一元一次方程单元测试与练习(word解析版)
2022-2023学年七年级上册学 一元一次方程 单元测试卷 (解析版)

七年级(上)数学一元一次方程单元测试卷一.选择题(共10小题)1.已知下列方程:①x﹣2=;②0.2x=1;③=x﹣3;④x﹣y=6;⑤x=0,其中一元一次方程有()A.2个B.3个C.4个D.5个2.下面四个等式的变形中正确的是()A.由x+7=5﹣3x,得4x=2 B.由4x+8=0,得x+2=0 C.由x=4,得x=D.由4(x﹣1)=﹣2,得4x =﹣63.下列方程中,它的解是x=﹣1的方程是()A.3﹣x=2 B.2x=﹣1+x C.﹣2﹣2x=4 D.4x=x+3 4.方程2x﹣4=﹣2x+4的解是()A.x=2 B.x=﹣2 C.x=1 D.x=0 5.下列解方程去分母正确的是()A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2 y﹣15=3yD.由,得3(y+1)=2 y+66.小明在做解方程作业时,不小心将方程中的一个常数污染,被污染的方程是2y+1=y﹣□,小明想了想后翻看了书后的答案,此方程的解是y=﹣,然后小明很快补好了这个常数,这个常数应是()A.﹣B.C.D.27.某车间30名工人生产螺母和螺钉,每人每天平均生产螺钉1500个或螺母4500个,一个螺钉要配两个螺母,已知每天生产的产品刚好配套,若设安排x名工人生产螺钉,则可列方程为()A.4500(30﹣x)=2×1500x B.2×4500(30﹣x)=1500xC.4500 x=2×1500(30﹣x) D.4500 x+2×1500x=30 8.把方程4x﹣x=4的解用数轴上的点表示出来,那么该点在图中的()A.点M,点N之间B.点N,点O之间C.点O,点P之间D.点P,点Q之间9.已知某商店出售了两个进价不同的书包,售价都是42元,其中一个盈利40%,另一个亏损30%,则在这次买卖中,商店的盈亏情况是()A.盈利4.2元 B.盈利6元C.不盈不亏D.亏损6元10.小刚从家跑步到学校,每小时跑12km,会迟到5分钟;若骑自行车,每小时骑15km,则可早到10分钟.设他家到学校的路程是xkm,则根据题意列出方程是()A.﹣=+B.﹣=﹣C.+10=﹣5 D.+=﹣二.填空题(共6小题)11.已知x=3是关于x方程mx﹣8=10的解,则m=.12.若3x2m﹣1+6=0是关于x的一元一次方程,则m的值为.13.比a的2倍大5的数等于a的8倍,列等式表示为.14.一家服装店将某种服装按成本提高40%后标价,又以八折优惠卖出,结果每件仍获利36元,这种服装每件的成本为.15.小乐在解方程﹣1=0(x为未知数)时,误将﹣x看作+x,得方程的解为x=1,则原方程的解为.16.对有理数a,b,规定一种新运算※,意义是a※b=ab+a+b,则方程x※3=4的解是x=.三.解答题(共9小题)17.解方程:2(x+3)=﹣3(x﹣1)+218.解方程:﹣=0.7519.解方程(1)15﹣(7﹣5x)=2x+(5﹣3x)(2)20.课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组8人,这样就比原来减少2组,问这些学生共有多少人?21.妇人洗碗在河滨,路人问他客几人?答曰:“不知客数目,六十五碗自分明,二人共食一碗饭,三人共吃一碗羹,四人共肉无余数,请君细算客几人?”本题的大意是:有一名妇人在河边洗碗,一个过路的人问她有多少个客人吃饭,妇人说“人数不知道,一共65个碗,其中两个人共用一碗饭,三个人共喝一碗汤,四个人共吃一碗肉,请你算算一共有多少个客人?”(请列一元一次方程解答)22.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?23.如图,小刚将一个正方形纸片剪去一个宽为5cm的长条后,再从剩下的长方形纸片上剪去一个宽为6cm的长条.如果两次剪下的长条面积正好相等,求两个所剪下的长条的面积之和.24.有一旅客携带了30千克行李乘某航空公司的飞机,按该航空公司规定,旅客最多可免费携带20千克的行李,超重部分每千克按飞机票价的1.5%购买行李票,现该旅客购买的飞机票和行李票共920元.(1)该旅客需要购买千克的行李票;(2)该旅客购买的飞机票是多少元?25.某中学原计划加工一批校服,现有甲、乙两个工厂加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天加工这种校服24件,且单独加工这批校服甲厂比乙厂要多用20天.(1)求这批校服共有多少件?(2)为了尽快完成这批校服,若先由甲、乙两工厂按原速度合作一段时间后,甲工厂停工,而乙工厂每天的速度提高25%,乙工厂单独完成剩下的部分,且乙工厂全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂加工多少天?参考答案一.选择题(共10小题)1.已知下列方程:①x﹣2=;②0.2x=1;③=x﹣3;④x﹣y=6;⑤x=0,其中一元一次方程有()A.2个B.3个C.4个D.5个解:根据一元一次方程定义可知:下列方程:①x﹣2=;②0.2x=1;③=x﹣3;④x﹣y=6;⑤x=0,其中一元一次方程有②⑤.故选:A.2.下面四个等式的变形中正确的是()A.由x+7=5﹣3x,得4x=2 B.由4x+8=0,得x+2=0 C.由x=4,得x=D.由4(x﹣1)=﹣2,得4x =﹣6解:A、由x+7=5﹣3x方程两边都加3x﹣7即可得出4x=﹣2,故本选项错误;B、由4x+8=0方程两边都除以4即可得出x+2=0,故本选项正确;C、由x=4,得x=,故本选项错误;D、由4(x﹣1)=﹣2可得4x=2,故本选项错误;故选:B.3.下列方程中,它的解是x=﹣1的方程是()A.3﹣x=2 B.2x=﹣1+x C.﹣2﹣2x=4 D.4x=x+3 解:A、解方程3﹣x=2得:x=1,故A选项错误;B、解方程2x=﹣1+x得:x=﹣1,故B选项正确;C、解方程﹣2﹣2x=4得:x=﹣3,故C选项错误;D、解方程4x=x+3得:x=1,故D选项错误.故选:B.4.方程2x﹣4=﹣2x+4的解是()A.x=2 B.x=﹣2 C.x=1 D.x=0 解:2x﹣4=﹣2x+4移项得,2x+2x=4+4,合并同类项得,4x=8,系数化为1,得x=2.故选:A.5.下列解方程去分母正确的是()A.由,得2x﹣1=3﹣3xB.由,得2x﹣2﹣x=﹣4C.由,得2 y﹣15=3yD.由,得3(y+1)=2 y+6解:A、由,得2x﹣6=3﹣3x,此选项错误;B、由,得2x﹣4﹣x=﹣4,此选项错误;C、由,得5y﹣15=3y,此选项错误;D、由,得3(y+1)=2y+6,此选项正确;故选:D.6.小明在做解方程作业时,不小心将方程中的一个常数污染,被污染的方程是2y+1=y﹣□,小明想了想后翻看了书后的答案,此方程的解是y=﹣,然后小明很快补好了这个常数,这个常数应是()A.﹣B.C.D.2解:设□表示的数是a,把y=﹣代入方程2y+1=y﹣a得:﹣+1=﹣﹣a,解得:a=,即这个常数是,故选:B.7.某车间30名工人生产螺母和螺钉,每人每天平均生产螺钉1500个或螺母4500个,一个螺钉要配两个螺母,已知每天生产的产品刚好配套,若设安排x名工人生产螺钉,则可列方程为()A.4500(30﹣x)=2×1500x B.2×4500(30﹣x)=1500xC.4500 x=2×1500(30﹣x) D.4500 x+2×1500x=30 解:设安排x名工人生产螺钉,则安排(30﹣x)名工人生产螺母,依题意,得:2×1500x=4500(30﹣x).故选:A.8.把方程4x﹣x=4的解用数轴上的点表示出来,那么该点在图中的()A.点M,点N之间B.点N,点O之间C.点O,点P之间D.点P,点Q之间解:方程4x﹣x=4,解得:x=,则把方程4x﹣x=4的解用数轴上的点表示出来,那么该点在图中的点P,点Q之间,故选:D.9.已知某商店出售了两个进价不同的书包,售价都是42元,其中一个盈利40%,另一个亏损30%,则在这次买卖中,商店的盈亏情况是()A.盈利4.2元 B.盈利6元C.不盈不亏D.亏损6元解:设盈利的书包的进价为x元/个,亏损的书包的进价为y元/个,根据题意得:42﹣x=40%x,42﹣y=﹣30%y,解得:x=30,y=60,∴42×2﹣30﹣60=﹣6(元).答:商店亏损6元.故选:D.10.小刚从家跑步到学校,每小时跑12km,会迟到5分钟;若骑自行车,每小时骑15km,则可早到10分钟.设他家到学校的路程是xkm,则根据题意列出方程是()A.﹣=+B.﹣=﹣C.+10=﹣5 D.+=﹣解:设他家到学校的路程是xkm,依题意,得:+=﹣.故选:D.二.填空题(共6小题)11.已知x=3是关于x方程mx﹣8=10的解,则m= 6 .解:将x=3代入mx﹣8=10,∴3m=18,∴m=6,故答案为:612.若3x2m﹣1+6=0是关于x的一元一次方程,则m的值为 1 .解:根据题意可知:2m﹣1=1解得m=1故答案为1.13.比a的2倍大5的数等于a的8倍,列等式表示为2a+5=8a .解:由题意,得2a+5=8a.故答案是:2a+5=8a.14.一家服装店将某种服装按成本提高40%后标价,又以八折优惠卖出,结果每件仍获利36元,这种服装每件的成本为300元.解:设这种服装每件的成本价是x元,由题意得:(1+40%)x×80%=x+36,解得:x=300,故答案为:300元.15.小乐在解方程﹣1=0(x为未知数)时,误将﹣x看作+x,得方程的解为x=1,则原方程的解为﹣1 .解:把把x=1代入方程﹣1=0中得:﹣1=0,解得:a=1,则原方程为﹣1=0,解得:x=﹣1,故答案是:﹣1.16.对有理数a,b,规定一种新运算※,意义是a※b=ab+a+b,则方程x※3=4的解是x=0.25 .解:根据题意得:3x+x+3=4,解得:x=0.25,故答案为:0.25三.解答题(共9小题)17.解方程:2(x+3)=﹣3(x﹣1)+2解:2(x+3)=﹣3(x﹣1)+22x+6=﹣3x+3+22x+3x=5﹣65x=﹣1x=﹣18.解方程:﹣=0.75解:方程整理得:﹣=0.75,即15+x﹣20﹣3x=0.75,移项合并得:﹣2x=5.75,解得:x=﹣.19.解方程(1)15﹣(7﹣5x)=2x+(5﹣3x)(2)解:(1)去括号得:15﹣7+5x=2x+5﹣3x,移项合并得:6x=﹣3,解得:x=﹣;(2)去分母得:5x﹣15﹣4x+6=10,移项合并得:x=19.20.课外活动中一些学生分组参加活动,原来每组6人,后来重新编组,每组8人,这样就比原来减少2组,问这些学生共有多少人?解:设这些学生共有x人,根据题意得,解得x=48.答:这些学生共有48人.21.妇人洗碗在河滨,路人问他客几人?答曰:“不知客数目,六十五碗自分明,二人共食一碗饭,三人共吃一碗羹,四人共肉无余数,请君细算客几人?”本题的大意是:有一名妇人在河边洗碗,一个过路的人问她有多少个客人吃饭,妇人说“人数不知道,一共65个碗,其中两个人共用一碗饭,三个人共喝一碗汤,四个人共吃一碗肉,请你算算一共有多少个客人?”(请列一元一次方程解答)解:设共有客人x人,依题意可得:++=65.解之得:x=60.答:共有客人60人.22.学校要购入两种记录本,预计花费460元,其中A种记录本每本3元,B种记录本每本2元,且购买A种记录本的数量比B种记录本的2倍还多20本.(1)求购买A和B两种记录本的数量;(2)某商店搞促销活动,A种记录本按8折销售,B种记录本按9折销售,则学校此次可以节省多少钱?解:(1)设购买B种记录本x本,则购买A种记录表(2x+20)本,依题意,得:3(2x+20)+2x=460,解得:x=50,∴2x+20=120.答:购买A种记录本120本,B种记录本50本.(2)460﹣3×120×0.8﹣2×50×0.9=82(元).答:学校此次可以节省82元钱.23.如图,小刚将一个正方形纸片剪去一个宽为5cm的长条后,再从剩下的长方形纸片上剪去一个宽为6cm的长条.如果两次剪下的长条面积正好相等,求两个所剪下的长条的面积之和.解:设原来正方形纸的边长是xcm,则第一次剪下的长条的长是xcm,宽是5cm,第二次剪下的长条的长是(x﹣5)cm,宽是6cm,则5x=6(x﹣5),解得:x=3030×5×2=300(cm2),答:两个所剪下的长条的面积之和为300cm2.24.有一旅客携带了30千克行李乘某航空公司的飞机,按该航空公司规定,旅客最多可免费携带20千克的行李,超重部分每千克按飞机票价的1.5%购买行李票,现该旅客购买的飞机票和行李票共920元.(1)该旅客需要购买10 千克的行李票;(2)该旅客购买的飞机票是多少元?解:(1)30﹣20=10(千克).故答案为:10.(2)设该旅客购买的飞机票是x元,依题意,得:x+10×1.5%x=920,解得:x=800.答:该旅客购买的飞机票是800元.25.某中学原计划加工一批校服,现有甲、乙两个工厂加工这批校服,已知甲工厂每天能加工这种校服16件,乙工厂每天加工这种校服24件,且单独加工这批校服甲厂比乙厂要多用20天.(1)求这批校服共有多少件?(2)为了尽快完成这批校服,若先由甲、乙两工厂按原速度合作一段时间后,甲工厂停工,而乙工厂每天的速度提高25%,乙工厂单独完成剩下的部分,且乙工厂全部工作时间是甲工厂工作时间的2倍还多4天,求乙工厂加工多少天?解:(1)设这批校服共有x件,依题意,得:﹣=20,解得:x=960.答:这批校服共有960件.(2)设甲工厂加工了y天,则乙工厂加工了(2y+4)天,依题意,得:16y+24y+24×(1+25%)(y+4)=960,解得:y=12,∴2y+4=28.答:乙工厂加工28天.。
(word完整版)华东师大版七年级《一元一次方程》单元测试

华东师大版七年级《一元一次方程》单元测试一、选择题1. 下列各式是一元一次方程的是( ) A.y x -=-54121 B.-5-3= -8 C.x+3 D.146534+=-+x x x 2. 方程 的解是( ) A. B. C. 1 D.–13. 若关于x 的方程2x-4=3m 的解满足方程x+2=m, 则m 的值为( )A.10B.8C.-10D.-84. 下列根据等式的性质成立的是()A.由 , 得x=2yB.由3x-2=2x+2, 得x=4C.由2x-3=3x ,得x=3D.由3x-5=7,得3x=7-55. 解方程 时, 去分母后, 正确结果是( )A.4x+1-10x+1=1B.4x+2-10x-1=1C.4x+2-10x-1=6D.4x+2-10x+1=66. 下列方程中是一元一次方程的是( )A.342=-x xB.x=0C.x+2y=1D.x-1=x 1 7. 方程 的解是( ) A.41-=x B.x=-4 C.41=x D.x=+4 8. 已知等式3a=2b+5, 则下列等式中不一定成立的是( ) A.3a-5=2b B.3a+1=2b+6 C.3ac=2bc+5 D.3532+=b a 9. 方程2x+a-4=0的解是x=-2, 则a 等于( )A.-8B.0C.2D.810. 解方程 , 去分母, 得( )A.1-x-3x=3B.6-x-3=3xC..6-x+3=3xD.1-x+3=3x11. 下列方程的变形正确的是:A. 方程3x-2=2x+1,移项得3x-2x=-1+2B. 方程3-x=2-5(x-1), 去括号得3-x=2-5x-1C .方程 , 未知数系数化为1得x=1D .方程 , 化成3x=6二、填空12.13. 已知:14. 关于x 的方程2(x-1)-a=0的解是3, 则a 的值为15.当x= 时, 式子4x+2与3x-9的值互为相反数。
16.在公式s= (a+b)h 中, 已知s=16, a=3,h=4则b= 。
(完整word版)《一元一次方程》基础测试题含答案,推荐文档

《一元一次方程》基础测试一 判断正误(每小题3分,共15分):1.含有未知数的代数式是方程…………………………………………………………( )2.-1是方程x 2-5x -6=0的一个根,也可以说是这个方程的解…………………( ) 3.方程 | x |=5的解一定是方程 x -5=0的解……………………………………( )4.任何一个有理数都是方程 3x -7=5x -(2x +7 ) 的解…………………………( )5.无论m 和n 是怎样的有理数,方程 m x +n =0 都是一元一次方程……………( )答案:1.×;2.√;3.×;4.√;5.×.二 填空题(每小题3分,共15分):1.方程x +2=3的解也是方程ax -3=5的解时,a = ;答案:8;解:方程x +2=3的解是 x =1,代入方程ax -3=5得关于a 的方程a -3=5,所以有 a =8;2.某地区人口数为m ,原统计患碘缺乏症的人占15%,最近发现又有a 人患此症,那么现在这个地区患此症的百分比是 ; 答案:%100%15⨯+ma m ; 提示:现在这个地区患此症的人数是15%m +a ,总人口仍为m .3.方程|x -1|=1的解是 ;答案: x =2或x =0;提示:由绝对值的意义可得方程 x -1=1 或 x -1=-1.4.若3x -2 和 4-5x 互为相反数,则x = ;答案:1;提示:由相反数的意义可得方程(3x -2)+(4-5x )=0,解得x =1.5.|2x -3y |+(y -2)2 =0 成立时,x 2+y 2= . 答案:13.提示:由非负数的意义可得方程2x -3y =0 且 y -2=0 ,于是可得x =3,y =2.三 解下列方程(每小题6分,共36分):1.x 21-10754=; 2. 3-53175=x ; 略解:去分母,得 5x -8=7, 略解:去分母,得 105-25x =56, 移项得 5x =15, 移项得 -25x =-49,把系数化为1,得x =3; 把系数化为1,得 x =2549;3.2(0.3x +4)=5+5(0.2x -7); 4. 815612+=-x x ; 略解:去括号,得 0.6x +8=5+ x -35, 略解:去分母,得 8x -4=15 x + 3, 移项,合并同类项,得-0.4x =-38, 移项,合并同类项,得-7x =7,把系数化为1,得x =95; 把系数化为1,得 x =-1;5. x -32221+-=-x x ; 略解:去分母,得6x -3(x -1)=12-2(x +2)去括号,得 3x +3=8-2x ,移项,合并同类项,得 5x =5,把系数化为1,得x =1;6.7x -)1(32)1(2121-=⎥⎦⎤⎢⎣⎡--x x x . 略解:第一次去分母,得42x -)1(4)1(213-=⎥⎦⎤⎢⎣⎡--x x x 第一次去括号,得42x -44)1(233-=-+x x x , 第二次去分母,得 78x +3x -3=8x -8,移项,合并同类项,得73x =-5,把系数化为1,得x =735-.四 解关于x 的方程(本题6分): b (a +x )-a =(2b +1)x +ab (a ≠0).解:适当去括号,得ab +bx -a =(2b +1)x +ab ,移项,得bx -(2b +1) x =a +ab -ab ,合并同类项,得(b -2b -1) x =a ,即 -(b +1) x =a ,当b ≠-1时,有b +1 ≠0,方程的解为x =1+-b a . 当b =-1 时,有b +1=0,又因为 a ≠0, 所以方程无解.(想一想,若a =0,则如何?)五 列方程解应用题(每小题10分,共20分):1.课外数学小组的女同学原来占全组人数的31,后来又有4个女同学加入,就占全组人数的21,问课外数学小组原来有多少个同学. 答案:12.提示:计算女同学的总人数,她们占全体人数的一半.设原来课外数学小组的人数为x ,方程为)4(21431+=+x x 解得 x =12.2.A 、B 两地相距49千米,某人步行从A 地出发,分三段以不同的速度走完全程,共用10小时.已知第一段,第二段,第三段的速度分别是6千米/时,4千米/时,5千米/时,第三段路程为15千米,求第一段和第二段的路程.答案:第一段路程长为18千米,第二段路程长为16千米.提示:思路一:三段路程之和为49千米,而路程等于时间与速度的乘积.可设第一段路程长为 x 千米,则第二段路程为(49-x -15)千米,用时间的相等关系列方程,得10515415496=+--+x x , 解得 x =18(千米);由此可知,第一段路程长为18千米,第二段路程长为16千米.思路二:又可设走第一段所用时间为t 小时,由于第三段所用时间为 3515=(小时), 则第二段所用时间为(10-3-t )小时,于是可用路程的相等关系列方程:6t +(10-t -515)×4+15=49, 解得 t =3,由此可知,第一段路程长为18千米,第二段路程长为16千米.六(本题8分):当x=4时,代数式A=ax2-4x-6a的值是-1,那么当x=-5 时,A的值是多少?提示:关键在于利用一元一次方程求出a的值.据题意,有关于a的方程16a-16-6a=-1,解得a=1.5;所以关于x的代数为A=1.5x2-4x-9,于是,当x=-5时,有A=1.5×(-5)2-4×(-5)-9=37.5+20-9=48.5.。
德州数学一元一次方程单元测试题(Word版 含解析)

一、初一数学一元一次方程解答题压轴题精选(难)1.如图,数轴上 A、B 两点所对应的数分别是 a 和 b,且(a+5)2+|b﹣7|=0.(1)求 a,b;A、B 两点之间的距离.(2)有一动点 P 从点 A 出发第一次向左运动 1 个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到 2019次时,求点P所对应的数.(3)在(2)的条件下,点P在某次运动时恰好到达某一个位置,使点P到点B的距离是点 P 到点 A 的距离的3倍?请直接写出此时点 P所对应的数,并分别写出是第几次运动.【答案】(1)解:∵(a+5)2+|b﹣7|=0,∴a+5=0,b﹣7=0,∴a=﹣5,b=7;∴A、B两点之间的距离=|﹣5|+7=12;(2)解:设向左运动记为负数,向右运动记为正数,依题意得:﹣5﹣1+2﹣3+4﹣5+6﹣7+…+2018﹣2019=﹣5+1009﹣2019=﹣1015.答:点P所对应的数为﹣1015(3)解:设点P对应的有理数的值为x,①当点P在点A的左侧时:PA=﹣5﹣x,PB=7﹣x,依题意得:7﹣x=3(﹣5﹣x),解得:x=﹣11;②当点P在点A和点B之间时:PA=x﹣(﹣5)=x+5,PB=7﹣x,依题意得:7﹣x=3(x+5),解得:x=﹣2;③当点P在点B的右侧时:PA=x﹣(﹣5)=x+5,PB=x﹣7,依题意得:x﹣7=3(x+5),解得:x=﹣11,这与点P在点B的右侧(即 x>7)矛盾,故舍去.综上所述,点P所对应的有理数分别是﹣11和﹣2.所以﹣11和﹣2分别是点P运动了第11次和第6次到达的位置.【解析】【分析】(1)由绝对值和平方的非负性可得a与b的值,相减得两点间的距离。
(2)设向左运动记为负数,向右运动记为正数,并在-5的基础上把得到的数据相加即可。
(3)设点P对应的有理数的值为x,分别表示PA和PB的长,列方程求解即可。
一元一次方程单元测试与练习(word解析版)

一、初一数学一元一次方程解答题压轴题精选(难)1.同学们都知道,表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)求=________.(2)若,则 =________(3)同理表示数轴上有理数x所对应的点到-1和2所对应的两点距离之和,请你找出所有符合条件的整数x,使得,这样的整数是________(直接写答案)【答案】(1)7(2)7或-3(3)-1,0,1,2.【解析】【解答】(1)|5-(-2)|=7,故答案为:7;( 2 )|x-2|=5,x-2=5或x-2=-5,x=7或-3,故答案为:7或-3;( 3 )如图,当x+1=0时x=-1,当x-2=0时x=2,如数轴,通过观察:-1到2之间的数有-1,0,1,2,都满足|x+1|+|x-2|=3,这样的整数有-1,0,1,2,故答案为: -1,0,1,2.【分析】(1)化简符号求出式子的值;(2)根据绝对值的性质得到x-2=5或x-2=-5,求出x的值;(3)根据题意画出数轴,得到-1到2之间的整数有-1,0,1,2,得到满足方程的整数值有-1,0,1,2.2.某手机经销商购进甲,乙两种品牌手机共 100 部.(1)已知甲种手机每部进价1500 元,售价2000 元;乙种手机每部进价3500 元,售价4500 元;采购这两种手机恰好用了 27 万元 .把这两种手机全部售完后,经销商共获利多少元?(2)已经购进甲,乙两种手机各一部共用了5000 元,经销商把甲种手机加价50%作为标价,乙种手机加价 40%作为标价.从 A,B 两种中任选一题作答:A:在实际出售时,若同时购买甲,乙手机各一部打九折销售,此时经销商可获利1570 元.求甲,乙两种手机每部的进价.B:经销商采购甲种手机的数量是乙种手机数量的 1.5 倍.由于性能良好,因此在按标价进行销售的情况下,乙种手机很快售完,接着甲种手机的最后10 部按标价的八折全部售完.在这次销售中,经销商获得的利润率为 42.5%.求甲,乙两种手机每部的进价.【答案】(1)解:设购进甲种手机部,乙种手机部,根据题意,得解得:元.答:销商共获利元.(2)解:A: 设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:3000元,2000元.B:乙种手机:部,甲种手机部,设每部甲种手机的进价为元,每部乙种手机的进价元,根据题意,得解得:答:求甲,乙两种手机每部的进价分别为:2000元,3000元.【解析】【分析】(1)甲的单价乘以部数加上乙的单价乘以部数等于总数,根据题意列出,然后解方程得到结果。
人教版七年级数学上册第三章一元一次方程单元测试(解析版)

人教版七年级数学上册第三章一元一次方程单元测试(解析版)一、选择题1.下列等式中,正确的是()A. B. C. D.2.下列利用等式的性质,错误的是()A. 由a=b,得到1-2a=1-2bB. 由ac=bc,得到a=bC. 由,得到a=bD. 由a=b,得到3.下列变形正确的是()A. 从5x=4x+8,得到5x﹣4x=8B. 从7+x=13,得到x=13+7C. 从9x=﹣3,得到x=-3D. 从-2x=0,得x=-24.关于y的方程2m+y=m与3y-3=2y-1的解相同,则m的值为()A. 0B. -2C. -D. 25.下列方程是一元一次方程的是………………………………()A. B. C. D.6.方程-3(•-9)=5x-1,•处被墨水盖住了,已知方程的解x=2,那么•处的数字是()A. 2B. 3C. 4D. 67.某商品进价为800元,售价为1200元,由于受市场供求关系的影响,现准备打折销售,但要求利润率(利润率=)不低于5%,则至多能打( )A. 六折B. 七折C. 八折D. 九折8.下列方程中的解是的方程是()A. 6x+1=1B. 7x-1=x-1C. 2x=D. 5x=x+29.若关于x的方程mx m-2-m+3=0是一元一次方程,则这个方程的解是()A. x=0B. x=3C. x=-3D. x=210.在《九章算术》中有“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数几何?大意为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元.问人数是多少?若设人数为x,则下列关于x的方程符合题意的是()A. 8x-3=7x+4B. 8(x-3)=7(x+4)C. 8x+4=7x-3D. x+4二、填空题11.关于x方程(m+1)x|m+2|+3=0是一元一次方程,那么m=______..12.某商店将彩电按成本价提高50%,然后在广告上写“大酬宾,八折优惠”,结果每台彩电仍获利270元,那么每台彩电成本价是______.13.已知方程的解是,那么______.14.已知a=b,根据等式的基本性质填空.(1)a+c=b+________;(2)a-c=________;(3)c-a=________;(4).15.对于方程,用含x的代数式表示y为_____________.16.若关于x的方程x+2=a和2x-4=4有相同的解,则a=______.17.请自编一个解为x=2的方程______.18.轮船在顺水中的速度为28千米/小时,在逆水中的速度为24千米/小时,水面上一漂浮物顺水漂流20千米,则它漂浮了______小时.19.A、B两地相距108千米,甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度为14千米/小时,乙的速度为22千米/小时,经过______小时后两人相距36千米.三、解答题20.解方程:(1)4x-3(20-x)=-4(2)-1=.21.解下列方程(1)x-4=2-5x(2)4x-3(20-x)=5x-7(20-x)(3)6+=(4)=+.22.某商场推出新年大促销活动,其中标价为1800元的某种商品打9折销售,该种商品的利润率为8%.(1)求该商品的成本价是多少;(2)该商品在降价前一周的销售额达到了97200元,要使该商品降价后一周内的销售额也达到97200元,降价后一周内的销售数量应该比降价前一周内的销售数量增加多少?23.某商场出售的甲种商品每件售价80元,利润为30元;乙种商品每件进价40元,售价60元.(1)甲种商品每件进价为______元,每件乙种商品利润率为______.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件?(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小明第一天只购买甲种商品,实际付款360元,第二题只购买乙种商品实际付款432元,求小明这两天在该商场购买甲、乙两种商品一共多少件?24.甲班有35人,乙班有26人.现在需要从甲、乙两班各抽调一些同学去养老院参加敬老活动.如果从甲班抽调的人数比乙班多3人,那么甲班剩余的人数恰好是乙班剩余人数的2倍.问从乙班抽调了多少人参加了这次敬老活动?答案和解析1.【答案】B【解析】【分析】本题考查了等式和绝对值的相关知识,根据绝对值的法则逐项分析即可解答. 【解答】解:A.当x≥0时,|x|-x=0;当x<0时,|x|-x=-2x,故A错误;B.无论x取何值,|-x|-|x|=0,故B正确;C.无论x取何值,-x-x=-2x,故C错误;D.当x≥0时,|-x|+|x|=2x;当x<0时,|-x|+|x|=-2x,故D错误.故选B.2.【答案】B【解析】【分析】本题考查了等式的性质.等式性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式.利用等式的性质对每个式子进行变形即可找出答案.【解答】解:A. 根据等式性质1和2,a=b两边都乘-2再加1,即可得到1-2a=1-2b,变形正确,故选项不符合题意;B.根据等式性质2,ac=bc两边都除以c不能得到a=b,只有当(c≠0),等式才成立,变形错误,故符合题意;C. 根据等式性质2,两边都乘以c,即可得到a=b,变形正确,故选项不符合题意;D. 因为c2+1≠0,所以根据等式性质2,a=b两边都除以c2+1能得到,变形正确,故选项不符合题意.故选B.3.【答案】A【解析】【分析】本题主要考查等式的基本性质,解题的关键是熟练掌握等式的性质:等式两边加同一个数(或式子)结果仍得等式、等式两边乘同一个数或除以一个不为零的数,结果仍得等式.根据等式的基本性质逐一计算可得.【解答】解:A.从5x=4x+8,得到5x-4x=8,此选项正确;B.从7+x=13,得到x=13-7,此选项错误;C.从9x=-3,得到x=-,此选项错误;D.从-2x=0,得x=0,此选项错误;故选A.4.【答案】B【解析】解:由3y-3=2y-1,得y=2.由关于y的方程2m+y=m与3y-3=2y-1的解相同,得2m+2=m,解得m=-2.故选:B.分别解出两方程的解,两解相等,就得到关于m的方程,从而可以求出m的值.本题考查了同解方程,解决的关键是能够求解关于x的方程,根据同解的定义建立方程.5.【答案】D【解析】【分析】本题主要考查一元一次方程,根据一元一次方程的概念可求解.【解答】解:A.,不是整式方程,故该选项错误;B.,由两个未知数,故该选项错误;C.,未知数的最高次数为2,故该选项错误;D.,是一元一次方程,故该选项错误.故选D.6.【答案】D【解析】解:设•处的数字是a,则-3(a-9)=5x-1,将x=2代入,得:-3(a-9)=9,解得a=6,故选:D.设•处的数字是a,把x=2代入已知方程,可以列出关于a的方程,通过解该方程可以求得•处的数字.此题考查的是一元一次方程的解的定义,就是能够使方程左右两边相等的未知数的值.7.【答案】B【解析】【解析】主要考查一元一次方程的应用,根据题意列方程,解出结果即可.【解答】解:设至多能打x折,根据题意:,解得:.所以至多可以打7折.故答案为B.8.【答案】C【解析】【分析】本题主要考查一元一次方程的解法.依次求出各个方程的解,即可得出答案. 【解答】解:.A.6x+1=1x=0;B.7x-1=x-1x=0 ;C.;D.5x=x+2.故选C.9.【答案】A【解析】【分析】此题主要考查了一元一次方程定义,一元一次方程的解法,关键是掌握只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程.根据一元一次方程定义可得m-2=1,解出m的值,进而可得方程,然后再解一元一次方程即可.【解答】解:由题意得:m-2=1,解得:m=3,则方程为3x-3+3=0,解得:x=0.故选A.10.【答案】A【解析】解:设人数为x,则可列方程为:8x-3=7x+4,故选:A.根据“总钱数不变”可列方程.本题主要考查由实际问题抽象出一元一次方程,解题的关键是理解题意,确定相等关系,并依据此列出方程.11.【答案】-3【解析】【分析】根据一元一次方程的定义求解即可.本题考查了一元一次方程的定义,利用一元一次方程的定义求解是解题关键.【解答】由题意,得|m+2|=1且m+1≠0,解得m=-3,故答案为:-3.12.【答案】1350元【解析】解:设每台彩电成本价是x元,依题意得:(50%•x+x)×0.8-x=270,解得:x=1350.故答案是:1350元.根据利润=售价-成本价,设每台彩电成本价是x元,列方程求解即可.本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.13.【答案】-1【解析】【分析】本题考查了一元一次方程的解,解决本题的关键是解一元一次方程;把x=-6代入方程2a-5=x+a,即可解答.【解答】解:x=-6代入方程2a-5=x+a得:2a-5=-6+a,解得:a=-1,故答案为-1.14.【答案】(1)c(2)b-c(3)c-b(4)【解析】【分析】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.根据等式的基本性质填空即可.【解答】解:∵a=b,∴(1)a+c=b+c;(2)a-c=b-c;(3)c-a=c-b;(4).故答案为(1)c;(2)b-c;(3)c-b;(4).15.【答案】【解析】【分析】此题考查了解二元一次方程,解题的关键是将一个未知数看做已知数,求出另一个未知数,把x看做已知数求出y即可.【解答】解:由x-3y=4,得到3y=x-4,∴,故答案为.16.【答案】6【解析】解:方程2x-4=4,移项合并得:2x=8,解得:x=4,把x=4代入x+2=a中,得:a=6.故答案为:6.求出第二个方程的解,代入第一个方程求出a的值即可.此题考查了同解方程,同解方程即为两个方程的解相同的方程.17.【答案】2x=4【解析】解:自编一个解为x=2的方程为2x=4,故答案为:2x=4.根据使方程左右两边的值相等的未知数的值是该方程的解,可得答案.本题考查了方程的解,解题的关键是根据方程的解的定义,使方程左右两边的值相等的未知数的值是该方程的解.18.【答案】10【解析】解:设轮船在静水中的速度为x千米/时,根据题意得2x=28+24,解得x=26.即:轮船在静水中的速度为26千米/时.所以漂浮时间为:=10(小时)故答案是:10.设轮船在静水中的速度为x千米/时,根据静水速度+水流速度=顺水速度,静水速度-水流速度=逆水速度,可得静水速度×2=顺水速度+逆水速度,依此列方程即可求解.然后根据漂流路程求得漂流时间.本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.19.【答案】2或4【解析】解:设经过x小时后两人相距36千米,根据题意得:(14+22)x=108-36或(14+22)x=108+36,解得:x=2或x=4.答:经过2或4小时后两人相距36千米.故答案为:2或4.设经过x小时后两人相距36千米,根据路程=速度×时间,即可得出关于x的一元一次方程,解之即可得出结论.本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.20.【答案】解:(1)去括号得:4x-60+3x=-4,整理得:7x=56,解得:x=8;(2)去分母得:3(3x-1)-12=2(5x-7),去括号得:9x-3-12=10x-14,移项得:9x-10x=-14+3+12,合并同类项得:-x=1,方程两边除以-1得:x=-1.【解析】(1)方程去括号后,移项合并,将x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解.21.【答案】解:(1)移项得:x+5x=2+4,合并得:6x=6,解得:x=1;(2)去括号得:4x-60+3x=5x-140+7x,移项得:4x+3x-5x-7x=-140+60,合并得:-5x=-80,解得:x=16;(3)去分母得:36+2x=24-6x,移项得:2x+6x=24-36,合并得:8x=-12,解得:x=-1.5;(4)方程整理得:=+,去分母得:48x+54=15x+75+30x-20,移项得:48x-15x-30x=75-20-54,合并得:3x=1,解得:x=.【解析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.22.【答案】解:(1)设该商品的成本价为x元,根据题意,得8%x=1800×90%-x解得x=1500,答:该商品的成本价为1500元.(2)1500×8%=120(元),97200÷(1500+120)-97200÷1800=60-54=6.答:要使该商品销售额达到97200,降价后的销售数量应该比降价前多6.【解析】本题主要考查一元一次方程的应用.根据题意找到合适的等量关系,列出方程即可求解.(1)该商品的成本价为x元,根据售价-成本价=利润列出方程,解方程即可;(2)先根据成本价×利润率=利润,即可求出降价后的价格,根据总价÷单价=数量进行计算即可.23.【答案】50;50%【解析】解:(1)(80-30)=50(元)(60-40)÷40=50%.故答案为:50,50%;(2)设该商场购进甲种商品x件,根据题意可得:50x+40(50-x)=2100,解得:x=10;乙种商品:50-10=40(件).答:该商场购进甲种商品10件,乙种商品40件.(3)根据题意得,第一天只购买甲种商品,享受了9折优惠条件,∴360÷0.9÷80=5件第二天只购买乙种商品有以下两种情况:情况一:购买乙种商品打九折,432÷90%÷60=8件;情况二:购买乙种商品打八折,432÷80%÷60=9件.一共可购买甲、乙两种商品5+8=13件或5+9=14件.答:小聪这两天在该商场购买甲、乙两种商品一共13或14件.(1)根据商品利润率=,可求每件甲种商品利润率,乙种商品每件进价;(2)首先设出购进甲商品的件数,然后根据“同时购进甲、乙两种商品共50件”表示出购进乙商品的件数;然后根据“恰好用去2100元”列方程求出未知数的值,即可得解;(3)第一天的总价为360元,享受了9折,先算出原价,然后除以单价,得出甲种商品的数量;第二天的也可能享受了9折,也可能享受了8折.应先算出原价,然后除以单价,得出乙种商品的数量.考查了一元一次方程的应用,解题的关键是理解题意,学会构建方程解决问题,属于中考常考题型.24.【答案】解:设从乙班抽调了x人参加了敬老活动.根据题意列方程,得35-(x-3)=2(26-x).解方程得:x=20.答:从乙班抽调了20人参加了这次敬老活动.【解析】本题考查了一元一次方程的应用,解答本题的关键是读懂题意,找出等量关系,列方程求解.设从乙班抽调了x人,那么从甲班抽调了(x-3)人,根据抽调之后甲班剩余人数恰好是乙班剩余人数的2倍,列方程求解.人教版七年级数学上册第三章《一元一次方程》单元检测试题(有答案)一、选择题1.下列四个式子中,是一元一次方程的是( )A .1+2+3+4=10B .2x -3 C.x -13=x 2+1 D .x +3=y 2.若关于x 的方程x m -1+2m +1=0是一元一次方程,则这个方程的解是( )A.-5B.-3C.-1D.53. 下列方程属于一元一次方程的是( )A. 1x-1=0 B. 6x +1=3y C. 3m =2 D. 2y 2-4y +1=0 4.关于x 的方程2(x -2)-3(4x -1)=9,下面解答正确的是( )A . 2x -4-12x +3=9,-10x =9+4-3=10,x =1B . 2x -4-12x +3=9,-10x =10,x =-1C . 2x -4-12x -3=9,-10x =2,x =−D . 2x -2-12x +1=9,-10x =10,x =15.设有x 个人共种m 棵树苗,如果每人种8棵,则剩下2棵树苗未种,如果每人种10棵,则缺6棵树苗.根据题意,列方程正确的是( )A .-2=+6B .+2=-6C .D .6.下列等式变形正确的是( )A.若a =b ,则a -3=3-bB.若x =y ,则x a =y aC.若a =b ,则ac =bcD.若b a =d c,则b =d 7. 已知||3x -y =0,||x =1,则y 的值等于( )A. 3或-3B. 1或-1C. -3D. 38.关于x 的方程5x 3m =2的解是x =m ,则m 的值是( )A .1B . 1C .2D . 29.两地相距600千米,甲、乙两车分别从两地同时出发相向而行,甲比乙每小时多行10千米,4小时后两车相遇,则乙的速度是( )A.70千米/时B.75千米/时C.80千米/时D.85千米/时10.元旦节日期间,百货商场为了促销,对某种商品按标价的8折出售,仍获利160元,若商品的标价为2200元,那么它的成本为( )A . 1600元B . 1800元C . 2000元D . 2100元11.图①为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为( )A.2314B.3638C.42D.4412. 某同学在解关于x 的方程3a -x =13时,误将“-x ”看成“x ”,从而得到方程的解为x =-2,则原方程正确的解为( )A.x =-2B.x =-12C.x =12D.x =2 二、填空题13.若-x n +1与2x 2n -1是同类项,则n = .14.. 三个连续偶数的和是60,那么这三个数分别是 - .15.一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,则原来的两位数是 .16.对于两个非零的有理数a ,b ,规定a ☆b =12b -13a ,若x ☆3=1,则x 的值为________. 17.图①是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图②所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm 3.18.某汽车以20米/秒的速度在公路上行驶,开向寂静的山谷,驾驶员按一下喇叭,5秒后听到回声,这时汽车离山谷多远?已知在空气中声音的传播速度约为340米/秒.设按喇叭时,汽车离山谷y 米,根据题意,可列方程为______________.19.七年级三班发作业本,若每人发4本,则剩余12本;若每人发5本,则少18本,那么该班有 名学生.20.一列方程如下排列:=1的解是x=2;=1的解是x=3;=1的解是x=4;…根据观察得到的规律,解是x=7的方程是三、解答题21.解下列方程:(1)4x -3(12-x )=6x -2(8-x ); (2)2x -13-2x -34=1;(3)7x -13-5x +12=2-3x +24; (4)2x 0.3-1.6-3x 0.6=31x +83.22. (1)如果方程2x +a =x -1的解是x =4,求2a +3的值;(2)已知等式(a -2)x 2+(a +1)x -5=0是关于x 的一元一次方程,求这个方程的解.23.在校运动会中,志愿者们手上、脖子上的丝巾非常美丽.车间70名工人承接了制作丝巾的任务,已知每人每天平均生产手上的丝巾1800条或者脖子上的丝巾1200条,一条脖子上的丝巾要配两条手上的丝巾.为了使每天生产的丝巾刚好配套,应分配多少名工人生产脖子上的丝巾,多少名工人生产手上的丝巾?24.如图,一块长5厘米、宽2厘米的长方形纸板,一块长4厘米、宽1厘米的长方形纸板,与一块正方形纸板以及另两块长方形纸板,恰好拼成一个大正方形.问大正方形的面积是多少?25.某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?26.一项筑路工程,甲队单独完成需要80天,乙队单独完成需要120天.(1)求甲,乙两队每天的工作量之比;(2)若甲队每天比乙队多筑路50 m,求这项工程共需筑路多少米?27.某商店5月1日当天举行优惠促销活动,当天到该商店购买商品有两种优惠方案:方案1:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的八折优惠;方案2:若不购买会员卡,则购买商店内任何商品,一律按商品价格的九五折优惠.已知小红5月1日前不是该商店的会员.(1)若小红不购买会员卡,所购买商品的总价格为120元,则实际应支付多少元?(2)请问购买商品的总价格是多少时,两种方案的优惠情况相同?(3)你认为哪种方案更合算?(直接写出答案)参考答案一、1. C 2. A. 3. C 4. B 5 C. 6. C 7. D 8. B 9. A 10. A 11. C 12. D二、13.214. 18,20,22 .15.4816. 3 217.100018.2y-100=1 700 19.3020.=1三、21.解:(1)x=-20. (2)x=7 2.(3)去分母,得4(7x-1)-6(5x+1)=2×12-3(3x+2),去括号,得28x -4-30x -6=24-9x -6,移项,得28x -30x +9x =24+6+4-6,合并同类项,得7x =28,系数化为1,得x =4.(4)原方程可化为20x 3-16-30x 6=31x +83.去分母,得40x -(16-30x )=2(31x +8).去括号,得40x -16+30x =62x +16.移项,得40x +30x -62x =16+16.合并同类项,得8x =32. 系数化为1,得x =4.22.解:(1)把x =4代入方程,得8+a =4-1.解得a =-5.所以2a +3=2×(-5)+3=-7.(2)由题意,得a -2=0且a +1≠0.解得a =2,即方程为3x -5=0.解得x =53. 23. 解:设应分配x 名工人生产脖子上的丝巾,则(70-x )名工人生产手上的丝巾.根据题意,得1800(70-x )=2×1200x , 解得x=30,70-x=70-30=40.答:应分配30名工人生产脖子上的丝巾,40名工人生产手上的丝巾.24.解:设大正方形的边长为x 厘米,由题图可得x -2-1=4+5-x ,解得x =6,则6×6=36(平方厘米).所以大正方形的面积为36平方厘米.25.解:设甲种票买了x 张,则乙种票买了(35-x )张,(2分)依题意有24x +18(35-x )=750,解得x =20.则35-x =15.(8分) 甲种票买了20张,乙种票买了15张.26.解:(1)甲,乙两队的筑路时间之比为80∶120=2∶3,所以甲,乙两队每天筑路工作量之比为3∶2.(2)设乙队每天筑路x m ,则甲每天筑路(x +50)m.依题意,得80(x +50)=120x .解得x =100.故120x =12 000(m).这项工程共需筑路12 000 m.27.解:(1)120×0.95=114(元).故实际应支付114元.(2)设小红所购买商品的总价格为x 元,依据题意,得0.8x +168=0.95x ,解得x =1 120.故当购买商品的总价格是1 120元时,两种方案的优惠情况相同.(3)当购买商品的总价格低于1 120元时,方案2更合算;当购买商品的总价格等于1 120元时,两种方案的花费相同;当购买商品的总价格大于1 120元时,方案1更合算.人教版七年级上册第三章一元一次方程单元测试卷(3)一、选择题(每小题3分,共30分)1把方程3x +2x -13=3-x +12去分母正确的是( ) A.18x +2(2x -1)=18-3(x +1) B.3x +(2x -1)=3-(x +1)C.18x +(2x -1)=18-(x +1)D.3x +2(2x -1)=3-3(x +1)2.若关于x 的方程x m -1+2m +1=0是一元一次方程,则这个方程的解是( ) A.-5 B.-3 C.-1 D.53.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为( )A.518=2(106+x )B.518-x =2×106C.518-x =2(106+x )D.518+x =2(106-x )4.下列方程是一元一次方程的是( )A.x -2=3B.1+5=6C.x 2+x =1D.x -3y =05.方程2x +3=7的解是( )A.x =5B.x =4C.x =3.5D.x =26.下列等式变形正确的是( )A.若a =b ,则a -3=3-bB.若x =y ,则x a =y aC.若a =b ,则ac =bcD.若b a =d c,则b =d 7.小马虎在做作业,不小心将方程中的一个常数污染了,被污染的方程是2(x -3)-■=x +1,怎么办呢?他想了想便翻看书后的答案,方程的解是x =9,请问这个被污染的常数是( )A.1B.2C.3D.48.长沙红星大市场某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%.现如果按同一标价打九折销售该电器一件,那么获得的纯利润为( )A.562.5元B.875元C.550元D.750元9.两地相距600千米,甲、乙两车分别从两地同时出发相向而行,甲比乙每小时多行10千米,4小时后两车相遇,则乙的速度是( )A.70千米/时B.75千米/时C.80千米/时D.85千米/时10.图①为一正面白色、反面灰色的长方形纸片.今沿虚线剪下分成甲、乙两长方形纸片,并将甲纸片反面朝上粘贴于乙纸片上,形成一张白、灰相间的长方形纸片,如图②所示.若图②中白色与灰色区域的面积比为8∶3,图②纸片的面积为33,则图①纸片的面积为( )A.2314B.3638C.42D.44二、填空题(每小题3分,共24分)11.方程3x -3=0的解是 .12.若-x n +1与2x 2n -1是同类项,则n = .13.已知多项式9a +20与4a -10的差等于5,则a 的值为 .14.若方程x +2m =8与方程2x -13=x +16的解相同,则m = . 15.在有理数范围内定义一种新运算“⊕”,其运算规则为:a ⊕b =-2a +3b ,如:1⊕5=-2×1+3×5=13,则方程x ⊕4=0的解为 .16.七年级三班发作业本,若每人发4本,则剩余12本;若每人发5本,则少18本,那么该班有 名学生.17.某商场有一款春季大衣,如果打八折出售,每件可盈利200元,如果打七折出售,每件还可以盈利50元,那么这款大衣每件的标价是 元.18.图①是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图②所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm 3.三、解答题(共66分)19.(15分)解下列方程:(1)4x -3(12-x )=6x -2(8-x ); (2)2x -13-2x -34=1;(3)12x +2⎝⎛⎭⎫54x +1=8+x .20.(8分)已知3+a 2与-13(2a -1)-1互为相反数,求a 的值.21.(9分)某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?22.(10分)如图是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完全收缩后,鱼竿长度即为第1节套管的长度(如图①所示).使用时,可将鱼竿的每一节套管都完全拉伸(如图②所示).图③是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图.已知第1节套管长50cm ,第2节套管长46cm ,以此类推,每一节套管均比前一节套管少4cm.完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为x cm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.23.(12分)为举办校园文化艺术节,甲、乙两班准备给合唱同学购买演出服装(一人一套),两班共92人(其中甲班比乙班人多,且甲班不到90人),下面是供货商给出的演出服装的价格表:如果两班单独给每位同学购买一套服装,那么一共应付5020元.(1)甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省多少钱?(2)甲、乙两班各有多少名同学?24.(12分)把正整数1,2,3,4,…,2017排列成如图所示的一个数表.(1)用一正方形在表中随意框住4个数,把其中最小的数记为x,另三个数用含x的式子表示出来,从大到小依次是,,;(2)当被框住的4个数之和等于416时,x的值是多少?(3)被框住的4个数之和能否等于622?如果能,请求出此时x的值;如果不能,请说明理由.参考答案与解析1.A 2.A 3.C 4.A 5.D 6.C 7.B 8.B 9.A10.C 解析:设图②中白色区域的面积为8x ,灰色区域的面积为3x ,由题意,得8x +3x =33,解得x =3.∴灰色部分面积为3×3=9,图①的面积为33+9=42.故选C.11.x =1 12.2 13.-5 14.7215.x =6 16.30 17.1500 18.100019.解:(1)x =-20.(5分)(2)x =72.(10分) (3)x =3.(15分)20.解:由题意,得3+a 2+⎣⎡⎦⎤-13(2a -1)-1=0,(4分)解得a =5.(8分) 21.解:设甲种票买了x 张,则乙种票买了(35-x )张,(2分)依题意有24x +18(35-x )=750,(6分)解得x =20.则35-x =15.(8分)答:甲种票买了20张,乙种票买了15张.(9分)22.解:(1)第5节套管的长度为50-4×(5-1)=34(cm).(2分)(2)第10节套管的长度为50-4×(10-1)=14(cm),(4分)因为每相邻两节套管间重叠的长度为x cm ,根据题意得(50+46+42+…+14)-9x =311,(7分)即320-9x =311,解得x =1.(9分)答:每相邻两节套管间重叠的长度为1cm.(10分)23.解:(1)由题意,得5020-92×40=1340(元).(4分)答:甲、乙两班联合起来给每位同学购买一套服装,比单独购买可以节省1340元.(5分)(2)设甲班有x 名同学准备参加演出(依题意46<x <90),则乙班有(92-x )名.依题意得50x +60(92-x )=5020,解得x =50,92-x =42(名).(11分)答:甲班有50名同学,乙班有42名同学.(12分)24.解:(1)x +8 x +7 x +1(3分)(2)由题意,得x +x +1+x +7+x +8=416,解得x =100.(7分)(3)不能,(8分)因为当4x +16=622,解得x =15112,不为整数.(12分)。
七年级数学上册 一元一次方程单元测试卷 (word版,含解析)

一、初一数学一元一次方程解答题压轴题精选(难)1.某食品厂从生产的袋装食品中抽出样品若干袋,用以检测每袋的质量是否符合标准,超过或不足标准质量的部分用正数或负数来表示(单位:克),记录如下表:(2)若每袋的标准质量为50克,每克的生产成本2元,求这批样品的总成本.【答案】(1)解:设被墨水涂污了的数据为x,则0.5×2+0.8×1+0.6×3+(﹣0.4)×2+(﹣0.7)x=1.4,解得:x=2,故这个数据为2(2)解:[50+1.4÷(2+1+3+2+2)]×(2+1+3+2+2)×2=1002.8元,答:这批样品的总成本是1002.8元【解析】【分析】(1)设被墨水涂污了的数据为x,根据题意列方程,即可得到结论;(2)根据题意计算计算即可.2.某航空公司开展网络购机票优惠活动:凡购机票每张不超过2000元的一律八折优惠;超过2000元的,其中2000元按八折算,超过2000的部分按七折算.(1)甲旅客购买了一张机票的原价为1500元,需付款________元;(2)乙旅客购买了一张机票的原价为x(x>2000)元,需付款________元(用含x的代数式表示);(3)丙旅客因出差购买了两张机票,第一张机票实际付款1440元,第二张机票享受了七折优惠,他査看了所买机票的原价,发现两张票共节约了910元,求丙旅客第二张机票的原价和实际付款各多少元?【答案】(1)1200(2)0.7x+200(3)解:第一张机票的原价为1440÷0.8=1800(元).设丙旅客第二张机票的原价为y元,则购买两种票实际付款(1800+y-910)元,根据题意得:1440+0.7y+200=1800+y-910,解得:y=2500,∴1800+y-910-1440=1950.答:丙旅客第二张机票的原价为2500元,实际付款1950元【解析】【解答】解:(1)1500×0.8=1200(元).故答案为:1200.(2)根据题意得:需付款=2000×0.8+(x-2000)×0.7=0.7x+200(元).故答案为:(0.7x+200).【分析】(1)利用需付款=原价×0.8,即可求出结论;(2)根据需付款=2000×0.8+0.7×超出2000元部分,即可求出结论;(3)根据原价=需付款÷0.8可求出第一张机票的原价,设丙旅客第二张机票的原价为y元,则购买两种票实际付款(1800+y-910)元,根据(2)的结论,即可得出关于y的一元一次方程,解之即可得出结论.3.仔细阅读下列材料.“分数均可化为有限小数或无限循环小数”,反之,“有限小数或无限小数均可化为分数”.例如: =1÷4=0.25; = =8÷5=1.6; =1÷3= ,反之,0.25= = ;1.6= = = .那么,怎么化成分数呢?解:∵ ×10=3+ ,∴不妨设 =x,则上式变为10x=3+x,解得x= ,即 = ;∵ = ,设 =x,则上式变为100x=2+x,解得x= ,∴ = =1+x=1+ =(1)将分数化为小数: =________, =________;(2)将小数化为分数:=________;=________。
一元一次方程单元测试卷 (word版,含解析)

一、初一数学一元一次方程解答题压轴题精选(难)1.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,(1)写出数轴上点B表示的数________;(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x-3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.试探索:①:若|x-8|=2,则x =________.②:|x+12|+|x-8|的最小值为________.(3)动点P从O点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,A,P两点之间的距离为2;(4)动点P,Q分别从O,B两点,同时出发,点P以每秒5个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.【答案】(1)﹣12(2)6或10;0(3)1.2或2(4)3.2或1.6【解析】【解答】(1)数轴上B表示的数为8-20=﹣12;(2)①因为互为相反数的两个数绝对值相同,所以由│x-8│=2可得x-8=2或﹣(x-8)=2,解得x=6或10;②因为绝对值最小的数是0,所以│x+12│+│x-8│的最小值是0;(3)根据│A点在数轴上的位置-t秒后P点在数轴上的位置│=A、P两点间的距离列式得│8-5t│=2,因为互为相反数的两个数绝对值相同,所以8-5t=2或﹣(8-5t)=2,解得t=1.2或2;(4)根据t秒后Q点在数轴上的位置-t秒后P点在数轴上的位置│=t秒后P,Q的距离列式得│﹣12+10t-5t│=4,因为互为相反数的两个数绝对值相同,所以﹣12+10t-5t=4或﹣(﹣12+10t-5t)=4,解得t=3.2或1.6.【分析】(1)抓住已知条件:B是数轴上位于点A左侧一点,且AB=20,且点A表示的数是8,就可求出OB的长,从而可得出点B表示的数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学一元一次方程解答题压轴题精选(难)1.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,(1)写出数轴上点B表示的数________;(2)|5-3|表示5与3之差的绝对值,实际上也可理解为5与3两数在数轴上所对的两点之间的距离.如|x-3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.试探索:①:若|x-8|=2,则x =________.②:|x+12|+|x-8|的最小值为________.(3)动点P从O点出发,以每秒5个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,A,P两点之间的距离为2;(4)动点P,Q分别从O,B两点,同时出发,点P以每秒5个单位长度沿数轴向右匀速运动,Q点以P点速度的两倍,沿数轴向右匀速运动,设运动时间为t(t>0)秒.当t=________,P,Q之间的距离为4.【答案】(1)﹣12(2)6或10;0(3)1.2或2(4)3.2或1.6【解析】【解答】(1)数轴上B表示的数为8-20=﹣12;(2)①因为互为相反数的两个数绝对值相同,所以由│x-8│=2可得x-8=2或﹣(x-8)=2,解得x=6或10;②因为绝对值最小的数是0,所以│x+12│+│x-8│的最小值是0;(3)根据│A点在数轴上的位置-t秒后P点在数轴上的位置│=A、P两点间的距离列式得│8-5t│=2,因为互为相反数的两个数绝对值相同,所以8-5t=2或﹣(8-5t)=2,解得t=1.2或2;(4)根据t秒后Q点在数轴上的位置-t秒后P点在数轴上的位置│=t秒后P,Q的距离列式得│﹣12+10t-5t│=4,因为互为相反数的两个数绝对值相同,所以﹣12+10t-5t=4或﹣(﹣12+10t-5t)=4,解得t=3.2或1.6.【分析】(1)抓住已知条件:B是数轴上位于点A左侧一点,且AB=20,且点A表示的数是8,就可求出OB的长,从而可得出点B表示的数。
(2)①根据|x-8|=2,可得出x-8=±2,解方程即可求出x的值;根据因为绝对值最小的数是0,因此可得出│x+12│+│x-8│的最小值是0。
(3)根据A,P两点之间的距离为2,可列出方程│8-5t│=2,再解方程求出t的值。
(4)根据t秒后Q点在数轴上的位置-t秒后P点在数轴上的位置│=t秒后P,Q的距离,可得出方程│﹣12+10t-5t│=4,再利用绝对值等于4的是为±4,可列出﹣12+10t-5t=±4,解方程求出t的值即可。
2.如图,数轴上 A、B 两点所对应的数分别是 a 和 b,且(a+5)2+|b﹣7|=0.(1)求 a,b;A、B 两点之间的距离.(2)有一动点 P 从点 A 出发第一次向左运动 1 个单位长度,然后在新的位置第二次运动,向右运动2个单位长度,在此位置第三次运动,向左运动3个单位长度…按照如此规律不断地左右运动,当运动到 2019次时,求点P所对应的数.(3)在(2)的条件下,点P在某次运动时恰好到达某一个位置,使点P到点B的距离是点 P 到点 A 的距离的3倍?请直接写出此时点 P所对应的数,并分别写出是第几次运动.【答案】(1)解:∵(a+5)2+|b﹣7|=0,∴a+5=0,b﹣7=0,∴a=﹣5,b=7;∴A、B两点之间的距离=|﹣5|+7=12;(2)解:设向左运动记为负数,向右运动记为正数,依题意得:﹣5﹣1+2﹣3+4﹣5+6﹣7+…+2018﹣2019=﹣5+1009﹣2019=﹣1015.答:点P所对应的数为﹣1015(3)解:设点P对应的有理数的值为x,①当点P在点A的左侧时:PA=﹣5﹣x,PB=7﹣x,依题意得:7﹣x=3(﹣5﹣x),解得:x=﹣11;②当点P在点A和点B之间时:PA=x﹣(﹣5)=x+5,PB=7﹣x,依题意得:7﹣x=3(x+5),解得:x=﹣2;③当点P在点B的右侧时:PA=x﹣(﹣5)=x+5,PB=x﹣7,依题意得:x﹣7=3(x+5),解得:x=﹣11,这与点P在点B的右侧(即 x>7)矛盾,故舍去.综上所述,点P所对应的有理数分别是﹣11和﹣2.所以﹣11和﹣2分别是点P运动了第11次和第6次到达的位置.【解析】【分析】(1)由绝对值和平方的非负性可得a与b的值,相减得两点间的距离。
(2)设向左运动记为负数,向右运动记为正数,并在-5的基础上把得到的数据相加即可。
(3)设点P对应的有理数的值为x,分别表示PA和PB的长,列方程求解即可。
3.已知关于a的方程2(a+2)=a+4的解也是关于x的方程2(x-3)-b=7的解.(1)求a、b的值;(2)若线段AB=a,在直线AB上取一点P,恰好使 =b,点Q为PB的中点,请画出图形并求出线段AQ的长.【答案】(1)解:2(a-2)=a+4,2a-4=a+4a=8,∵x=a=8,把x=8代入方程2(x-3)-b=7,∴2(8-3)-b=7,b=3(2)解:①如图:点P在线段AB上,=3,AB=3PB,AB=AP+PB=3PB+PB=4PB=8,PB=2,Q是PB的中点,PQ=BQ=1,AQ=AB-BQ=8-1=7,②如图:点P在线段AB的延长线上,=3,PA=3PB,PA=AB+PB=3PB,AB=2PB=8,PB=4,Q是PB的中点,BQ=PQ=2,AQ=AB+BQ=8+2=10.所以线段AQ的长是7或10.【解析】【分析】(1)根据题意可得两个方程的解相同,所以根据第一个方程的解,可求出第二个方程中的b。
(2)分类讨论,P在线段AB上,根据,可求出PB的长,再根据中点的性质可得PQ的长,最后根据线段的和差可得AQ;P在线段AB的延长线上,根据,可求出PB的长,再根据中点的性质可得BQ的长,最后根据线段的和差可得AQ.4.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.(1)阅读下列材料:问题:利用一元一次方程将化成分数.设.由,可知,即.(请你体会将方程两边都乘以10起到的作用)可解得,即.填空:将写成分数形式为________ .(2)请仿照上述方法把小数化成分数,要求写出利用一元一次方程进行解答的过程.【答案】(1)(2)解:设 =m,方程两边都乘以100,可得100× =100x由=0.7373…,可知100× =73.7373…=73+0.73即73+x=100x可解得x= ,即 =【解析】【分析】解:(1)设0.4˙=x,则4+x=10x,∴x= .故答案是:;(2)理解该材料的关键在于:将循环小数扩大的倍数在于循环小数的循环节,释放一个循环节后,循环小数的大小仍不变.5.甲、乙两班学生到集市上购买苹果,苹果的价格如下:购苹果数不超过10千克超过10千克但不超过20千克超过20千克每千克价格10元9元8元苹果30千克.(1)乙班比甲班少付出多少元?(2)设甲班第一次购买苹果x千克.①则第二次购买的苹果为多少千克;②甲班第一次、第二次分别购买多少千克?【答案】(1)解:乙班购买苹果付出的钱数=8×30=240元,∴乙班比甲班少付出256-240=16元(2)解:①甲班第二次购买的苹果为(30-x)千克;②若x≤10,则10x+(30-x)×8=256,解得:x=8若10<x≤15,则9x+(30-x)×9=256无解.故甲班第一次购买8千克,第二次购买22千克【解析】【分析】(1)根据20kg以上每千克的价格为8元可求出乙班付出的钱数,从而可求出乙班比甲班少付出多少.(2)设甲班第一次购买x千克,第二次购买30-x千克,则需要讨论①x≤10,②10<x≤15,列出方程后求解即可得出答案.6.某旅行社组织一批游客外出旅游,原计划根用45座客车若干辆,但有15人没有座位:若租用同样数量的60座客年,则多出一辆车无人坐,且其余客车恰好坐满。
已知45座客车租金为每辆220元,60座客车租金为每辆300元,问:(1)这批游客的人数是多少?原计划租用多少辆45座客车?(2)若租用同一种车,要使每位游客都有座位,应该怎样租用才合算?【答案】(1)解:设原计划租用x辆45座客年根据题意,得45x+15=60(x-1)解得x=5则45x+15=45×5+15=240.答:这批游客共240人,原计划租5辆45座客车。
(2)解:租45座客车:240÷45≈5.3(辆),所以需租6辆,租金为220×6=1320(元).租60座客车:240÷60=4(辆),租念为300×4=1200(元).答:租用4辆60座客车更合算。
【解析】【分析】(1)设原计划租用x辆45座客车,根据等量关系,列出方程,求出x 的值,进而求出游客的人数,即可;(2)分别求出租45座的车和60座的车的费用,进行比较,即可.7.一根长80厘米的弹簧,一端固定,如果另一端挂上物体,那么在正常情况下物体的质量每增加1千克可使弹簧增长2厘米。
(1)正常情况下,当挂着千克的物体时,弹簧的长度是多少厘米?(2)正常情况下,当挂物体的质量为6千克时,弹簧的长度是多少厘米?(3)正常情况下,当弹簧的长度是120厘米时,所挂物体的质量是多少千克?(4)如果弹簧的长度超过了150厘米时,弹簧就失去弹性,问此弹簧能否挂质量为40千克的物体?为什么?【答案】(1)解:由题意得:y=80+2x,答:弹簧的长度是(80+2x)厘米(2)解:∵y=80+2x,∴当x=6时,y=80+2×6=92,答:弹簧的长度是92厘米(3)解:∵y=80+2x,∴当y=120时,120=80+2x,∴x=20,答:所挂物体的质量是20千克。
(4)解:∵y=80+2x,∴当x=40时,y=80+2×40=160(厘米)>150(厘米)∴此弹簧不能挂质量为40千克的物体.【解析】【分析】(1)由题意,物体的质量每增加1千克可使弹簧增长2厘米,于是可知物体的质量与弹簧的长度有关系.弹簧的长度=弹簧的原长+伸长的长度;弹簧伸长的长度=物体的质量×2厘米;根据这个关系可求解;(2)把x=6代入(1)中的关系式计算即可求解;(3)把y=120代入(1)中的关系式计算即可求解;(4)同理可求解.8.某县外出的农民工准备集体包车回家过春节,如果单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可少租1辆,且余15个座位.(1)求准备包车回家过春节的农民工人数;(2)已知租用45座客车的租金为每辆车5000元,60座客车的租金为每辆车6000元,问租用哪种客车更合算?请说明理由.【答案】(1)解:设需单独租45座客车x辆,依题意得45x=60(x-1)-15解这个方程,得 x=5则45x=45×5=225答:准备回家过春节的农民工有225人(2)解:由(1)知,需租5辆45座客车或4辆60座客车;而租5辆45座客车的费用为 5×5000=25000(元),租4辆60座客车的费用为4×6000=24000(元).故,租4辆60座客车更合算【解析】【分析】(1)设需单独租45座客车x辆,根据单独租用45座客车若干辆,刚好坐满;如果单独租用60座客车,可少租1辆,且余15个座位列出方程解出答案即可;(2)根据(1)知,需租5辆45座客车或4辆60座客车和租用45座客车的租金为每辆车5000元,60座客车的租金为每辆车6000元,求出答案即可。