相交线与平行线易错点剖析知识讲解

合集下载

相交线与平行线知识点整理

相交线与平行线知识点整理

相交线与平行线知识点整理相交线和平行线是几何学中的基本概念,是研究点、直线、平面之间的关系的重要内容。

下面是关于相交线和平行线的详细知识整理。

一、相交线的定义和性质:1.相交线的定义:当两条线或两条线段在空间中共有一个交点时,我们称这两条线或线段为相交的。

2.相交线的性质:(1)两条相交线必有且只有一个交点。

(2)相交线的交点在两条相交线上。

(3)相交线可以分割平面为两个部分。

(4)相交线可以交换位置,即线的交点不变。

(5)相交线的角度和弧度可以相互转化。

二、平行线的定义和性质:1.平行线的定义:在同一个平面上,两条直线如果没有交点,则称这两条直线为平行线。

2.平行线的性质:(1)平行线永不相交。

(2)平行线的夹角为0度。

(3)平行线在任何一点上的垂直线也是平行线。

(4)如果两条直线分别与一条直线相交,且对应的内角或同旁内角互补,则这两条直线是平行线。

(5)平行线与一个截线相交,对应角相等。

三、相交线与平行线之间的关系:1.两条相交线切割出的平行线性质:(1)两条相交线切割出的平行线长度相等。

(2)两条相交线切割出的平行线夹角相等。

(3)两条相交线切割出的平行线互相垂直。

2.平行线夹角关系:(1)两条平行线被一条截线切割,对应角相等。

(2)两条平行线被两条截线交叉切割,对应角互补。

四、平行线的判断方法:1.距离判定法:两条直线上一点到另一直线上的距离相等,则这两条直线平行。

2.角度判定法:如果两条直线上的任意一组对应角相等,则这两条直线平行。

3.线段比较法:两条平行线上两对相交线段的比值相等。

五、相交线和平行线的应用:1.在建筑设计中,平行线用于调整房屋结构的直角度量。

2.在交通规划中,相交线和平行线用于规划道路的交叉口和分隔带。

3.在地理学中,相交线和平行线用于绘制地图上的经纬线和等高线。

4.在数学教学中,相交线和平行线可以帮助学生理解几何概念,并解决相关问题。

总结:相交线和平行线是几何学中的基本概念,对于点、直线、平面的研究具有重要意义。

相交线与平行线考点及题型总结

相交线与平行线考点及题型总结

相交线与平行线考点及题型总结第一节 相交线一、知识要点:(一)当同一平面内的三条直线相交时,有三种情况:一种是只有一个交点;一种是有两个交点,即两条直线平行被第三条直线所截;还有一种是三个交点,即三条直线两两相交。

(二)余角、补角、对顶角1、余角:如果两个角的和是直角,那么称这两个角互为余角.2、补角:如果两个角的和是平角,那么称这两个角互为补角.3、对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.4、互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余;反过来,若∠1,∠2互余,则∠1+∠2=90°;②同角或等角的余角相等,如果∠l 十∠2=90°,∠1+∠ 3=90°,则∠2=∠3.5、互为补角的有关性质:①若∠A +∠B =180°,则∠A 、∠B 互补;反过来,若∠A 、∠B 互补,则∠A +∠B =180°.②同角或等角的补角相等.如果∠A +∠C =180°,∠A +∠B =180°,则∠B =∠C .6、对顶角的性质:对顶角相等.(三)垂直:相交的一种特殊情况是垂直,两条直线交角成90 。

1、经过直线外一点,作直线垂线,有且只有一条; 2、点到直线上各点的距离中,垂线段最短。

(四)两条直线被第三条直线所截,产生两个交点,形成了八个角(不可分的):1、同位角:没有公共顶点的两个角,它们在直线AB,CD 的同侧,在第三条直线EF 的同旁(即位置相同),这样的一对角叫做同位角;2、内错角:没有公共顶点的两个角,它们在直线AB,CD 之间,在第三条直线EF 的两旁(即位置交错),这样的一对角叫做内错角;3、同旁内角:没有公共顶点的两个角,它们在直线AB,CD 之间,在第三条直线EF 的同旁,这样的一对角叫做同旁内角;二、题型分析: 题型一:列方程求角例1:一个角的余角比它的补角的21少20°.则这个角为 ( ) A 、30° B 、40° C 、60° D 、75° 答案:B分析:若设这个角为x ,则这个角的余角是90°-x ,补角是180°-x ,于是构造出方程即可求解 求解:设这个角为x ,则这个角的余角是90°-x ,补角是180°-x .则根据题意,得21(180°-x )-(90°-x )=20° ; 解得:x =40°. 故应选B . 说明:处理有关互为余角与互为补角的问题,除了要弄清楚它们的概念,通常情况下还要引进未知数,构造方程求解.习题演练:1、如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30 ,那么这两个角是( )A 、42138、 B 、都是10 C 、42138、或4210、 D 、以上都不对 答案:A分析:两个条件可以确定两个角互补,列方程即可解得A 。

相交线与平行线考点及题型总结

相交线与平行线考点及题型总结

相交线与平行线考点及题型总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII相交线与平行线考点及题型总结第一节相交线一、知识要点:(一)当同一平面内的三条直线相交时,有三种情况:一种是只有一个交点;一种是有两个交点,即两条直线平行被第三条直线所截;还有一种是三个交点,即三条直线两两相交。

(二)余角、补角、对顶角1、余角:如果两个角的和是直角,那么称这两个角互为余角.2、补角:如果两个角的和是平角,那么称这两个角互为补角.3、对顶角:如果两个角有公共顶点,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.4、互为余角的有关性质:①∠1+∠2=90°,则∠1、∠2互余;反过来,若∠1,∠2互余,则∠1+∠2=90°;②同角或等角的余角相等,如果∠l十∠2=90°,∠1+∠ 3=90°,则∠2=∠3.5、互为补角的有关性质:①若∠A+∠B=180°,则∠A、∠B互补;反过来,若∠A、∠B互补,则∠A+∠B=180°.②同角或等角的补角相等.如果∠A+∠C=180°,∠A+∠B=180°,则∠B=∠C.6、对顶角的性质:对顶角相等.(三)垂直:相交的一种特殊情况是垂直,两条直线交角成90 。

1、经过直线外一点,作直线垂线,有且只有一条;2、点到直线上各点的距离中,垂线段最短。

(四)两条直线被第三条直线所截,产生两个交点,形成了八个角(不可分的):1、同位角:没有公共顶点的两个角,它们在直线AB,CD的同侧,在第三条直线EF的同旁(即位置相同),这样的一对角叫做同位角;2、内错角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的两旁(即位置交错),这样的一对角叫做内错角;3、同旁内角:没有公共顶点的两个角,它们在直线AB,CD之间,在第三条直线EF的同旁,这样的一对角叫做同旁内角;二、题型分析: 题型一:列方程求角例1:一个角的余角比它的补角的21少20°.则这个角为 ( ) A 、30° B 、40° C 、60° D 、75° 答案:B分析:若设这个角为x ,则这个角的余角是90°-x ,补角是180°-x ,于是构造出方程即可求解求解:设这个角为x ,则这个角的余角是90°-x ,补角是180°-x .则根据题意,得21(180°-x )-(90°-x )=20° ; 解得:x =40°. 故应选B . 说明:处理有关互为余角与互为补角的问题,除了要弄清楚它们的概念,通常情况下还要引进未知数,构造方程求解.习题演练:1、如果两个角的两边分别平行,而其中一个角比另一个角的4倍少30 ,那么这两个角是( )A 、42138 、B 、都是10C 、42138 、或4210 、D 、以上都不对 答案:A分析:两个条件可以确定两个角互补,列方程即可解得A 。

人教版数学七年级下册第五章《平行线和相交线》易错点剖析

人教版数学七年级下册第五章《平行线和相交线》易错点剖析

《平行线与相交线》易错点剖析初学《平行线与相交线》,因知识不熟,理解不到位,掌握不准确,在应用解题时往往出现一些意想不到的错误,今天就让我们一起走进《平行线与相交线易错点剖析园》,识别错因,明确正解,做到清定义,会辨析,清条件,会使用,为将来新知识的学习奠定基础.一、概念模糊不清错选例1如图1,下列结论正确的是()A. ∠5和∠2是对顶角 B. ∠1和∠3是同位角C. ∠2和∠3是同旁内角D. ∠1和∠2是同旁内角错解:选A或选B.剖析:对对顶角的概念理解不清,对对顶角的两个角的两边互为反向延长线的意义理解不准,导致粗心而选择A;对同位角的认知不清,缺失图形感,从而导致错选B.正解:选D.二、使用条件不清错选例2若∠1和∠2是同旁内角,且∠1=45°,则∠2的度数为()A. 45° B. 135° C. 45°或 135° D. 不能确定错解:选B.剖析:一看到两个角是同旁内角,不管是否具备了“平行”的条件,就主观认为直线平行,偷梁换柱,默认直线是平行的,从而认为篡改题目要求,增加条目的条件,从而导致做出错误的选择.正解:如图2,∠1=45°,∠1和∠2是直线a,b被直线c所截,得到的一对同旁内角,当直线AC绕点A旋转时,只要不超越直线b,将始终满足给定的条件,但是却产生了无数个∠2,因此∠2的度数是无法确定,只有a∥c时,∠2的度数才为135°,这只是无数∠2中的一个,所以选D.三、审题不清错选例3如图3,点E在BC的延长线上,下列条件不能判断AB∥CD的是()A. ∠D+∠DAB=180°B. ∠1=∠2C. ∠B=∠DCED. ∠3=∠4错解:选A 或选B 或选C.剖析:解题时,不能全面,准确审题,断章取义,一看到平行线,就自认为是找判定平行的条件,从而导致错选.正解:选D.四、考虑不全,漏解致错例4 已知∠1的两边分别与∠2的两边平行,则∠1和∠2的关系是 . 错解:填∠1=∠2;填∠1+∠2=180°.剖析:解答时,首先任意作一个角记作∠1,后在平面内任意选择一个不同∠1顶点的位置,作为∠2的顶点,最后根据题意,画出符合条件的∠2的两条边,画图时,注意画全面即可. 正解:画图如图3所示,图中的∠2都是符合题意的角,因此∠1和∠2的关系是相等或互补.五、作图轨迹与要领不能正确对应致错例5 如图4,点C 在∠AOB 的边OB 上,用尺规做出了CN ∥OA ,作图痕迹中,弧FG 是( )A. 以点C 为圆心,OD 为半径的弧B. 以点C 为圆心,DM 为半径的弧C. 以点E 为圆心,OD 为半径的弧D. 以点E 为圆心,DM 为半径的弧错解:选A 或选B 或选C.剖析:此题的实质是作一个角等于已知角,作图时,清楚三段弧的圆心和半径是作图的关键.第一弧:以点O 为圆心,OM 为半径的弧,注意OM 的长是任意长,在确定时,要做到不要太短,不容易画图;不要太长,不容操作;第二弧:以点C 为圆心,OD 为半径的弧 ; 第三弧:以点E 为圆心,DM 为半径的弧,这里要确定恰好是第三弧,这样正确的答案就可以确定下来了.正解:选D.六、分类不全致错例6 已知直线1l ∥2l ,且3l 和1l 、2l 分别交于A 、B 两点,点P 在AB 上.直线PC 与直线1l 的夹角记作∠1,∠CPD 记作∠3,直线PD 与直线2l 的夹角记作∠2. 试找出∠1、∠2、∠3之间的关系并说出理由;错解:如图5,∠1、∠2、∠3之间的关系是:∠1+∠2=∠3.理由如下:过点P 作PE ∥1l ,因为1l ∥2l ,所以PE ∥1l ∥2l ,所以∠1=∠CPE ,∠2=∠DPE , 因为∠CPE +∠DPE =∠3,所以∠1+∠2=∠3.剖析:此题是一个典型的无图做题,在画图时,要根据题目的条件,准确确定点P 在直线AB 上的位置,应该有三种情况,一是点P 在线段AB 上;二是点P 在线段AB 的延长线上;三是点P 在线段BA 的延长线上,分类全面后,再逐一画图探解三角之间的关系. 正解:(1)当点P 在线段AB 上运动时,如图5,∠1、∠2、∠3之间的关系是:∠1+∠2=∠3. 理由如下:过点P 作PE ∥1l ,因为1l ∥2l ,所以PE ∥1l ∥2l ,所以∠1=∠CPE ,∠2=∠DPE , 因为∠CPE +∠DPE =∠3,所以∠1+∠2=∠3.(2)当点P 在线段AB 延长线上运动时,如图6,三者的关系是:∠1=∠2+∠3. 理由如下:如图6:过点P 作PE ∥1l ,因为1l ∥2l ,所以PE ∥1l ∥2l ,所以∠1=∠CPE ,∠2=∠DPE , 因为∠CPE -∠DPE =∠3,所以∠1-∠2=∠3即∠1=∠3+∠2;(3)当点P 在线段BA 延长线上运动时,如图7,三者的关系是:∠2=∠3+∠1. 理由如下:如图7:过点P 作PE ∥1l ,因为1l ∥2l ,所以PE ∥1l ∥2l ,所以∠1=∠CPE ,∠2=∠DPE ,因为∠DPE-∠CPE=∠3,所以∠2-∠1=∠3即∠2=∠3+∠1.练一练:1.已知同一平面内的三条直线a,b,c ,若a ⊥b,b ∥c,则a 与c ( )A. 平行B. 垂直C. 相交D. 重合2. 已知∠1的两边分别与∠2的两边互相垂直,则∠1和∠2的关系是 .3. 若两条平行线与第三条直线相交,那么一组同旁内角的平分线()A. 平行B. 垂直C. 相交D. 重合4. 若两条平行线与第三条直线相交,那么一组同位角的平分线()A. 平行B. 垂直C. 相交D. 重合5. 若两条平行线与第三条直线相交,那么一组内错角的平分线()A. 平行B. 垂直C. 相交D. 重合参考答案:1.B2. ∠1和∠2的关系是相等或互补.3.B4.A5.A.。

相交线与平行线易错题汇编附解析

相交线与平行线易错题汇编附解析

相交线与平行线易错题汇编附解析一、选择题1.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A.45°B.60°C.75°D.82.5°【答案】C【解析】【分析】直接利用平行线的性质结合已知角得出答案.【详解】如图,作直线l平行于直角三角板的斜边,可得:∠3=∠2=45°,∠4=∠5=30°,故∠1的度数是:45°+30°=75°,故选C.【点睛】本题主要考查了平行线的性质,正确作出辅助线是解题关键.2.下列命题是真命题的是()A.同位角相等B.对顶角互补C.如果两个角的两边互相平行,那么这两个角相等=-的图像上.D.如果点P的横坐标和纵坐标互为相反数,那么点P在直线y x【答案】D【解析】【分析】根据平行线的性质定理对A、C进行判断;利用对顶角的性质对B进行判断;根据直角坐标系下点坐标特点对D进行判断.【详解】A.两直线平行,同位角相等,故A是假命题;B.对顶角相等,故B是假命题;C.如果两个角的两边互相平行,那么这两个角相等或互补,故C是假命题;=-的图像上,故D是真命D.如果点的横坐标和纵坐标互为相反数,那么点P在直线y x题故选:D本题考查了真命题与假命题,正确的命题称为真命题,错误的命题称为假命题.利用了平行线性质、对顶角性质、直角坐标系中点坐标特点等知识点.3.如图,若AB ∥CD ,则∠α、∠β、∠γ之间关系是( )A .∠α+∠β+∠γ=180°B .∠α+∠β﹣∠γ=360°C .∠α﹣∠β+∠γ=180°D .∠α+∠β﹣∠γ=180°【答案】D【解析】试题解析:如图,作EF ∥AB ,∵AB ∥CD ,∴EF ∥CD ,∵EF ∥AB ,∴∠α+∠AEF=180°,∵EF ∥CD ,∴∠γ=∠DEF ,而∠AEF+∠DEF=∠β,∴∠α+∠β=180°+∠γ,即∠α+∠β-∠γ=180°.故选:D .4.如图,已知ABC ∆,若AC BC ⊥,CD AB ⊥,12∠=∠,下列结论:①//AC DE ;②3A ∠=∠;③3EDB ∠=∠;④2∠与3∠互补;⑤1B ∠=∠,其中正确的有( )A .2个B .3个C .4个D .5个【答案】C【解析】根据平行线的判定得出AC∥DE,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.【详解】∵∠1=∠2,∴AC∥DE,故①正确;∵AC⊥BC,CD⊥AB,∴∠ACB=∠CDB=90°,∴∠A+∠B=90°,∠3+∠B=90°,∴∠A=∠3,故②正确;∵AC∥DE,AC⊥BC,∴DE⊥BC,∴∠DEC=∠CDB=90°,∴∠3+∠2=90°(∠2和∠3互余),∠2+∠EDB=90°,∴∠3=∠EDB,故③正确,④错误;∵AC⊥BC,CD⊥AB,∴∠ACB=∠CDA=90°,∴∠A+∠B=90°,∠1+∠A=90°,∴∠1=∠B,故⑤正确;即正确的个数是4个,故选:C.【点睛】此题考查平行线的判定和性质,三角形内角和定理,垂直定义,能综合运用知识点进行推理是解题的关键.5.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=50°,则∠AED=()A.65°B.115°C.125°D.130°【答案】B【解析】试题分析:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=50°,∴∠CAB=180°﹣50°=130°,∵AE 平分∠CAB,∴∠EAB=65°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°﹣65°=115°,故选B.考点:平行线的性质.6.如图所示,∠AOB的两边.OA、OB均为平面反光镜,∠AOB=35°,在OB上有一点E,从E点射出一束光线经OA上的点D反射后,反射光线DC恰好与OB平行,则∠DEB的度数是()A.35°B.70°C.110°D.120°【答案】B【解析】【分析】【详解】解:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=35°,∴∠2=55°;∴在△DEF中,∠DEB=180°-2∠2=70°.故选B.7.如图,下列推理错误的是( )A.因为∠1=∠2,所以c∥d B.因为∠3=∠4,所以c∥dC.因为∠1=∠3,所以a∥b D.因为∠1=∠4,所以a∥b【答案】C【解析】分析:由平行线的判定方法得出A、B、C正确,D错误;即可得出结论.详解:根据内错角相等,两直线平行,可知因为∠1=∠2,所以c∥d,故正确;根据同位角相等,两直线平行,可知因为∠3=∠4,所以c∥d,故正确;因为∠1和∠3的位置不符合平行线的判定,故不正确;根据内错角相等,两直线平行,可知因为∠1=∠4,所以a∥b,故正确.故选:C.点睛:本题考查了平行线的判定方法;熟练掌握平行线的判定方法,并能进行推理论证是解决问题的关键.8.如图,在下列四组条件中,不能判断AB∥CD的是()A.∠1=∠2 B.∠3=∠4C.∠ABD=∠BDC D.∠ABC+∠BCD=180°【答案】A【解析】【分析】根据各选项中各角的关系,利用平行线的判定定理,分别分析判断AB、CD是否平行即可.【详解】A、∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行),故A不能判断;B、∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故B能判断;C、∵∠ABD=∠BDC,∴AB∥CD(内错角相等,两直线平行),故C能判断;D、∵∠ABC+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),故D能判断,故选A.【点睛】本题考查了平行线的判定.掌握同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键.9.下面四个图形中,∠1与∠2是对顶角的是()A.B.C.D.【答案】D【解析】【分析】根据对顶角的定义,可得答案.【详解】解:由对顶角的定义,得D 选项是对顶角,故选:D .【点睛】考核知识点:对顶角.理解定义是关键.10.如图,12180∠+∠=︒,3100∠=︒,则4∠=( )A .60︒B .70︒C .80︒D .100︒【答案】C【解析】【分析】 首先证明a ∥b ,再根据两直线平行同位角相等可得∠3=∠6,再根据对顶角相等可得∠4.【详解】解:∵∠1+∠5=180°,∠1+∠2=180°,∴∠2=∠5,a ∥b ,∴∠3=∠6=100°,∴∠4=180°-100°=80°.故选:C .【点睛】此题考查平行线的判定与性质,解题关键是掌握两直线平行同位角相等.11.如图a 是长方形纸带,∠DEF=20°,将纸带沿EF 折叠成图b ,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是( )A .110°B .120°C .140°D .150° 【答案】B【解析】【详解】解:∵AD ∥BC ,∴∠DEF=∠EFB=20°,图b 中∠GFC=180°-2∠EFG=140°,在图c 中∠CFE=∠GFC-∠EFG=120°,故选B .12.已知α∠的两边与β∠的两边分别平行,且α∠=20°,则∠β的度数为( )A .20°B .160°C .20°或160°D .70°【答案】C【解析】【分析】分两种情况,画出图形,结合平行线的性质求解即可.【详解】如图1,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=∠1=20°;如图2,∵a ∥b ;∴∠1=α∠=20°,∵c ∥d∴∠β=180°-∠1=160°;故选C.【点睛】本题考查了平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.本题也考查了分类讨论的数学思想.13.如图所示,下列条件中,能判定直线a∥b的是()A.∠1=∠4 B.∠4=∠5 C.∠3+∠5=180°D.∠2=∠4【答案】B【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠1=∠4,错误,因为∠1、∠4不是直线a、b被其它直线所截形成的同旁内角或内错角;B、∵∠4=∠5,∴a∥b(同位角相等,两直线平行).C、∠3+∠5=180°,错误,因为∠3与∠5不是直线a、b被其它直线所截形成的同旁内角;D、∠2=∠4,错误,因为∠2、∠4不是直线a、b被其它直线所截形成的同位角.故选:B.【点睛】本题考查平行线的性质,解题关键是区分同位角、内错角和同旁内角14.下列说法中不正确的是()①过两点有且只有一条直线②连接两点的线段叫两点的距离③两点之间线段最短④点B在线段AC上,如果AB=BC,则点B是线段AC的中点A.①B.②C.③D.④【答案】B【解析】【分析】依据直线的性质、两点间的距离、线段的性质以及中点的定义进行判断即可.【详解】①过两点有且只有一条直线,正确;②连接两点的线段的长度叫两点间的距离,错误③两点之间线段最短,正确;④点B 在线段AC 上,如果AB=BC ,则点B 是线段AC 的中点,正确;故选B .15.如图,直线//a b ,将一块含45︒角的直角三角尺(90︒∠=C )按所示摆放.若180︒∠=,则2∠的大小是( )A .80︒B .75︒C .55︒D .35︒【答案】C【解析】【分析】 先根据//a b 得到31∠=∠,再通过对顶角的性质得到34,25∠=∠∠=∠,最后利用三角形的内角和即可求出答案.【详解】解:给图中各角标上序号,如图所示:∵//a b∴3180︒∠=∠=(两直线平行,同位角相等),又∵34,25∠=∠∠=∠(对顶角相等),∴251804180804555A ∠=∠=︒-∠-∠=︒-︒-︒=︒.故C 为答案.【点睛】本题主要考查了直线平行的性质(两直线平行,同位角相等)、对顶角的性质(对顶角相等),熟练掌握直线平行的性质是解题的关键.16.如图//,AB CD EG EH FH ,、、分别平分,,,CEF DEF EFB ∠∠∠则图中与BFH∠相等的角(不含它本身)的个数是( )A .5B .6C .7D .8【答案】C【解析】【分析】 先根据平行线的性质得到CEF EFB ∠=∠,CEG EGB ∠=∠,再利用把角平分线的性质得到CEG FEG EFH BFH ∠=∠=∠=∠,最后对顶角相等和等量替换得到答案.【详解】解:如图,做如下标记,∵//AB CD ,∴,CEF EFB ∠=∠CEG EGB ∠=∠(两直线平行,内错角相等),又∵EG 、FH 分别平分,,CEF EFB ∠∠∴CEG FEG EFH BFH ∠=∠=∠=∠,又∵CEG NEG ∠=∠,FEG MEN ∠=∠,EGB AGP ∠=∠(对顶角相等),∴BFH ∠=CEG FEG EFH MEN NED EGF AGP ∠=∠=∠=∠=∠=∠=∠(等量替换)故与BFH ∠相等的角有7个,故C 为答案.【点睛】本题主要考查直线平行的性质、对顶角的性质(对顶角相等)、角平分线的性质(角平分线把角分为两个大小相等的角)还有等量替换,把所学知识灵活运用是解题的关键.17.如图,1B ∠=∠,2C ∠=∠,则下列结论正确的个数有( )①//AD BC ;②B D ∠=∠;③//AB CD ;④2180B ∠+∠=︒A .4个B .3个C .2个D .1个【答案】A【解析】【分析】根据∠1=∠B 可判断AD ∥BC ,再结合∠2=∠C 可判断AB ∥CD ,其余选项也可判断.【详解】∵∠1=∠B∴AD ∥BC ,①正确;∴∠2+∠B=180°,④正确;∵∠2=∠C∴∠C+∠B=180°∴AB ∥CD ,③正确∴∠1=∠D ,∴∠D=∠B ,②正确故选:A【点睛】本题考查平行的证明和性质,解题关键是利用AD ∥BC 推导出∠B+∠2=180°,为证AB ∥DC 作准备.18.把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为( )A .115°B .120°C .145°D .135°【答案】D【解析】【分析】由三角形的内角和等于180°,即可求得∠3的度数,又由邻补角定义,求得∠4的度数,然后由两直线平行,同位角相等,即可求得∠2的度数.【详解】在Rt △ABC 中,∠A=90°,∵∠1=45°(已知),∴∠3=90°-∠1=45°(三角形的内角和定理),∴∠4=180°-∠3=135°(平角定义),∵EF∥MN(已知),∴∠2=∠4=135°(两直线平行,同位角相等).故选D.【点睛】此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.19.如图,小慧从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C 处,此时需要将方向调整到与出发时一致,则方向的调整应为()A.左转80°B.右转80°C.左转100°D.右转100°【答案】B【解析】【分析】如图,延长AB到D,过C作CE//AD,由题意可得∠A=60°,∠1=20°,根据平行线的性质可得∠A=∠2,∠3=∠1+∠2,进而可得答案.【详解】如图,延长AB到D,过C作CE//AD,∵此时需要将方向调整到与出发时一致,∴此时沿CE方向行走,∵从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,∴∠A=60°,∠1=20°,AM∥BN,CE∥AB,∴∠A=∠2=60°,∠1+∠2=∠3∴∠3=∠1+∠2=20°+60°=80°,∴应右转80°.故选B.【点睛】本题考查了方向角有关的知识及平行线的性质,解答时要注意以北方为参照方向,进行角度调整.20.已知直线m∥n,将一块含30°角的直角三角板按如图所示方式放置(∠ABC=30°),并且顶点A,C分别落在直线m,n上,若∠1=38°,则∠2的度数是()A.20°B.22°C.28°D.38°【答案】B【解析】【分析】过C作CD∥直线m,根据平行线的性质即可求出∠2的度数.【详解】解:过C作CD∥直线m,∵∠ABC=30°,∠BAC=90°,∴∠ACB=60°,∵直线m∥n,∴CD∥直线m∥直线n,∴∠1=∠ACD,∠2=∠BCD,∵∠1=38°,∴∠ACD=38°,∴∠2=∠BCD=60°﹣38°=22°,故选:B.【点睛】本题考查了平行线的计算问题,掌握平行线的性质是解题的关键.。

相交线与平行线重难点详解

相交线与平行线重难点详解

相交线与平行线平面内,点与直线之间的位置关系分为两种:①点在线上②点在线外同一平面内,两条或多条不重合的直线之间的位置关系只有两种:①相交②平行一、相交线1、两条直线相交,有且只有一个交点。

(反之,若两条直线只有一个交点,则这两条直线相交。

)两条直线相交,产生邻补角和对顶角的概念:邻补角:两角共一边,另一边互为反向延长线。

邻补角互补。

要注意区分互为邻补角与互为补角的异同。

对顶角:两角共顶点,一角两边分别为另一角两边的反向延长线。

对顶角相等。

注:①、同角或等角的余角相等;同角或等角的补角相等;等角的对顶角相等。

反过来亦成立。

②、表述邻补角、对顶角时,要注意相对性,即“互为”,要讲清谁是谁的邻补角或对顶角。

2、垂直是两直线相交的特殊情况。

注意:两直线垂直,是互相垂直,即:若线a垂直线b,则线b垂直线a 。

垂足:两条互相垂直的直线的交点叫垂足。

垂直时,一定要用直角符号表示出来。

过一点有且只有一条直线与已知直线垂直。

(注:这一点可以在已知直线上,也可以在已知直线外)3、点到直线的距离。

垂线段:过线外一点,作已知线的垂线,这点到垂足之间的线段叫垂线段。

垂线与垂线段:垂线是一条直线,而垂线段是一条线段,是垂线的一部分。

垂线段最短:连接直线外一点与直线上各点的所有线段中,垂线段最短。

(或说直角三角形中,斜边大于直角边。

)点到直线的距离:直线外一点到这条直线的垂线段的长度,叫这点到直线的距离。

注:距离指的是垂线段的长度,而不是这条垂线段的本身。

所以,如果在判断时,若没有“长度”两字,则是错误的。

4、同位角、内错角、同旁内角三线六面八角:平面内,两条直线被第三条直线所截,将平面分成了六个部分,形成八个角,其中有:4对同位角,2对内错角和2对同旁内角。

注意:要熟练地认识并找出这三种角:①根据三种角的概念来区分②借助模型来区分,即:同位角——F型,内错角——Z型,同旁内角——U型。

特别注意:①三角形的三个内角均互为同旁内角;②同位角、内错角、同旁内角的称呼并不一定要建立在两条平行的直线被第三条直线所截的前提上才有的,这两条直线也可以不平行,也同样的有同位角、内错角、同旁内角。

教学相交线和平行线时需要注意的易错点

教学相交线和平行线时需要注意的易错点

教学相交线和平行线时需要注意的易错点相交线和平行线是几何学中的两个基本概念,是学生学习和掌握初中数学知识的重要环节。

但是,在教学过程中,由于知识点本身的难度和学生对知识点的疏忽,很容易出现一些易错点,影响学生的学习效果。

教师在教学相交线和平行线时需要注意哪些易错点呢?本文将从以下几个方面进行讨论。

一、易错点一:对相交线和平行线的基本概念理解不清相交线和平行线是初中数学中的两个最基本的几何概念,学生需要掌握相交线和平行线分别指哪些线段。

相交线是指彼此交叉的两条线段,交点为它们的交点;平行线是指在同一平面内两条不相交的直线,它们永远不会相交。

其中,教师需要特别注意对相交线和平行线的定义清晰化,让学生通过举例、画图等方式更好地理解这两个概念。

二、易错点二:对相交线的夹角概念理解不准确当我们掌握了相交线的定义之后,就需要了解其中的一个重要概念——夹角。

夹角是指两条相交线段之间的角度,它可以是锐角、直角、或者是钝角。

在教学过程中,教师需要引导学生正确理解夹角的概念,做到“看得懂”“说得清”,同时要教会学生利用角度计算器对夹角进行度数测量、角度转化等操作,从而巩固学生对夹角的认识。

三、易错点三:对相交线的性质理解不充分相交线是数学中的一种基本图形,除了了解它的定义和夹角的概念之外,学生还需要掌握相交线的一些重要性质。

例如,相交线夹角对应角相等;相邻角互补;垂直的两条直线互相垂直等。

在教学过程中,教师需要通过大量例题来让学生掌握这些性质,激发学生对相交线的兴趣,培养他们的观察力和思维能力。

四、易错点四:对平行线的性质理解不全面平行线是数学中的另一个基本图形,它是两条不相交的直线,它们在同一个平面上永远保持相同的间距。

在教学过程中,教师需要引导学生理解平行线的基本概念,同时也要重点强调平行线的三个重要性质——同位角相等、内错角补角相等和交叉线段成比例,让学生对平行线有更全面的认识。

五、易错点五:对平行线的证明方法掌握不熟练在初中数学中,我们需要学会如何证明平行线的性质。

平行线与相交线的知识点总结与归纳

平行线与相交线的知识点总结与归纳

平行线与相交线的知识点总结与归纳平行线与相交线是几何学中非常基础且重要的概念。

它们在很多几何证明和定理中都占据重要地位。

本文将对平行线与相交线的相关概念、性质和应用进行总结与归纳,帮助读者理解和掌握这些知识点。

一、平行线的概念和判定平行线是指在同一个平面内永远不会相交的直线。

平行线的概念可以通过以下方式进行判定:1. 法则一:两条直线被一条横截线所截,且内、外两侧交角相等,则这两条直线是平行线。

2. 法则二:两条直线被平行于它们的横截线所截,对应角相等,则这两条直线是平行线。

3. 法则三:两条直线的斜率相等时,它们是平行线。

二、平行线的性质1. 平行线具有传递性:如果直线a与直线b平行,直线b与直线c 平行,那么直线a与直线c也平行。

2. 平行线具有对应角相等性质:当两条平行线被横截线所截时,对应角相等。

3. 平行线具有同位角相等性质:当两条平行线被平行于它们的横截线所截时,同位角相等。

三、相交线的概念和性质相交线是指在同一个平面内相互交叉或相交的直线。

相交线的性质如下:1. 相交线的交点称为顶点,顶点两侧的角分别称为锐角、钝角或直角。

2. 相交线形成的两组对应角相等,即共鸣。

3. 相交线形成的补角相等,即一个角是另一个角的补角,它们的和等于90°。

四、平行线与相交线的应用1. 平行线与相交线在平面几何证明中经常被应用。

例如,证明两条直线平行时常常使用平行线公理和对应角相等的性质。

2. 平行线与相交线在解决实际问题中也起到重要作用。

例如,在建筑工程中,通过平行线和相交线可以确定物体的垂直、水平方向,从而保证建筑结构的稳定性和安全性。

3. 平行线与相交线还与三角形的性质有密切关系。

在研究三角形的内部角度和边的关系时,平行线与相交线的性质常常用来辅助推导和证明。

综上所述,平行线与相交线是几何学中重要的概念。

通过掌握平行线与相交线的概念、判定、性质和应用,可以帮助我们更好地理解和应用几何学知识,提高问题解决能力和证明能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相交线与平行线错解示例
一、对对顶角概念理解不透彻
例1如图,三条直线交于一点,任意找出图中的四对对顶角.
错解:如图,对顶角为:(1)∠AOC与∠BOD ;
(2)∠AOF与∠BOD ;
(3)∠COF与∠DOE ;
(4)∠AOC与∠BOE .
错解分析:错解中把有公共顶点的角误认为是对顶角,导致(2)和(4)错误.如果对对顶角的概念没有真正理解和掌握,在比较复杂的图形识别中会产生错误.对顶角就是:一个角的两边分别是另一个角的两边的反向延长线.正解:(1)∠AOC与∠BOD ;(2)∠BOE与∠AOF;(3)∠COF与∠DOE;
(4)∠COE与∠DOF.(答案不唯一:∠ AOE 与∠BOF,∠BOC与∠AOD也是对顶角)
二、对“三线八角”理解有误
例2 如图,按图中角的位置,判断正确的是()
A. ∠ 1 与∠ 2 是同旁内角
B. ∠ 1 与∠ 4 是内错角
C. ∠ 5 与∠ 7 是同旁内角
D. ∠ 4 与∠ 8 是同位角
错解:选A、B、D.
错解分析:本题考查的是:当两条直线被第三条直线所截时,如何准确地找到同位角、内错角、同旁内角.要想准确地解决这类问题,首先要明确三种角的位置特点:在被截直线的内部,截线两旁的角叫做内错角;在被截直线的内部,截线同旁的角叫做同旁内角;在被截直线的上方(或下方),截线同旁的角叫做同位角.其次要搞清楚被哪条直线所截.
正解:选 C .
三、对平行线概念理解不透彻
例3同一平面内,不相交的两条线是平行线.
错解:对.
错解分析:平行线是同一平面内两条直线的位置关系,不相交的两条线,说的不明确.若是射线或线段有可能不相交.所以说法是错误的.
正解:同一平面内,不相交的两条直线是平行线.
四、混淆了平行线的判定定理
例4 同旁内角相等,两直线平行.
错解:正确.
错解分析:错解混淆了两直线的判定条件.
正解:同旁内角互补,两直线平行.
五、对平行线传递性错误的扩展
例5 平面上有三条直线a,b,c,如果a⊥b,b⊥c,则a⊥c.
错解:正确.
错解分析:此题错认为垂直也有传递性,平行有传递性,而垂直是没有传递性的.
正解:a与c的关系是a∥c(这也是平行线判定的一种方法).
六、对平行线的判定应用不熟练
例6 如图,已知直线AB,CD被直线EF,GH所截,∠1+∠2=180°,
则.
错解:因为∠1+∠2=180°,根据同旁内角互补,两直线平行,可知EF∥GH.错解分析:虽然“同旁内角互补,两直线平行”,但∠1与∠2是对直线AB,CD
而言的,不能判定EF,GH的关系.
正解:AB∥CD.
七、不能很好地识别几何图形
例7如图,在Rt△ABC中,∠ACB=90°,DE过点C,且DE∥AB,若∠ACD= 50°,则∠A= ,∠B= .
错解:两条平行线AB,CD被第三条直线AC或者BC所截,同位角相等,得∠B=∠ACD=50°,∠A=∠BCE=90°—∠B=40°.
错解分析: 对几何图形观察认识不清楚而出错,简单观察三条直线中,AB,CD 被第三条直线AC所截时,∠A与∠ACD是内错角,AB,CD被第三条直线BC所截时,∠B与∠BCE是内错角,∠B与∠ACD不是内错角.
正解:由两直线平行,内错角相等得∠A=∠ACD=50°,∠B=90°—∠A=40°.
答案:50° 40°
例8 如图,直线AB,CD分别和直线MN相交于点E,F,EG平分∠BEN,FH平分∠DFN.若AB∥CD,你能说明EG和FH也平行吗?
错解:因为EG平分∠BEN,所以∠BEG =1
2
∠BEN.
同理,因为FH平分∠DFN,所以∠DFH =1
2∠DFN.
A B D
又因为AB∥CD,所以∠BEN =∠DFN;
从而∠BEG =∠DFH.所以EG∥FH.
错解分析:在复杂的图形中正确地找出同位角、内错角或同旁内角,是运用平行线的判定或性质的前提.认清一对同位角、内错角或同旁内角的关键是弄清截线和被截线,截线就是它们的公共边,其余两条边就是被截线.而∠BEG和∠DFH不是直线EG,FH被某条直线所截得的同位角,所以由∠BEG=∠DFH不能判定EG∥FH.
正解:因为EG平分∠BEN,所以∠BEG =∠GEN =1
∠BEN,
2
∠DFN,
同理,因为FH平分∠DFN,所以∠DFH =∠HFN =1
2
又因为AB∥CD,所以∠BEN =∠DFN,从而∠GEN =∠HFN.
而∠GEN,∠HFN是直线EG,FH被直线MN所截得的同位角,所以EG∥FH.例9如图,△ABC中,已知∠1+∠2=180°,∠3=∠B,试判断DE与BC的位置关系,并说明理由.
错解:因为∠1+∠2=180°,所以EF∥AB.
所以∠3+∠BDE =180°.
因为∠3=∠B,所以∠B+∠BDE =180°.
所以DE∥BC.
错解分析:由∠1+∠2=180°,不能得到EF∥AB.
虽然∠1和∠2是由直线EF和AB被直线DC所截得的角,
但由于它们不是同旁内角, 所以尽管∠1+∠2=180°, 也不能得到EF∥
AB.
正解:因为∠1=∠4,∠1+∠2=180°,所以∠2+∠4=180°.所以EF∥DB(同旁内角互补,两直线平行).
所以∠3+∠BDE=180°(两直线平行, 同旁内角互补).
因为∠3=∠B,所以∠B+∠BDE=180°.
所以DE∥BC( 同旁内角互补,两直线平行).。

相关文档
最新文档