等腰三角形第1课时教学设计过程

合集下载

等腰三角形第一课时教案

等腰三角形第一课时教案

第十三章轴对称13.3 等腰三角形13.3.1 等腰三角形第1课时等腰三角形的性质图13-3-8.如图13-3-,已知AC⊥BD于点E,AB=BC.求证:∠1=∠2.9.如图13-3-,在△ABC中,AB=AC,点D,E,F分别在三边上,G是EF的中点,且BD=CF,BE=CD.求证:DG⊥EF.[课堂总结]1.课堂总结:(1)掌握等腰三角形“等边对等角”的性质.(2)掌握等腰三角形“三线合一”的性质.(3)掌握证明角相等的两种常用方法.2.布置作业:课本P82习题13.3第1,3,4,6题.巩固、梳理所学知识,对学生进行鼓励和思想教育.【知识网络】框架图式总结,更容易形成知识网络.导学设计一、学习目标1、了解等腰三角形的概念,掌握等腰三角形的性质;2、会运用等腰三角形的概念及性质解决相关问题。

二、温故知新1、下列图形不一定是轴对称图形的是() A、圆 B、长方形 C、线段D、三角形2、怎样的三角形是轴对称图形?答:3、有两边相等的三角形叫,相等的两边叫,另一边叫两腰的夹角叫,腰和底边的夹角叫4、如图,在△ABC中,AB=AC,标出各部分名称三、自主探究合作展示(一)操作、实践:取一等腰三角形纸片,照图折叠,找出其中重合的线段和角,填入下表:A A AB C B (C ) B D C(1) (2) (3)【问题1】根据上表你能得出哪些结论?并将你的结论与同学交流。

【问题2】你能利用三角形全等的知识证明以上结论吗?(二)【新知应用】例1:填空:(1)如图(1)所示,根据等腰三角形性质定理在△ABC 中,AB=AC 时,①∵AD ⊥BC ,∴∠_____ = ∠_____,____= ____. ② ∵AD 是中线,∴____⊥____ ,∠_____ =∠_____. ③ ∵AD 是角平分线,∴____ ⊥____ ,_____ =_____.(2)等腰三角形一个底角为70°,它的顶角为______.(3)等腰三角形一个角为70°,它的另外两个角为例2:如图(2)所示,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD ,求△ABC 各角的度数.分析:根据等边对等角的性质,我们可以得到∠A=______,∠ABC=______=______,•再由∠BDC =∠A +______,就可得到∠ABC =______=______=2______.再由三角形内角和为180°,•就可求出△ABC 的三个内角. 解:例题反思:重合的线段重合的角D A图(1)四、双基检测1、在△ABC中,AB=AC,(1)如果∠A=70°,则∠C=_________,∠B=___________(2)如果∠A=90°,则∠B=_________,∠C=___________(3)如果有一个角等于120°,则其余两个角分别是多少度?(4)如果有一个角等于55°,则其余两个角分别是多少度?2、如图(3)所示,△ABC是等腰直角三角形(AB=AC,∠BAC=90°),AD是底边BC上的高,标出∠B、∠C、∠BAD、∠DAC的度数,图中有哪些相等线段?3、如图(4),在△ABC中,AB=AD=DC,∠BAD=26°,求∠B和∠C的度数.D CABDAB图(3)图(4)。

北师大版八年级数学下第一章1.1等腰三角形第一课时教学设计

北师大版八年级数学下第一章1.1等腰三角形第一课时教学设计
(三)学生小组讨论
1.分组讨论等腰三角形的性质及应用
我会将学生分成若干小组,让他们讨论等腰三角形的性质在实际问题中的应用。例如,如何利用等腰三角形的性质求解底边长度、底角大小等。
2.分组探讨等腰三角形的判定定理
各小组学生还需探讨等腰三角形的判定定理,并尝试运用定理解决实际问题。在此过程中,我会巡回指导,解答学生的疑问。
-对于作业中的共性问题,将在课堂上进行集中讲解,确保学生理解到位。
-表现优秀的作业将在课堂上展示,以激发学生的学习积极性。
2.学会使用等腰三角形的判定定理,判断一个三角形是否为等腰三角形。
-学生能够理解并掌握“两边相等的三角形是等腰三角形”这一判定定理,并能够运用到实际问题的解决中。
3.掌握等腰三角形的周长和面积计算方法,能够解决相关问题。
-学生能够根据等腰三角形的性质,运用周长和面积公式进行计算,解决实际应用问题。
(二)过程与方法
2.培养学生合作交流的意识,增强团队协作能力。
-教学过程中,教师鼓励学生进行小组合作、讨论交流,培养学生合作解决问题的能力。
3.培养学生勇于探索、积极思考的精神,树立正确的价值观。
-教师引导学生面对问题,勇于尝试,不怕困难,培养积极思考、解决问题的精神。
-学生在学习过程中,认识到数学知识在解决实际问题中的价值,树立正确的价值观。
3.提高学生的应用意识,将等腰三角形的知识与实际生活相结合。
-重难点:将理论知识应用于解决生活中的问题。
-设想:设计真实的情境问题,如建筑物的平面设计、艺术作品的对称性分析等,让学生在解决问题的过程中体验数学的价值。
(二)教学设想
1.采用探究式学习法,激发学生的求知欲和主动性。
-设想:通过引入富有挑战性的问题,如“如何确定等腰三角形的高线和中线?”激发学生的好奇心,引导学生通过实验、观察、推理等手段自主探索答案。

12.3.1等腰三角形教学设计

12.3.1等腰三角形教学设计

12.3.1等腰三角形(一)教学设计说明安徽省淮南市洞山中学周丽1、教学内容分析《等腰三角形》是人教版义务教育课程标准实验教科书八年级上册第十二章第3节的内容,本课时是本节内容的第1课时。

等腰三角形是一种特殊的三角形,它除了具有一般三角形的性质外,还有许多特殊的性质。

由于它的这些特殊性质,使它比一般三角形应用更广泛,而等腰三角形的许多特殊性质,又都和它是轴对称图形有关,因此教科书把《等腰三角形》安排在《轴对称》这章中。

本节课就是以轴对称图形为切入点,研究等腰三角形“等边对等角”和“三线合一”的性质,并进一步利用三角形的全等证明这些性质。

教材让学生通过剪纸来认识等腰三角形,再通过折纸猜测、验证等腰三角形的性质,然后运用全等三角形的知识加以论证,是一个由特殊到一般、由感性认识上升到理性认识的过程。

这种“观察——发现——猜想——论证”的数学思想方法是今后研究几何图形的基本数学思想方法。

“等边对等角”是今后证明两角相等常用方法之一,“三线合一”是今后证明两条线段相等、两个角相等及两条直线互相垂直的重要依据.而且这两条性质在今后要学习圆和正多边形时应用也非常广泛。

因此,本节课在教材中处于非常重要的地位,起着承上启下的作用。

二、教学目标分析由以上对本节课教学内容的分析,依据课程标准的要求(了解等腰三角形的概念,探索并证明等腰三角形的性质定理:等腰三角形的两底角相等;底边上的高线、中线及顶角平分线互相重合),结合我班学生的实际情况,制定了以下教学目标:知识技能:1、理解并掌握等腰三角形的性质。

2、运用等腰三角形的性质进行证明和计算。

数学思考:1、经历操作、发现、猜想、证明的过程,感受数学思考过程的条理性。

2、引导学生初步学会几何证明题的思路,培养学生的逻辑思维能力。

加强学生对符号语言、图形语言与文字语言之间相互关系的理解与应用。

:1、初步学会从数学的角度发现问题和提出问题,综合运用已有的知识解决新的问题。

体验解决问题方法的多样性。

等腰三角形(第一课时)的教学设计

等腰三角形(第一课时)的教学设计

学生讨论问题(2) 时,教师要引导学生依 据自己发现的结论进行 大胆猜想,重点关注学 生能否从轴对称图形的 概念出发折纸判断,关 注学生能否用规范清晰 的数学语言说出自己的 猜想,关注学生在活动 中的参与意识.
通过学生观察, 教 师的引导, 归纳出等腰 三角形的两条性质, 形 成感性认识, 重视知识 形成过程, 培养学生自 主探究的学习方法.
激发学生思考, 设 置悬念, 激活学习所必 需的先前经验, 唤起学 生的学习需要, 激发学 生的学习兴趣, 为下面 教学活动拉开序幕。
问题 教师发出指令引导 学生操作。学生动手操 14.3-1),再把它展开,得到一个什 作,观察。 么图形? 并剪下阴影部分(如教科书图 给学生提供参与 学生讨论问题(2) 数学活动的时间与空 2、上述过程中得到的△ABC 时,教师通过画图介绍 间, 提高学生学习数学 有什么特点? 腰、底、顶角、底角。 的兴趣和参与程度, 同 时为学生观察等腰三 角形性质创设探索的 学生回答问题(3) 情境。 3、除了以上方法,还可以怎样 时,教师让学生各抒己 剪出一个等腰三角形? 见的基础上介绍自己的 想法(例如把长方形的 长与宽折叠,沿折痕剪 开) 。 1、把一张长方形的纸片对折,
3、相互交流,你和别人的结论 是否一致?你能猜猜等腰三角形 有什么性质吗?说说你的猜想. 问题 教师引导学生把性 边对等角)画出相应的图形,并用 质 1 转换成数学符号语 有助于规范学生 符号语言写出已知和求证吗? 言. 对性质的符号表述, 使 学生能更好的把握重 点, 更轻易地把性质运 2、证明两个角相等有什么方 教 师 启 发 学 生 利 用 用于解题过程中。 同时 法?如何构造全等三角形? 等腰三角形的对称性添 为下面的性质运用做 加辅助线,并且鼓励学 好准备。 3、类比性质 1 的证明过程,你 生使用不同的辅助线完 成证明. 可以证明性质 2 吗? 1、 你可以根据猜想的性质 1 等 (

等腰三角形(第1课时)教学设计与反思

等腰三角形(第1课时)教学设计与反思

2学生把自己刚才制作出来的等腰三角形对折,发现等腰三角形是轴对称图形,观察重合的线段、重合的角,大胆猜想等腰三角形的性质.教师归纳、整理学生的发言:猜想1.等腰三角形的两个底角相等.活动3.证明猜想、得出性质思考:猜想1中的条件和结论分别是什么?怎样用数学符号表示条件和结论?已知:在△ABC中,AB=AC.求证:∠B = ∠C性质1.等腰三角形的两个底角相等(简写成“等边对等角”).在△ABC中∵AB=AC∴∠B=∠C(等边对等角)教师提出问题:这是我们观察、实验得到的结果,你能证明它吗?证明性质1,关键是添加辅助线,有了前面的剪纸制作和对折等腰三角形纸片的铺垫,如何添加这条辅助线就水到渠成了.对于部分学生,教师可引导他们分析证明角相等的方法,根据等腰三角形的轴对称性寻找辅助线的添加方法(添加顶角平分线或底边上的中线或底边上的高).学生分析猜想1的条件和结论,并转换成数学符号.教师纠正和补充学生的发言.学生自己证明,教师补充,引导学生添加不同的辅助线证明性质1.教师板书等腰三角形的性质1.并引导学生用几何符号表达.教师再问:这个性质我们可以用来解决什么问题?(证明角相等)到目前为止,我们证明角相等,主要有哪对性质1证明的分析,既让学生产生合情推理,又渗透了在等腰三角形中作辅助线的方法.从而突破了本节课的难点.性质1证明后的一连串提问,既培养了学生学习几何的方法(即一个几何结论用来做什么,怎么用,这也是学生往往忽略和感到困惑的问题),又培养了学生在几何学习中注意总结和反思的学习习惯.教师与学生一起探究,经历观察、实验、猜想、活动5.学以致用、应用性质1.如图,在下列等腰三角形中,AB=AC,分别说出它们的另外两个角的度数.2.⑴等腰三角形的一个角是70°,它的另外两个角的度数是 .⑵等腰三角形的一个角是90°,它的另外两个角的度数是 .⑶等腰三角形的一个角是110°,它的另外两个角的度数是 .<类比联想>:⑴已知等腰三角形的两边长分别为3和4,则其周长等于 .⑵已知等腰三角形的两边长分别为3和7,则其周长等于.3.已知等腰三角形的一个底角是顶角的 2 倍,你能求出这个等腰三角形的底角和顶角的度数吗?请你设计一个有关等腰三角形的顶角和底角计算的题目,考考你的同学.角的度数.教师引导学生思考以下问题:⑴图中有哪几个等腰三角形,分别指出它们的顶角和底角.⑵这些角之间有怎样的数量关系?例1中,教师提醒学生注意:⑴这是常见的利用等腰三角形“等边对等角”性质的题目,解决这类题目一般要与三角形的内角和定理相结合.⑵解题过程中设未知数、建立方程,注意掌握设未知数的技巧.⑶注意变式练习,学生自主探究.题目循序渐进的呈现,引导学生拾阶而上,极大的增强了学生学习数学的自信心.学生口答结果并陈述理由,开放学生的嘴巴,给学生表达的机会.同时,教师及时了解学生学习的反馈效果.学生自己设计题目,既体现了学生学习的自主性和创造性,又体现了教师在教学上的创新性.通过这个例题, 我进一步开放学生的大脑,给学生思考的机会.我试图让学生进一步突破本节课的教学难点和重点.方程思想的渗透,例题1 2 34。

最新人教版八年级数学上册《13.3.1 等腰三角形(第1课时)》优质教学课件

最新人教版八年级数学上册《13.3.1 等腰三角形(第1课时)》优质教学课件

归纳总结
性质1:等腰三角形的两个底角相等(等边对等角). A
如图,在△ABC中,
∵AB=AC(已知),
∴∠B=∠C(等边对等角).
B
C
性质2:等腰三角形顶角的平分线、底边上的中线及底边上的高
线互相重合(三线合一).
顶角平分线 即:等腰三角形 底边上的高线
底边上的中线
具备其 中一条
另外两 条成立
探究新知
C1 C5
这样分类 就不会漏
啦!
C3
C6
A
8个
C7
B
C4
C8
C2
分别以A、B、C为顶角 顶点来分类讨论!
课堂小结
等边对等角
注意是指同一个三角形中


注意是指顶角的平分线,底边上的高和中

三线合一
线才有这一性质.而腰上的高和中线与底

角的平分线不具有这一性质



(1)求等腰三角形角的度数时,如果没有
(×)
(4)等腰三角形的顶角平分线一定垂直底边.
(√)
(5)等腰三角形的角平分线、中线和高互相重合.
( ×)
(6)等腰三角形底边上的中线一定平分顶角.
(√)
探究新知
素ቤተ መጻሕፍቲ ባይዱ考点 1 等腰三角形性质的应用
例1 如图,在△ABC中 ,AB=AC,点D在AC上,且
BD=BC=AD,求△ABC各角的度数.
分析:(1)找出图中所有相等的角; ∠A=∠ABD,∠C=∠BDC=∠ABC; (2)指出图中有几个等腰三角形?
数学语言:如图, 在△ABC中,
∵AB=AC, ∠1=∠2(已知),
A
∴BD=CD, AD⊥BC.(等腰三角形三线合一)

人教版八上数学13.3.1等腰三角形(第1课时)教学设计

人教版八上数学13.3.1等腰三角形(第1课时)教学设计

13.3.1等腰三角形(第1课时)教学设计一、教材分析1.地位作用:等腰三角形对于学生学习和研究图形的轴对称性具有重要意义,由等腰三角形揭示的“等边对等角”和“等角对等边”的几何事实,是边与角相互联系和转化的基本依据,是平面几何体系中重要定理之一;本节内容起到了重要的承上启下作用,既用它作为运用全等三角形的判定和性质进行推理论证的载体,又由此对三角形的研究呈现出从特殊到一般的过程,随着等腰三角形性质的学习和研究的深入,学生的逻辑推理的能力将有所增强;实验与论证相辅相成,帮助学生从实验几何向论证几何过渡.2、教学目标:1、知识技能:①掌握等腰三角形的性质;②运用等腰三角形的性质进行有关计算和证明.2、数学思考:①观察等腰三角形的对称性,发展形象思维;②通过实践、观察、证明等腰三角形的性质,发展学生合情推理能力和演绎推理能力.3、解决问题:①通过观察等腰三角形的对称性,培养学生观察、分析、归纳问题的能力.②通过运用等腰三角形的性质解决有关的问题,提高运用知识和技能解决问题的能力,发展运用意识.4、情感态度:引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心.3、教学重、难点教学重点:①探究等腰三角形的性质;②运用等腰三角形的性质解决简单问题.教学难点:等腰三角形性质的证明.突破难点的方法:通过折叠纸片突破难点.二、教学准备:多媒体课件、导学案、长方形纸片三、教学过程2.等腰三角形一个角为120°,它的另外两个角为------------------------------。

3.等腰三角形有一个外角为100°,它的三个内角分别为---------------------------。

活动3:再探性质证明、渐进升华思考:添加辅助线后,在这两个全等三角形中,1.当作底边BC边上的中线AD 时,由全等,AD是顶角的平分线吗?AD是底边上的高吗?引导学生利用现成的结论继续证明,归纳小结。

1.1 等腰三角形 第1课时 教案

1.1 等腰三角形 第1课时 教案

一、情境导入探究:如图所示,把一张长方形的纸按照图中虚线对折并减去阴影部分,再把它展开得到的△ABC有什么特点?二、合作探究探究点一:全等三角形的判定和性质【类型一】全等三角形的判定如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.BD=CDB.AB=ACC.∠B=∠CD.∠BAD=∠CAD解析:利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.A.∵∠1=∠2,AD为公共边,若BD=CD,则△ABD≌△ACD(SAS);B.∵∠1=∠2,AD为公共边,若AB=AC,不符合全等三角形判定定理,不能判定△ABD≌△ACD;C.∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);D.∵∠1=∠2,AD为公共边,若∠BAD=∠CAD,则△ABD≌△ACD(ASA);故选B.方法总结:判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS.要注意AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.【类型二】全等三角形的性质如图,△ABC≌△CDA,并且AB=CD,那么下列结论错误的是()A.∠1=∠2 B.AC=CAC.∠D=∠B D.AC=BC解析:由△ABC≌△CDA,并且AB=CD,AC和CA是公共边,可知∠1和∠2,∠D和∠B是对应角.全等三角形的对应角相等,对应边相等,因而前三个选项一定正确.AC和BC不是对应边,不一定相等.∵△ABC≌△CDA,AB=CD,∴∠1和∠2,∠D和∠B是对应角,∴∠1=∠2,∠D=∠B,∴AC和CA是对应边,而不是BC,∴A、B、C正确,错误的结论是D.故选D.方法总结:本题主要考查了全等三角形的性质;根据已知条件正确确定对应边、对应角是解决本题的关键.探究点二:等边对等角【类型一】运用“等边对等角”求角的度数如图,AB=AC=AD,若∠BAD=80°,则∠BCD=()A.80°B.100°C.140°D.160°解析:先根据已知和四边形的内角和为360°,可求∠B+∠BCD+∠D的度数,再根据等腰三角形的性质可得∠B=∠ACB,∠ACD=∠D,从而得到∠BCD的值.∵∠BAD=80°,∴∠B+∠BCD+∠D=280°.∵AB=AC =AD,∴∠B=∠ACB,∠ACD=∠D,∴∠BCD=280°÷2=140°,故选C.方法总结:求角的度数时,①在等腰三角形中,一定要考虑三角形内角和定理;②有平行线时,要考虑平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补;③两条相交直线中,对顶角相等,互为邻补角的两角之和等于180°.【类型二】分类讨论思想在等腰三角形求角度中的运用等腰三角形的一个角等于30°,求它的顶角的度数.解析:本题可根据等腰三角形的性质和三角形内角和定理求解,由于本题中没有明确30°角是顶角还是底角,因此要分类讨论.解:①当底角是30°时,顶角的度数为180°-2×30°=120°;②顶角即为30°.因此等腰三角形的顶角的度数为30°或120°.方法总结:已知的一个锐角可以是等腰三角形的顶角,也可以是底角;一个钝角只能是等腰三角形的顶角.分类讨论是正确解答本题的关键.探究点三:三线合一【类型一】利用等腰三角形“三线合一”进行计算如图,在△ABC中,已知AB=AC,∠BAC和∠ACB的平分线相交于点D,∠ADC=125°.求∠ACB和∠BAC的度数.解析:根据等腰三角形三线合一的性质可得AE⊥BC,再求出∠CDE,然后根据直角三角形两锐角互余求出∠DCE,根据角平分线的定义求出∠ACB,再根据等腰三角形两底角相等列式进行计算即可求出∠BAC.解:∵AB=AC,AE平分∠BAC,∴AE⊥BC.∵∠ADC=125°,∴∠CDE=55°,∴∠DCE=90°-∠CDE =35°.又∵CD平分∠ACB,∴∠ACB=2∠DCE=70°.又∵AB=AC,∴∠B=∠ACB=70°,∴∠BAC=180-(∠B +∠ACB)=40°.方法总结:利用等腰三角形“三线合一”的性质进行计算,有两种类型:一是求边长,求边长时应利用等腰三角形的底边上的中线与其他两线互相重合;二是求角度的大小,求角度时,应利用等腰三角形的顶角的平分线或底边上的高与其他两线互相重合.【类型二】利用等腰三角形“三线合一”进行证明如图,△ABC中,AB=AC,D为AC上任意一点,延长BA到E使得AE=AD,连接DE,求证:DE⊥BC.解析:作AF∥DE,交BC于点F.利用等边对等角及平行线的性质证明∠BAF=∠F AC.在△ABC中由“三线合一”得AF⊥BC.再结合AF∥DE可得出结论.证明:过点A作AF∥DE,交BC于点F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠F AC=∠ADE.∴∠BAF=∠F AC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法总结:利用等腰三角形“三线合一”得出结论时,先必须已知一个条件,这个条件可以是等腰三角形底边上的高,可以是底边上的中线,也可以是顶角的平分线.解题时,一般要用到其中的两条线互相重合.三、板书设计1.全等三角形的判定和性质2.等腰三角形的性质:等边对等角3.三线合一:在等腰三角形的底边上的高、中线、顶角的平分线中,只要知道其中一个条件,就能得出另外的两个结论.作业设计1.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为()A. BD=CE B. AD=AE C. DA=DE D. BE=CD2.等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°3.已知实数x,y满足,则以x,y的值为两边长的等腰三角形的周长是()A.20或16B. 20 C. 16 D.以上答案均不对4.如图,在△ABC中,AB=AC,∠A=40°,BD为∠ABC的平分线,则∠BDC的度数是()A.60°B.70°C.75°D.80°5.已知等腰三角形的两边长分别是3和5,则该三角形的周长是()A. 8 B. 9 C.10或12D.11或136.如图,给出下列四组条件:①AB DE BC EF AC DF===,,;②AB DE B E BC EF=∠=∠=,,;③B E BC EF C F∠=∠=∠=∠,,;④AB DE AC DF B E==∠=∠,,.其中,能使ABC DEF△≌△的条件共有()A.1组 B.2组C.3组 D.4组7.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A. 7 B.11 C.7或11D.7或108.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或150°D.60°或120°二.填空题(共10小题)9.已知等腰三角形的一个内角为80°,则另两个角的度数是_________ .10.如图,已知AB∥CD,AB=AC,∠ABC=68°,则∠ACD=_________ .第10题 第11题 第12题 第13题11.如图,在△ABC中,AB=AC,△ABC的外角∠DAC=130°,则∠B=_________ °.12.如图,AB∥CD,AE=AF,CE交AB于点F,∠C=110°,则∠A=________°.13.如图,在△ABC中,AB=AC,BC=6,AD⊥BC于D,则BD=_________.14.如图,在△ABC中,AB=AD=DC,∠BAD=32°,则∠BAC=_________°.第14题 第15题 第16题 第17题 第18题15.如图,AB与CD交于点O,OA=OC,OD=OB,∠A=50°,∠B=30°,则∠D的度数为_____.16.如图,在△ABC中,AB=AC,CD平分∠ACB,∠A=36°,则∠BDC的度数为_________.17.如图,在△ABC中,AB=AC,点D为BC边的中点,∠BAD=20°,则∠C=_________ .18.如图,在△ABC中,AB=AC,∠A=80°,E,F,P分别是AB,AC,BC边上一点,且BE=BP,CP=CF,则∠EPF= _________ 度.三.解答题(共5小题)19.已知:如图,在等腰△ABC中,AB=AC,O是底边BC上的中点,OD⊥AB于D,OE⊥AC于E.求证:AD=AE.20.如图,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.求证:(1)△ABD≌△ACD;(2)BE=CE.21.如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.试判断OE和AB的位置关系,并给出证明.22.如图,在△ABC中,D、E分别是AC和AB上的点,BD与CE相交于点O,给出下列四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.(1)上述四个条件中,由哪两个条件可以判定AB=AC?(用序号写出所有的情形)(2)选择(1)小题中的一种情形,说明AB=AC.23.(1)如图,在△ABC中,∠ABC、∠ACB的平分线相交于F,过F作DE∥BC,分别交AB、AC于点D、E.判断DE=D B+EC是否成立?为什么?(2)如图,若点F是∠ABC的平分线和外角∠ACG的平分线的交点,其他条件不变,请猜想线段DE、DB、EC之间有何数量关系?证明你的猜想.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五、课堂小结,知识梳理
教师提问:通过这节课的学习,你知道了等腰三角形的什么性质?证明两个角相等有哪些方法?在证明等腰三角形时,我们一般添加什么样的辅助线?请同学们谈一谈这节课的收获。
学生反思交流。
总结回顾学习内容,帮助学生归纳,自我评价学习效果。
教师布置作业:课本P51页1、2、3题
为学生提供参与教学活动的时间和空间,调动学生的主观能动性,激发好奇心和求知欲。
二、引导观察,猜想性质
1、教师提问:剪纸中得到的等腰三角形是轴对称同学吗?
2、教师提问:对称轴在哪里?沿着对称轴对折有哪些重合的线段和角?
3、教师提问:你能猜想等腰三角形有什么性质吗?(教师引导学生归纳出等腰三角形的性质,并板书等腰三角形的性质)
1、学生动手折纸、观察,找出重合的线段和角。
2、学生说出自己的猜想。
通过学生观察和教师引导,归纳出等腰三角形的两条性质,在这个过程中培养学生的自主探究学习的品质。
三、引导推理,论证性质
1、教师提问证明一个命题的第一步是什么?(引导学生分析性质1的题设和结论,画出图形,写出已知和求证)
2、提问:证明两个角相等,我们一般用什么方法。(引导学生观察折纸,添加辅助线,构造两个全等三角形)
《等腰三角形》
(第1课时教学设计过程)
教师行为
学生学习活动
设计意图
一、创设情境,引入课题,展示目标
教师提问:同学们会画等腰三角形吗?(教师查看)
找学生代表展示自己的作品
教师用两种画法画等腰三角形
教师引导学生剪纸得等腰三角形
教师在大屏幕上展示教学目标
1、学生动手画等腰三角形。
2、学生剪纸、观察得到等腰三角形。
2、学生证明性质1
培养学生的几何语言转换能力,增强理性认识,体验性质的正确性,提高演绎推理的能力。运用性质,解决问题
四、运用性质,解决问题
1、口答题:
(1)等腰三角形的顶角等于36°,它的底角是多少?
(2)等腰三角形的顶角等于120°,它的底角是多少?
2、变式练习:
(1)等腰三角形的一个角等于36°,它的另外两个角是多少度?
(2)等腰三角形的一个角等于120°,它的另外两个角是多少度?
3、如图,已知:在△ABC中,AB=AC,∠BAC=1200,点D、E是底边BC上两点,且BD=AD,CE=AE,求∠DAE的度数.
(教师让中下等学生学生演板,暴露问题,学生相互纠正,教师最后补充。)
学生练习,相互纠正。
及时巩固知识,了解学习效果,增强学生应用知识的能力,同时培养学生分类论的数学思想。
3、分析三种辅助线作法,让三位学生上黑板写出证明过程。
4、以上证明论证了性质1,教师引导学生用几何语言描述
在△ABC中AB=AC
∴∠B=∠C,
(教师强调:证明两个角相等又多了一种方法)
5、提问由△ABD与△ACD全等还可得出哪些相等的角和边,进而得到性质2
1、学生分析性质1的题设和结论,画出图形,写出已知和求证)
相关文档
最新文档