详解】∵关于x的一元二次方程x2﹣2x﹣(m﹣1)=1有两个不相等的实数根,∴△=(﹣2)2﹣4×1×[﹣(m﹣1)]=4m >1,∴m>1.故选B.【点睛】本题考查了根的判别式,牢记“当△>1时,方程有两个不相等的实数根”是解题的关键.9.B【解析】【分析】连接BD,利用直径得出∠ABD=65°,进而利用圆周角定理解答即可.【详解】连接BD,∵AB是直径,∠BAD=25°,∴∠ABD=90°-25°=65°,∴∠AGD=∠ABD=65°,故选B.【点睛】此题考查圆周角定理,关键是利用直径得出∠ABD=65°.10.D【解析】试题分析:先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,从而DE:AB=DE:DC=2:5,所以S△DEF:S△ABF=4:25试题解析:∵四边形ABCD是平行四边形,∴AB∥CD,BA=DC∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∴DE:AB=DE:DC=2:5,∴S△DEF:S△ABF=4:25,考点:1.相似三角形的判定与性质;2.三角形的面积;3.平行四边形的性质.11.B【解析】【分析】【详解】因为当x=1时,代数式的值是7,所以1+1+m=7,所以m=5,当x=-1时,=-1-1+5=3, 故选B .12.A【解析】【分析】根据相反数的定义即可判断.【详解】 6 的相反数是6故选A.【点睛】此题主要考查相反数的定义,解题的关键是熟知相反数的定义即可求解.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.214a . 【解析】【分析】首先根据等边三角形、“双旋三角形”的定义得出△A B'C'是顶角为150°的等腰三角形,其中AB'=AC'=a .过C'作C'D ⊥AB'于D ,根据30°角所对的直角边等于斜边的一半得出C'D 12=AC'12=a ,然后根据S △AB'C'12=AB'•C'D 即可求解. 【详解】∵等边△ABC 的边长为a ,∴AB=AC=a ,∠BAC=60°.∵将△ABC 的边AB 绕着点A 顺时针旋转α(0°<α<90°)得到AB',∴AB'=AB=a ,∠B'AB=α. ∵边AC 绕着点A 逆时针旋转β(0°<β<90°)得到AC',∴AC'=AC=a ,∠CAC'=β,∴∠B'AC'=∠B'AB+∠BAC+∠CAC'=α+60°+β=60°+90°=150°.如图,过C'作C'D ⊥AB'于D ,则∠D=90°,∠DAC'=30°,∴C'D 12=AC'12=a ,∴S △AB'C'12=AB'•C'D 12=a•12a 14=a 1. 故答案为:14a 1.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了含30°角的直角三角形的性质,等边三角形的性质以及三角形的面积. 14.±1【解析】试题分析:根据零指数幂的性质(01(0)a a =≠),可知|a|=1,座椅可知a=±1. 15.1【解析】【分析】先根据同旁内角互补两直线平行知AB ∥CD ,据此依据平行线性质知∠APM=∠CQM=118°,由邻补角定义可得答案.【详解】解:∵∠A+∠C=180°,∴AB ∥CD ,∴∠APM=∠CQM=118°,∴∠CQN=180°-∠CQM=1°,故答案为:1.【点睛】本题主要考查平行线的判定与性质,解题的关键是掌握平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系. 16.(1)2-,3-,(-1,0);(2)存在P 的坐标是(14)-,或(-25),;(1)当EF 最短时,点P 的坐标是:(2102+,32-210-,32-) 【解析】【分析】(1)将点A 和点C 的坐标代入抛物线的解析式可求得b 、c 的值,然后令y=0可求得点B 的坐标; (2)分别过点C 和点A 作AC 的垂线,将抛物线与P 1,P 2两点先求得AC 的解析式,然后可求得P 1C和P 2A 的解析式,最后再求得P 1C 和P 2A 与抛物线的交点坐标即可;(1)连接OD .先证明四边形OEDF 为矩形,从而得到OD=EF ,然后根据垂线段最短可求得点D 的纵坐标,从而得到点P 的纵坐标,然后由抛物线的解析式可求得点P 的坐标.【详解】解:(1)∵将点A 和点C 的坐标代入抛物线的解析式得:3930c b c =-⎧⎨++=⎩, 解得:b=﹣2,c=﹣1,∴抛物线的解析式为223y x x =--.∵令2230x x --=,解得:11x =-,23x =,∴点B 的坐标为(﹣1,0).故答案为﹣2;﹣1;(﹣1,0).(2)存在.理由:如图所示:①当∠ACP 1=90°.由(1)可知点A 的坐标为(1,0).设AC 的解析式为y=kx ﹣1.∵将点A 的坐标代入得1k ﹣1=0,解得k=1,∴直线AC 的解析式为y=x ﹣1,∴直线CP 1的解析式为y=﹣x ﹣1.∵将y=﹣x ﹣1与223y x x =--联立解得11x =,20x =(舍去),∴点P 1的坐标为(1,﹣4).②当∠P 2AC=90°时.设AP 2的解析式为y=﹣x+b .∵将x=1,y=0代入得:﹣1+b=0,解得b=1,∴直线AP 2的解析式为y=﹣x+1.∵将y=﹣x+1与223y x x =--联立解得1x =﹣2,2x =1(舍去),∴点P 2的坐标为(﹣2,5).综上所述,P 的坐标是(1,﹣4)或(﹣2,5).(1)如图2所示:连接OD .由题意可知,四边形OFDE 是矩形,则OD=EF .根据垂线段最短,可得当OD ⊥AC 时,OD 最短,即EF 最短.由(1)可知,在Rt △AOC 中,∵OC=OA=1,OD ⊥AC ,∴D 是AC 的中点.又∵DF ∥OC ,∴DF=12OC=32, ∴点P 的纵坐标是32-, ∴23232x x --=-,解得:x=2102±, ∴当EF 最短时,点P 的坐标是:(2102+,32-)或(2102-,32-). 17.【解析】 由于分式的分母不能为2,x-1在分母上,因此x-1≠2,解得x .解:∵分式15x -有意义, ∴x-1≠2,即x≠1.故答案为x≠1.本题主要考查分式有意义的条件:分式有意义,分母不能为2.18.1【解析】分析:第一项根据非零数的零次幂等于1计算,第二项根据算术平方根的意义化简,第三项根据负整数指数幂等于这个数的正整数指数幂的倒数计算.详解:原式=1+2﹣2=1.故答案为:1.点睛:本题考查了实数的运算,熟练掌握零指数幂、算术平方根的意义,负整数指数幂的运算法则是解答本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y1=273x-+;y2=13x2﹣4x+2;(2)5月出售每千克收益最大,最大为73.【解析】【分析】(1)观察图象找出点的坐标,利用待定系数法即可求出y1和y2的解析式;(2)由收益W=y1-y2列出W与x的函数关系式,利用配方求出二次函数的最大值.【详解】解:(1)设y1=kx+b,将(3,5)和(6,3)代入得,3563k bk b+=⎧⎨+=⎩,解得237kb⎧=-⎪⎨⎪=⎩.∴y1=﹣23x+1.设y2=a(x﹣6)2+1,把(3,4)代入得,4=a(3﹣6)2+1,解得a=13.∴y2=13(x﹣6)2+1,即y2=13x2﹣4x+2.(2)收益W=y1﹣y2,=﹣23x+1﹣(13x2﹣4x+2)=﹣13(x﹣5)2+73,∵a=﹣13<0,∴当x=5时,W最大值=73.故5月出售每千克收益最大,最大为73元.【点睛】本题考查了一次函数和二次函数的应用,熟练掌握待定系数法求解析式是解题关键,掌握配方法是求二次函数最大值常用的方法20.(1)证明见解析;(2)1.【解析】【分析】(1)根据切线的性质和平行线的性质解答即可;(2)根据直角三角形的性质和三角函数解答即可.【详解】(1)连接OD,∵OD=OE,∴∠ODE=∠OED.∵直线BC为⊙O的切线,∴OD⊥BC.∴∠ODB=90°.∵∠ACB=90°,∴OD∥AC.∴∠ODE=∠F.∴∠OED=∠F.∴AE=AF;(2)连接AD,∵AE是⊙O的直径,∴∠ADE=90°,∵AE=AF,∴DF=DE=3,∵∠ACB=90°,∴∠DAF+∠F=90°,∠CDF+∠F=90°,∴∠DAF=∠CDF=∠BDE,在Rt△ADF中,DFAF=sin∠DAF=sin∠BDE=13,∴AF=3DF=9,在Rt△CDF中,CFDF=sin∠CDF=sin∠BDE=13,∴CF=13DF=1,∴AC=AF﹣CF=1.【点睛】本题考查了切线的性质,解直角三角形的应用,等腰三角形的判定等,综合性较强,正确添加辅助线、熟练掌握和灵活运用相关知识是解题的关键.21.(1)5;(2)-3x+4【解析】【分析】(1)第一项计算算术平方根,第二项计算零指数幂,第三项计算特殊角的三角函数值,最后计算有理数运算. (2)利用完全平方公式和去括号法则进行计算,再进行合并同类项运算.【详解】(1)解:原式5115=+-=(2)解:原式224434x x x x x =-+-+=-+【点睛】本题考查实数的混合运算和整式运算,解题关键是熟练运用完全平方公式和熟记特殊角的三角函数值. 22.(1)抛物线解析式为y=﹣12x 2+2x+6;(2)当t=3时,△PAB 的面积有最大值;(3)点P (4,6). 【解析】【分析】(1)利用待定系数法进行求解即可得;(2)作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM ,先求出直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6),则N (t ,﹣t+6),由S △PAB =S △PAN +S △PBN =12PN•AG+12PN•BM=12PN•OB 列出关于t 的函数表达式,利用二次函数的性质求解可得;(3)由PH ⊥OB 知DH ∥AO ,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE 为等腰直角三角形,则∠EDP=45°,从而得出点E 与点A 重合,求出y=6时x 的值即可得出答案.【详解】(1)∵抛物线过点B (6,0)、C (﹣2,0),∴设抛物线解析式为y=a (x ﹣6)(x+2),将点A (0,6)代入,得:﹣12a=6,解得:a=﹣12, 所以抛物线解析式为y=﹣12(x ﹣6)(x+2)=﹣12x 2+2x+6; (2)如图1,过点P 作PM ⊥OB 与点M ,交AB 于点N ,作AG ⊥PM 于点G ,设直线AB 解析式为y=kx+b ,将点A (0,6)、B (6,0)代入,得:660b k b =⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线AB 解析式为y=﹣x+6,设P (t ,﹣12t 2+2t+6)其中0<t <6, 则N (t ,﹣t+6), ∴PN=PM ﹣MN=﹣12t 2+2t+6﹣(﹣t+6)=﹣12t 2+2t+6+t ﹣6=﹣12t 2+3t , ∴S △PAB =S △PAN +S △PBN=12PN•AG+12PN•BM =12PN•(AG+BM ) =12PN•OB =12×(﹣12t 2+3t )×6 =﹣32t 2+9t =﹣32(t ﹣3)2+272, ∴当t=3时,△PAB 的面积有最大值;(3)△PDE 为等腰直角三角形,则PE=PD ,点P (m ,-12m 2+2m+6), 函数的对称轴为:x=2,则点E 的横坐标为:4-m ,则PE=|2m-4|,即-12m 2+2m+6+m-6=|2m-4|, 解得:m=4或-2或5+17或5-17(舍去-2和5+17)故点P 的坐标为:(4,6)或(5-17,317-5).【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.23.(1)(﹣2,2+23),(﹣10,16﹣53),(2a ,b ﹣32a );(2)见解析;(3)直线PP'与x 轴的交点坐标(﹣3,0)【解析】【分析】(1)①当P (-4,2)时,OA=2,PA=4,由旋转知,∠P'AH=30°,进而P'H=12P'A=2,AH=3P'H=23,即可得出结论;②当P'(-5,16)时,确定出P'A=10,AH=53,由旋转知,PA=PA'=10,OA=OH-AH=16-53,即可得出结论;③当P (a ,b )时,同①的方法得,即可得出结论;(2)先判断出∠BQQ'=60°,进而得出∠PAP'=∠PP'A=60°,即可得出∠P'QQ'=∠PAP'=60°,即可得出结论;(3)先确定出y PP '=3x+3,即可得出结论.【详解】解:(1)如图1,①当P (﹣4,2)时,∵PA ⊥y 轴,∴∠PAH=90°,OA=2,PA=4,由旋转知,P'A=4,∠PAP'=60°,∴∠P'AH=30°,在Rt △P'AH 中,P'H=12P'A=2, ∴AH=3P'H=23,∴OH=OA+AH=2+23,∴P'(﹣2,2+23),②当P'(﹣5,16)时,在Rt △P'AH 中,∠P'AH=30°,P'H=5, ∴P'A=10,AH=53,由旋转知,PA=PA'=10,OA=OH ﹣AH=16﹣53, ∴P (﹣10,16﹣53),③当P (a ,b )时,同①的方法得,P'(a 2,b ﹣32a ), 故答案为:(﹣2,2+23),(﹣10,16﹣53),(2a ,b ﹣32a ); (2)如图2,过点Q 作QB ⊥y 轴于B ,∴∠BQQ'=60°,由题意知,△PAP'是等边三角形,∴∠PAP'=∠PP'A=60°,∵QB ⊥y 轴,PA ⊥y 轴,∴QB ∥PA ,∴∠P'QQ'=∠PAP'=60°,∴∠P'QQ'=60°=∠PP'A ,∴PP'∥QQ';(3)设y PP '=kx+b',由题意知,3,∵直线经过点(3,6),∴b'=3,∴y PP'=3x+3,令y=0,∴x=3∴直线PP'与x30).【点睛】此题是几何变换综合题,主要考查了含30度角的直角三角形的性质,旋转的性质,等边三角形的判定和性质,待定系数法,解本题的关键是理解新定义.24.(1)、(t+6,t);(2)、当t=2时,S有最小值是16;(3)、理由见解析.【解析】【分析】【详解】(1)如图所示,过点E作EG⊥x轴于点G,则∠COP=∠PGE=90°,由题意知CO=AB=6、OA=BC=4、OP=t,∵PE⊥CP、PF⊥OP,∴∠CPE=∠FPG=90°,即∠CPF+∠FPE=∠FPE+∠EPG,∴∠CPF=∠EPG,又∵CO⊥OG、FP⊥OG,∴CO∥FP,∴∠CPF=∠PCO,∴∠PCO=∠EPG,在△PCO和△EPG中,∵∠PCO=∠EPG,∠POC=∠EGP,PC=EP,∴△PCO≌△EPG(AAS),∴CO=PG=6、OP=EG=t,则OG=OP+PG=6+t,则点E的坐标为(t+6,t),(2)∵DA∥EG,∴△PAD∽△PGE,∴AD PAGE PG=,∴46AD tt-=,∴AD=16t(4﹣t),∴BD=AB﹣AD=6﹣16t(4﹣t)=16t2﹣23t+6,∵EG⊥x轴、FP⊥x轴,且EG=FP,∴四边形EGPF为矩形,∴EF⊥BD,EF=PG,∴S四边形BEDF=S△BDF+S△BDE=12×BD×EF=12×(16t2﹣23t+6)×6=12(t﹣2)2+16,∴当t=2时,S有最小值是16;(3)①假设∠FBD为直角,则点F在直线BC上,∵PF=OP<AB,∴点F不可能在BC上,即∠FBD不可能为直角;②假设∠FDB为直角,则点D在EF上,∵点D在矩形的对角线PE上,∴点D 不可能在EF 上,即∠FDB 不可能为直角;③假设∠BFD 为直角且FB=FD ,则∠FBD=∠FDB=45°,如图2,作FH ⊥BD 于点H ,则FH=PA ,即4﹣t=6﹣t ,方程无解,∴假设不成立,即△BDF 不可能是等腰直角三角形.25. (1) 该车间应安排4天加工童装,6天加工成人装;(2) 36000元.【解析】【分析】(1)利用某车间计划用10天加工一批出口童装和成人装共360件,分别得出方程组成方程组求出即可;(2)利用(1)中所求,分别得出两种服装获利即可得出答案.【详解】解:(1)设该车间应安排x 天加工童装,y 天加工成人装,由题意得:104530360x y x y +=⎧⎨+=⎩, 解得:46x y =⎧⎨=⎩, 答:该车间应安排4天加工童装,6天加工成人装;(2)∵45×4=180,30×6=180, ∴180×80+180×120=180×(80+120)=36000(元),答:该车间加工完这批服装后,共可获利36000元.【点睛】本题考查二元一次方程组的应用.26.(1)12=-m ,43y x =-;(2)4y x =-. 【解析】分析:(1)由已知求出A 、E 的坐标,即可得出m 的值和一次函数函数的解析式;(2)由34AD DE ==,,得到5AE =,由2AF AE -=,得到71AF BF ,==.设E 点坐标为()4a ,,则点F 坐标为()31a -,,代入反比例函数解析式即可得到结论.详解:(1)∵()6038B AD AB E -==,,,,为CD 的中点, ∴()()3468E A --,,,. ∵反比例函数图象过点()34E ,-, ∴3412m =-⨯=-.设图象经过A 、E 两点的一次函数表达式为:y kx b =+,∴6834k b k b -+=⎧⎨-+=⎩, 解得430k b ⎧=-⎪⎨⎪=⎩:, ∴43y x =-. (2)∵34AD DE ==,,∴5AE =.∵2AF AE -=,∴7AF =,∴1BF =.设E 点坐标为()4a ,,则点F 坐标为()31a -,.∵E F ,两点在m y x=图象上, ∴43a a =-,解得:1a =-, ∴()14E -,, ∴4m =-,∴4y x=-.点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A 、E 、F 的坐标.27.(1) ;(1) y =x 1﹣4x+1或y =x 1+6x+1.【解析】【分析】(1)解方程求出点A 的坐标,根据勾股定理计算即可;(1)设新抛物线对应的函数表达式为:y =x 1+bx+1,根据二次函数的性质求出点C′的坐标,根据题意求出直线CC′的解析式,代入计算即可.【详解】解:(1)由x 1﹣4=0得,x 1=﹣1,x 1=1,∵点A 位于点B 的左侧,∴A (﹣1,0),∵直线y =x+m 经过点A ,∴﹣1+m =0,解得,m =1,∴点D 的坐标为(0,1),∴AD ;(1)设新抛物线对应的函数表达式为:y =x 1+bx+1,y =x 1+bx+1=(x+2b )1+1﹣24b , 则点C′的坐标为(﹣2b ,1﹣24b ), ∵CC′平行于直线AD ,且经过C (0,﹣4),∴直线CC′的解析式为:y =x ﹣4,∴1﹣24b =﹣2b ﹣4, 解得,b 1=﹣4,b 1=6,∴新抛物线对应的函数表达式为:y =x 1﹣4x+1或y =x 1+6x+1.【点睛】本题考查的是抛物线与x 轴的交点、待定系数法求函数解析式,掌握二次函数的性质、抛物线与x 轴的交点的求法是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年江苏省南京市实验学校中考模拟数学试题一
1.如图,数轴上的A 、B 、C 、D ( )
A .点A
B .点B
C .点C
D .点D 2.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为( ) A .61.310⨯ B .413010⨯ C .51310⨯ D .51.310⨯ 3.如图是由5个相同的小正方体组成的立体图形,它的俯视图是( )
A .
B .
C .
D . 4.如图所示,将含有30°角的三角板(∠A=30°
)的直角顶点放在相互平行的两条直线其中一条上,若∠1=38°,则∠2的度数( )
A .28°
B .22°
C .32°
D .38° 5.某校九年级模拟考试中,2班的五名学生的数学成绩如下:85,95,110,100,110.下列说法不正确的是( )
A .众数是110
B .中位数是110
C .平均数是100
D .中位数是100
6.抛物线y =(x ﹣1)2+3关于x 轴对称的抛物线的解析式是( ) A .y =﹣(x ﹣1)2+3 B .y =(x +1)2+3
C .y =(x ﹣1)2﹣3
D .y =﹣(x ﹣1)2﹣3 7.分解因式:x 4﹣16=______.
821()
3-=______.
9.实数2277-_____________________;
10.已知x=2+是关于x 的方程240x x m -+=的一个根,则m =____________. 11.如图,在△ABC 中,AC=10,BC=6,AB 的垂直平分线交AB 于点D ,交AC 于点E ,则△BCE 的周长是_____.
12.某商店今年6月初销售纯净水的数量如下表所示:
观察此表,利用所学函数知识预测今年6月7日该商店销售纯净水的数量约为________瓶.
13.如图,在△ABC 中,∠ACB =90°,分别以点A 和点B 为圆心,以相同的长(大于12
AB )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交BC 于点E .若AC =3,AB =5,则DE 等于_____.
14.关于x 的一元二次方程kx 2+3x ﹣1=0有实数根,则k 的取值范围是_____. 15.如图,在矩形ABCD 中,M 为BC 边上一点,连接AM ,过点D 作DE ⊥AM ,垂足为E .若DE=DC=1,AE=2EM ,则BM 的长为__.。