1.4.2-1三角函数的周期性
三角函数周期性知识点总结

三角函数周期性知识点总结一、三角函数的概念三角函数是一个关于角度或弧度的函数,它是一个周期性函数。
常见的三角函数有正弦函数、余弦函数、正切函数等。
1.正弦函数正弦函数的定义域是整个实数集,值域是[-1,1]。
正弦函数的图像是一条连续的波浪线,它的周期是2π。
2.余弦函数余弦函数的定义域是整个实数集,值域也是[-1,1]。
余弦函数的图像是一条连续的波浪线,它的周期也是2π。
3.正切函数正切函数的定义域是整个实数集,它的图像是一条呈周期性的曲线。
以上是三角函数的基本概念,下面将详细介绍三角函数的周期性特点。
二、正弦函数的周期性正弦函数是一个周期性函数,它的周期是2π。
这意味着,如果一个角度的正弦值是sinθ,那么在θ+2π、θ+4π、θ+6π……等角度上,它的正弦值都是sinθ。
也就是说,正弦函数在每隔2π的角度上都有相同的函数值。
正弦函数的周期性在周期函数中是非常典型的,它在描述周期性现象时有着广泛的应用。
在物理学中,正弦函数可以描述周期性振动的规律,在工程学中,它也常被用来描述交流电流的波形。
三、余弦函数的周期性与正弦函数类似,余弦函数也是一个周期性函数,它的周期也是2π。
这意味着,如果一个角度的余弦值是cosθ,那么在θ+2π、θ+4π、θ+6π……等角度上,它的余弦值都是cosθ。
正弦函数与余弦函数有着相似的周期性特点,它们都在每隔2π的角度上都有相同的函数值。
这说明,正弦函数和余弦函数的周期性是非常紧密相关的,它们在周期性描述上有着相似的特点。
四、三角函数的周期性函数三角函数的周期性特点是它们在描述周期性现象时非常有用的特性。
它们可以帮助我们精确地描述周期性变化,是物理学、工程学等领域中不可或缺的数学工具。
在实际应用中,我们经常会遇到需要描述周期性变化的情况,比如声音的波形、电流的波形、机械振动等。
而三角函数的周期性特点正好可以帮助我们准确地描述这些周期性变化。
总结:三角函数是数学中非常重要的一个概念,它们具有明显的周期性特点。
三角函数的周期与周期函数

三角函数的周期与周期函数三角函数是数学中重要的函数之一,它具有很多特性和性质,其中之一就是周期性。
在本文中,我将探讨三角函数的周期以及周期函数的相关知识。
一、三角函数的周期1. 正弦函数的周期正弦函数(sin)是最常见的三角函数之一,其周期是2π,即sin(x + 2π) = sin(x)。
这意味着当自变量x增加2π时,正弦函数的值重复出现。
2. 余弦函数的周期余弦函数(cos)和正弦函数非常相似,其周期也是2π,即cos(x + 2π) = cos(x)。
与正弦函数不同的是,余弦函数在自变量增加2π时,其值也会重复出现。
3. 正切函数的周期正切函数(tan)是另一个常见的三角函数,其周期是π,即tan(x + π) = tan(x)。
当自变量x增加π时,正切函数的值会重新开始。
二、周期函数的性质1. 周期函数的定义周期函数是指当自变量增加一个周期时,函数值会重复出现的函数。
三角函数就是典型的周期函数。
2. 周期函数的图像特点周期函数的图像在一个周期内呈现出循环的形式。
对于正弦函数和余弦函数来说,它们的图像在一个周期内上升和下降,并且对称于坐标轴。
而正切函数的图像则在一个周期内交替地趋近于正无穷和负无穷。
3. 周期函数的性质周期函数具有一些特殊的性质。
例如,正弦函数具有奇对称性质,即sin(-x)=-sin(x),而余弦函数则具有偶对称性质,即cos(-x)=cos(x)。
这些性质使得周期函数在数学和物理中应用广泛。
三、常见的周期函数1. 方形波函数方形波函数是一种以方形波形进行周期性重复的函数。
它在每个周期内的一半时间内取常数值,另一半时间内则取相反的常数值。
2. 锯齿波函数锯齿波函数是一种以锯齿形状进行周期性重复的函数。
它在一个周期内不断上升或下降,然后在下一个周期重新从起点开始。
3. 指数函数指数函数也可以是周期函数,例如指数函数f(x) = e^x。
尽管指数函数本身并不是周期函数,但可以通过在指数函数中引入复数来使其变成周期函数。
三角函数的周期性-高中数学知识点讲解

三角函数的周期性
1.三角函数的周期性
【知识点的认识】
周期性
①一般地,对于函数f(x),如果存在一个非零常数T,使得当x 取定义域内的每一个值时,都有f(x+T)=f (x),那么函数f(x)就叫做周期函数,非零常数T 叫做这个函数的周期.
②对于一个周期函数f(x),如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最
小正周期.
③函数y=A sin(ωx+φ),x∈R 及函数y=A cos(ωx+φ);x∈R(其中A、ω、φ为常数,且A≠0,ω>0)的周
期T =2휋휔
.
【解题方法点拨】
1.一点提醒
求函数y=A sin(ωx+φ)的单调区间时,应注意ω的符号,只有当ω>0 时,才能把ωx+φ看作一个整体,代入y =sin t 的相应单调区间求解,否则将出现错误.
2.两类点
y=sin x,x∈[0,2π],y=cos x,x∈[0,2π]的五点是:零点和极值点(最值点).
3.求周期的三种方法
①利用周期函数的定义.f(x+T)=f(x)
2휋휋
②利用公式:y=A sin(ωx+φ)和y=A cos(ωx+φ)的最小正周期为|휔|,y=tan(ωx+φ)的最小正周期为
|휔|.
③利用图象.图象重复的x 的长度.
1/ 1。
三角函数的周期性与变化规律

三角函数的周期性与变化规律三角函数是高等数学中的重要知识点之一,它们具有独特的周期性和变化规律。
在本文中,我将详细介绍三角函数的周期性及其相关的变化规律,并对其应用进行一些实际案例分析。
一、三角函数的周期性-----------------------三角函数包括正弦函数、余弦函数和正切函数,它们都具有周期性。
正弦函数的周期为2π,即在每个2π的区间内,函数的值将重复。
这是因为正弦函数的定义是在单位圆上,随着自变量的增长,对应的函数值会不断重复。
余弦函数也具有相同的周期,即在每个2π的区间内,函数的值会周期性地重复。
与正弦函数不同的是,余弦函数在自变量增长时,对应的函数值与正弦函数有90°(或π/2)的相位差。
正切函数的周期为π,即在每个π的区间内,函数的值将周期性地重复。
正切函数的定义是通过正弦函数和余弦函数来计算的,因此也具有相同的周期性。
二、三角函数的变化规律-----------------------1. 正弦函数的变化规律正弦函数的取值范围在[-1, 1]之间,且当自变量为0时,函数取得最小值0。
当自变量增加时,正弦函数的值会先上升到最大值1,然后下降到最小值-1,再回升到0,不断重复这一过程。
2. 余弦函数的变化规律余弦函数的取值范围也在[-1, 1]之间,且当自变量为0时,函数取得最大值1。
当自变量增加时,余弦函数的值会先下降到最小值-1,然后上升到最大值1,再下降到0,也会不断重复这一过程。
3. 正切函数的变化规律正切函数的取值范围是整个实数轴,即它可以取任意实数值。
正切函数在某些自变量的取值下是无界的,例如在π/2和3π/2等点。
当自变量增加时,正切函数的值会在相邻的两个无界点之间不断变换,呈现出周期性的特点。
三、三角函数的应用实例-----------------------三角函数的周期性和变化规律在物理学、工程学等领域中有广泛的应用。
下面将以振动和电路分析为例,说明三角函数在实际问题中的应用。
三角函数的周期性

三角函数的周期性三角函数是数学中的重要函数之一,其周期性是其特点之一。
周期性是指一个函数在一个特定区间内重复出现相同的数值。
对于三角函数来说,它们的周期都是一定的,这个特点使得它们在各个领域都有广泛的应用和研究。
1. 正弦函数的周期性正弦函数是最常见的三角函数之一,用符号sin表示。
它的周期是2π,即在每个2π的区间内,正弦函数的值将重复出现。
这意味着,当自变量增加或减小2π倍数时,正弦函数的值将回到初始值。
正弦函数的图像在[0, 2π]区间内是一个完整的波形,其特点是周期性变化、振荡上下。
2. 余弦函数的周期性余弦函数是另一个常见的三角函数,用符号cos表示。
它的周期也是2π,与正弦函数相同,即在每个2π的区间内,余弦函数的值也将重复出现。
同样地,当自变量增加或减小2π倍数时,余弦函数的值将回到初始值。
余弦函数的图像也在[0, 2π]区间内是一个完整的波形,它和正弦函数的波形有一定的相似性,但在振荡方向上有所差异。
3. 正切函数的周期性正切函数是三角函数中的另一个重要函数,用符号tan表示。
它的周期是π,即在每个π的区间内,正切函数的值将重复出现。
和前两个函数类似,当自变量增加或减小π倍数时,正切函数的值也将回到初始值。
然而,正切函数的图像没有像正弦函数和余弦函数那样具有明确的边界,其振荡范围可以是无穷大。
4. 三角函数的周期性在实际应用中的意义三角函数的周期性在物理、工程和其他科学领域中有广泛的应用。
例如,在机械振动中,三角函数的周期性被用来描述物体的周期性振动。
在电路中,正弦函数和余弦函数的周期性被用来描述交流电的周期性变化。
在信号处理中,三角函数的周期性用于分析和处理周期性信号。
总之,三角函数的周期性为解决许多实际问题提供了有效的工具和方法。
总结起来,三角函数的周期性是它们的重要特征之一。
正弦函数、余弦函数和正切函数都具有明确的周期,分别为2π和π。
它们的周期性使得它们在各个领域都有广泛的应用,为描述和分析周期性现象提供了有效的数学工具。
三角函数的周期性与奇偶性

三角函数的周期性与奇偶性三角函数是数学中非常重要的一类函数,包括正弦函数sin(x),余弦函数cos(x),正切函数tan(x)等。
这些函数在数学、物理、工程等领域中有广泛的应用。
其中,周期性和奇偶性是三角函数的两个重要性质,下面将详细讨论这两个性质。
一、周期性1. 正弦函数sin(x)和余弦函数cos(x)的周期性:正弦函数sin(x)和余弦函数cos(x)都是周期函数,它们的周期都为2π。
也就是说,对于任意实数x,有sin(x+2π) = sin(x),cos(x+2π) =cos(x)。
这意味着当自变量x增加2π或减少2π时,函数值不变,即函数呈现出周期性的变化规律。
这样的周期性特点使得正弦函数和余弦函数在很多问题中具有重要的意义。
2. 正切函数tan(x)的周期性:正切函数tan(x)也是一个周期函数,它的周期为π。
也就是说,对于任意实数x,有tan(x+π) = tan(x)。
这意味着当自变量x增加π或减少π时,函数值保持不变。
需要注意的是,正切函数在一些特殊点(如π/2,3π/2等)处不定义,因为在这些点上正切函数的值会趋于无穷大,即函数的图像会有垂直渐进线。
二、奇偶性1. 正弦函数sin(x)的奇偶性:正弦函数sin(x)是一个奇函数,它的图像关于原点对称。
也就是说,对于任意实数x,有sin(-x) = -sin(x)。
这意味着当自变量x取相反数时,函数值的相反数与原来的函数值相等,即函数的图像关于y轴对称。
2. 余弦函数cos(x)的奇偶性:余弦函数cos(x)是一个偶函数,它的图像关于y轴对称。
也就是说,对于任意实数x,有cos(-x) = cos(x)。
这意味着当自变量x取相反数时,函数值保持不变,即函数的图像关于y轴对称。
3. 正切函数tan(x)的奇偶性:正切函数tan(x)既不是奇函数也不是偶函数,它的图像既没有关于原点的对称性,也没有关于y轴的对称性。
但是,正切函数有一个特殊的奇偶性质,即tan(-x) = -tan(x)。
三角函数的周期性

三角函数的周期性三角函数是我们在学习高中数学时必修的一门课程。
在三角函数中,周期性是一个重要的概念。
周期性是指函数在一定范围内的值有规律地重复出现。
在三角函数中,有三种函数具有周期性,它们分别是正弦函数、余弦函数和正切函数。
正弦函数的周期性正弦函数的周期性是指在一定范围内,正弦函数的值会按照一定的规律循环出现。
正弦函数的定义域是实数集,值域是闭区间[-1,1]。
正弦函数的图像是一条连续的波形,它的形状是上下有限的缓慢起伏的波浪线。
正弦函数的周期是2π,即在一个周期内,正弦函数的值会从1降到-1,再从-1升到1。
如果我们对正弦函数进行平移和拉伸,则周期会发生变化。
余弦函数的周期性余弦函数与正弦函数非常相似,它们的周期相同,都是2π。
余弦函数的定义域是实数集,值域是闭区间[-1,1]。
余弦函数的图像也是一条连续的波形,形状上下有限的缓慢起伏的波浪线。
余弦函数的周期与正弦函数的周期相同,但是它们的波形有所不同。
余弦函数的波形是将正弦函数的波形上下翻转再向左平移π/2个单位,即余弦函数的波形是正弦函数波形上下翻转,再向左移动π/2个单位。
正切函数的周期性正切函数是另一种具有周期性的三角函数。
正切函数的定义域是所有不为π/2+ kπ,k∈Z的实数,值域是实数集。
正切函数的图像是一条不连续的波形,它在每个周期内重复出现。
正切函数的周期是π,即在一个周期内,正切函数的值会从0降到-∞,再从-∞升到0,然后从0升到∞,最后再从∞降到0。
正切函数在定义域内存在无限个不连续点,因此它的图像是由一条条的线段组成,每个线段的斜率为正或负无穷。
三角函数的周期性在数学中有着广泛的应用。
它们除了可以用来描述波的传播、音乐和图形外,还可以用来描述周期性运动、波动和天文学等领域中的现象。
周期性是三角函数的一个特性,在实际问题中经常有用的信息,了解三角函数的周期性可以帮助我们更好地分析和解决实际问题。
总之,在学习三角函数时,我们需要深入理解周期性的概念,掌握正弦函数、余弦函数和正切函数的周期,为日后更深入地研究三角函数打下良好的基础。
三角函数周期性与变化规律

三角函数周期性与变化规律三角函数是数学中重要的概念,包括正弦函数、余弦函数和正切函数。
这些函数在数学和物理等领域中具有广泛的应用。
本文将探讨三角函数的周期性和变化规律。
一、正弦函数正弦函数是三角函数中的一种,用符号sin表示。
它的定义域是实数集,值域是[-1, 1]。
正弦函数的图像呈现周期性变化,周期为2π。
当自变量增加或减小2π的倍数时,正弦函数的值将重复。
这种周期性变化使得正弦函数在各种领域中都有广泛的应用,例如在振动学、波动理论等方面。
二、余弦函数余弦函数是三角函数中的另一种常见函数,用符号cos表示。
它也具有周期性变化,周期同样为2π。
正弦函数和余弦函数之间有一个90°的位相差,即当自变量为0时,正弦函数的值为0,而余弦函数的值为1。
余弦函数的形状和正弦函数类似,但是相位差使得它在实际应用中有其独特的作用。
三、正切函数正切函数是三角函数中的第三种常见函数,用符号tan表示。
它的定义域是实数集中所有使得余弦函数的值不为0的数,即除去整数倍的π。
正切函数的图像也具有周期性变化,其周期为π。
正切函数在数学和物理等领域中有着重要的应用,例如在电路分析中常用于计算电流和电压的关系。
综上所述,三角函数具有周期性变化的特点。
正弦函数和余弦函数的周期为2π,而正切函数的周期为π。
它们在数学和其他学科中的应用非常广泛,能够描述各种周期性现象和变化规律。
除了周期性变化,三角函数还具有其他的特性。
例如,正弦函数和余弦函数是奇函数,而正切函数是偶函数。
奇函数的特点是满足f(-x)= -f(x),而偶函数满足f(-x) = f(x)。
这种对称性使得三角函数在证明和计算中具有一定的便利性。
总结起来,三角函数的周期性和变化规律是其重要的特点。
正弦函数、余弦函数和正切函数在数学、物理和工程等领域中具有广泛的应用。
通过研究三角函数的性质和规律,我们能够更好地理解和应用它们,为解决实际问题提供有力的工具和方法。
本文对三角函数的周期性和变化规律进行了简要介绍,希望能够让读者对这一概念有所了解,并加深对其应用的认识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概 念
1.一般地,对于函数f(x),如果存在一个非零的 常数T,使得定义域内的每一个x的值,都满 足f(x+T)=f(x),那么函数f(x)就叫做周期函数 非零常数T叫做这个函数的周期 2.对于一个周期函数f(x),如果在它所有的周期 中存在一个最小的正数,那么这个最小的正 数就叫做f(x)的最小正周期。
解(2)
sin(2 x) sin(2 x 2 ) sin(2 x) sin 2( x ) y sin 2 x 的周期为π .
2 6 2 6
(3) 2sin( 1 x ) 2sin( 1 x 2 )
1 1 2sin( x ) 2sin ( x 4 ) 2 6 6 2
周期求法:
1.定义法:
2.公式法: 一般地,函数 y=Asin(ωx+φ)
及 y=Acos(ωx+φ) (其中A ,ω,φ为常数, 且 A≠0, ω≠0 )的周期是:
T 2
( 0)
3.图象法:
小结:
1.理解周期定义时要注意,式子f(x+T)=f(x) 是对“x”而言. 2.一个函数是周期函数,但它不一定有最小正 周期.例如,f(x)=a(常数) 3.设T是f(x)(x∈R)的周期,那么kT(k∈Z, 且k≠0)也一定是f(x)的周期.
cos( x 2 ) cos x, 3cos( x 2 ) 3cos x,
y 3cos x, x R的周期为2
例 求下列函数的周期: (1)y=3cosx,x∈R; (2)y=sin2x,x∈R;
1 (3) y 2sin( x ), ) (
2 3
2 3
x 一定是 y sin 的周期
( ) ×
2.等式f ( x T ) f ( x ),强调:自变 量x本身加的常数才是周期, 例如:f (2 x T ) f (2 x ), T 不是周期, 而应写成 T T f (2 x T ) f 2( x ) f (2 x ), 此时 才是 2 2 函数y f ( x )的周期.
0
X
2
x
X+2π
4
自变量x增加2π时函数值不断重复地出现的
o y x o 6π 12π 8π x
4.T是f(x)的周期,那么kT也一定是f(x)的周期. (k为非零整数)
例 求下列函数的周期: (1)y=3cosx,x∈R; (2)y=sin2x,x∈R;
1 (3) y 2sin( x ), x R 2 6 解:(1) cos x 是以2π 为周期的周期函数.
x (1) y sin 3x, x R;(2) y cos ; 3 x (3) y 3sin , x R;(4) y sin( x ); 4 10 (5) y cos(2 x ), x R; 3 1 (6) y 3 sin( x ), x R. 2 4
2 y=Acos(ωx+φ) 4.函数 的周期都是T y=Asin(ωx+φ)
5. y=|sinx|及y=|cosx|的周期为π
6.周期函数的定义域一定是无限集.
试问: y=sinx(x∈[0,4π])是周期函数吗?
练习:P-36-1、2、3;P-46-3.
3.并不是所有的函数都有最小正周期,例如 (1)常值函数f ( x ) C (C为常数, x R)周期为任一实数 1. (当x为有理数时) (2) D( x ) ,周期为任一有理数。 0. (当x为无理数时) 它们都没有最小正周期.
三角函数的周期性: y
-2
y 4π
y=sinx(x∈R)
§1.4正弦余弦函数的性质
(1)定义域 (2)值 域
-----------周期
(3)对称性 (4)周期性 (5)奇偶性 (6)单调性
在生活中的周期性现象!
诱导公式sin(x+2π ) =sinx,的几何意义.
y o X X X+2π X+2π x
正弦函数值是按照一定规律不断重复地出现的 能不能从正弦、余弦函数周期性归纳出一般函 数的规律性?
正弦函数和余弦函数的最小正周期都是2π.
思考:一个周期函数的周期有多少个?
注意: 1.定义是对定义域中的每一个x值来说的, 只有个别的x值满足:f ( x T ) f ( x ) 不能说T 是y f ( x )的周期. 例如 : sin(
4
2
) sin
4
, 但是 sin( ) sin .
3 2 3
就是说 sin( x
2
不能对x在定义域内的每一个值使 ) sin x ,因此
2
2
不是y sin x的周期.
判断下列说法是否正确
(1) x 时, 3
2 sin( x 则 ) sin x 3
2 sin( x 则 ) sin x 3
一定不是
7 (2)x 时, 6
1 y 2sin( x ) 的周期为4π 2 6
另法
归纳总结:
一般地, 函数y A sin(x ), x R及函 数y A cos(x ), x R (其中A, , 为常 数, 且A 0, 0)的周期为 : T 2
.
练习1. 求下列函数的周期: