三点共线典型例题(含答案)

合集下载

向量证三点共线 (1)

向量证三点共线 (1)

利用共线向量巧解三点共线例题:如图,A,B,C是平面内三个点,P是平面内任意一点,若点C在直线AB上,则存在实数λ,使得PC=λPA+(1-λ)PB.证法探究:分析:初看欲证目标,始感实难下手。

我们不妨从结论出发探寻线路,欲证PC=λPA+(1-λ)PB,只需证PC=λPA+PB-λPB⇔PC-PB=λ(PA-PB)⇔BC=λBA⇔BC∥BA.这样证明思路有了。

证法:∵向量BC与向量BA共线,∴BC=λBA,即PC-PB=λ(PA -PB),PC=λPA+PB-λPB,∴PC=λPA+(1-λ)PB.证毕,再思考一下实数λ的几何意义究竟如何。

考察向量等式BC=λBA,结合图形,易知,当点C在线段AB上时,则BC 与BA同向,有0≤λ≤1;当点C在线段AB延长线上时,则BC 与BA反向,有λ<0;当点C在线段BA延长线上时,则BC与BA 同向,有λ>1.此例题逆命题亦成立,即已知A,B,C是平面内三个点,P是平面内任意一点,若存在实数λ,μ,有PC=λPA+μPB,且λ+μ=1,则A,B,C三点共线.故此逆命题可作三点共线判定方法。

为方便起见,我们将两命题作为性质叙述如下:性质1:已知A ,B ,C 是平面内三个点, P 是平面内任意一点,若A ,B ,C 三点共线,则存在实数λ,使得PC =λPA +(1-λ)PB .或叙述为:已知A ,B ,C 是平面内三个点,P 是平面内任意一点,若A ,B ,C 三点共线,则存在实数λ,μ,使得PC =λPA +μPB ,则有λ+μ=1.性质2:已知A ,B ,C 是平面内三个点,P 是平面内任意一点,若存在实数λ,μ,有PC =λPA +μPB ,且λ+μ=1,则A ,B ,C 三点共线.三点共线性质在解题中的应用:例1 如图,在ABC ∆中,点O 是BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB =AM m ,AC =AN n ,则n m +的值为 .解析:连结AO ,因为点O 是BC 的中点,所以有AO =AC AB 2121+=AN n AM m 2121+,又因为M 、O 、N 三点共线,所以12121=+n m ,故2=+n m .点评:因为点O 是BC 的中点,所以λ=21||=CB ,由性质1,μ=1-λ=21,简便求出n m +的值. 例2 如图2,在△ABC 中,13AN NC =,点P 是BC 上的一点,若211AP mAB AC=+,则实数m 的值为( ) A .911 B. 511 C. 311 D. 211解:,,B P N 三点共线,又2284111111AP mAB AC mAB AN mAB AN =+=+⨯=+ 8111m ∴+= 311m ∴=,故选C例3 所示:点是△的重心,、分别是边、上的动点,且、、三点共线.设,,证明:是定值;证明:因为G 是OAB 的重心,211()()323OG OA OB OA OB ∴=⨯+=+ 1OP xOA OA OP x =∴= 1OQ yOB OB OQ y=∴= 111111()()3333OG OA OB OP OQ OG OP OQ x y x y∴=+=+∴=+ 又,,P G Q 三点共线,11133x y ∴+= 113x y ∴+= 11x y∴+为定值3G OAB P Q OA OB P G Q OA x OP =OB y OQ =yx 11+例4.如图,在ABC ∆中,OA OC 41=,OB OD 21=, AD 与BC 交于M 点,设b OB a OA ==,. (Ⅰ)用a ,b 表示OM ;(Ⅱ)在已知线段AC 上取一点E ,在线段BD 上取一点F ,使EF 过点M .设OA p OE =,OB q OF =.求证:17371=+qp . 解析:(Ⅰ)因为B 、M 、C 三点共线,所以存在实数m 使得OM =OB m OC m )1(-+ =OB m OA m )1(41-+⋅=b m a m )1(41-+;又因为A 、M 、D 三点共线,所以存在实数n 使得OM =OD n OA n )1(-+=b n a n )1(21-+.由于a ,b 不共线,所以有⎪⎩⎪⎨⎧-=-=),1(211,41n m n m 解得,⎪⎩⎪⎨⎧==.n m 71,74 故OM =b a 7371+. (Ⅱ)因为E 、M 、F 三点共线,所以存在实数λ使得OM =OF OE )1(λλ-+ =b q a p )1(λλ-+.结合(Ⅰ),易得出⎪⎩⎪⎨⎧=-=,73)1(,71q p λλ消去λ得,17371=+q p . 点评:本题是以a ,b 作为一组基底,其他向量都由它们线性表示.解(Ⅰ)中的实数m ,n 的几何意义为:m ||BC =74,n ||DA DM =71, m ,n ∈(0,1);解(Ⅱ)中的实数λ||FE FM =p 71.例5.如图,平行四边形ABCD 中,点P 在线段AB 上,且m PBAP =,Q 在线段AD 上,且n QD AQ =,BQ 与CP 相交于点R ,求RCPR 的值. 解析:设RC PR =λ,则PC PR =1+λλ,BR =1+λλBC +(1-1+λλ)BP .因为m PB AP =,所以BA m BP 11+=,且BR =1+λλBC +11+λ·BA m 11+. 又n QD AQ =,∴AD n n AQ 1+==BC n n 1+,∴AQ BA BQ +=,即BA BC n n BQ ++=1.又∵BR 与BQ 共线,∴1+λλ-)1)(1(11++⋅+m n n λ=0,解得λ=)1)(1(++n m n . 点评:我们先要确定好一组基底BC BA ,,看准BR ,BQ 如何由它们线性表示;而欲求目标数值,因C R P ,,三点共线,中途要以BC BP ,作基底,BR 由它们线性表出时,分析清楚该两基底系数所表示的几何意义,由性质1,得BR =1+λλBC +(1-1+λλ)BP ;最终BR 与BQ 都得转化到由BC BA ,两基底线性表示,此时容易由共线向量性质列出等式,从而求出结果.例6 所示,在平行四边形ABCD 中,13AE AB =,14AF AD =,CE 与BF 相交于G 点,记AB a =,AD b =,则AG =_______A .2177a b + B. 2377a b + C. 3177a b + D. 4277a b + 分析:本题是以平面几何为背景,为载体,求向量的问题,所以我们很容易联想到点F 、G 、B 以及E,G,C 三点在一条直线上,可用平面内三点共线定理求解。

高考数学二级结论快速解题:专题08三点共线充要条件(解析版)

高考数学二级结论快速解题:专题08三点共线充要条件(解析版)

专题08三点共线充要条件一、结论1、设平面上三点O ,A ,B 不共线,则平面上任意一点P 与A ,B 共线的充要条件是存在实数 与,使得OP OA OB,且1 .特别地,当P 为线段AB 的中点时,1122OP OA OB .二、典型例题1.(2021·安徽·铜陵一中高三阶段练习(理))如图,ABC 中,D 为AB 上靠近B 的三等分点,点F 在线段CD 上,设AB a ,AC b ,AF xa yb ,则21x y的最小值为()A .6B .7C .4 D .4【答案】D 【解析】由于D 为AB 上靠近B 的三等分点,故23AD AB ,所以32x AF xa yb x AB y AC AD y AC,又因为点F 在线段CD 上,所以312x y ,故2121332()()422x x yy x y x y y x,由题意可知0,0x y ,故2132442x yx y y x,当且仅当322x y y x 时,即11,32x y时,等号取得,故选:D.【反思】本题重点C ,F ,D 三点共线,可以得到AF mAD nAC且1m n ,所以本题中AF xa yb 中的AF 如何化简成AF mAD nAC 才是本题的关键,又D 为AB 上靠近B 的三等分点,故23AD AB ,所以得到32x AF xa yb x AB y AC AD y AC这样,由C ,F ,D 三点共线,得到312x y ,进而才利用均值不等式求解最值.如何利用三点共线时解本题的快速捷径.三、针对训练举一反三一、单选题1.(2020·安徽·安庆市第二中学高一阶段练习)如图,在三角形OAB 中,P 为线段AB 上的一点,OP xOA yOB u u u r u u r u u u r ,且3BP PA,则()A .23x ,13yB .13x ,23yC .14x,34yD .34x,14y 【答案】D 【详解】因为3BP PA ,所以3331()4444OP OB BP OB BA OB OA OB OA OB ,又OP xOA yOB u u u r u u r u u u r ,,OA OB 不共线,所以31,44x y ,故选:D2.(2022·全国·高三专题练习)如图,在OAB 中,C 是AB 的中点,P 在线段OC 上,且2OC OP .过点P 的直线交线段,OA OB 分别于点N ,M ,且,OM mOB ON nOA ,其中,[0,1]m n ,则m n 的最小值为()A .12B .23C .1D .34【答案】C【详解】解:1()2OC OA OB u u u r u u r u u u r ,则11122OP ON OM n m,1144OP ON OM n m,又P ,M ,N 共线,∴11144n m.又,[0,1]m n ,∴ 111111214444m n m n m n n m n m ,当且仅当12m n 时取等号,故选:C.3.(2022·全国·高三专题练习)在ABC 中,3AC AD ,BE ED ,设(,)AE AB AC R,则 ()A .13B .13C .23D .43【答案】C 【详解】在三角形ABC 中,3AC AD ,BE ED ,可得111111()222326AE AB AD AB AC AB AC ,因为(,)AE AB AC R ,所以11,26,所以23 .故选:C.4.(2021·福建·厦门市湖滨中学高三期中).如图,在ABC 中,13AD DC,P 是线段BD上一点,若16AP m AB AC ,则实数m 的值为()A .13B .23C .2D .12【答案】A 【详解】设BP BD ,因为13AD DC,所以14AD AC ,则1()(1)4AP AB BP AB BD AB BA AD AB AC,又因为16AP m AB AC ,所以11146m,解得21,33m .故选:A.5.(2022·全国·高三专题练习)A ,B ,C 是圆O 上不同的三点,线段CO 与线段AB 交于点D (点O 与点D 不重合),若OC OA OB,R ,则 的取值范围是()A . 0,1B . 1, C.D .1,0 【答案】B 【详解】因为线段CO 与线段AB 交于点D ,所以,,O C D 三点共线,所以OC 与OD共线,设OC mOD ,则1m >,因为OC OA OB ,所以OA O OD B m ,可得OA OD O mB m ,因为,,A B D 三点共线,设AD t AB u u u r u u u r,所以OD OA t OB OA 即 1OD t OA tOB ,所以1t mtm,所以1m m ,可得1m ,所以 的取值范围是 1, .故选:B.6.(2021·四川成都·高三期中(文))如图所示,已知点G 是ABC 的重心,过点G 作直线分别与AB ,AC 两边交于M ,N 两点(点N 与点C 不重合),设AB xAM ,AC y AN,则111x y 的最小值为()A .2B.1C .32D.2 【答案】A 【详解】G ∵为ABC 的重心,21()32AG AB AC1()3xAM y AN又G ∵在线段MN 上,11133x y 3x y (1)2x y11111[(1)]()121x y x y x y 11(11)21x y y x1(22)22故选:A .7.(2021·山西大附中高三阶段练习(文))如图所示,已知点G 是ABC 的重心,过点G作直线分别与AB ,AC 两边交于M ,N 两点(点N 与点C 不重合),设xAB AM ,y AC AN,则11x y的值为()A .3B .4C .5D .6【答案】A 【详解】延长AG 交BC 与点H ,H 为BC 中点,G ∵为ABC 的重心,2211133333111123AG AH AB AC AB AC AM ANA x yxy M ANM G N ∵、、三点共线11133x y ,113x y故选:A8.(2021·福建省长汀县第一中学高三阶段练习)如图,在ABC 中,23AN NC,P 是BN 上一点,若13AP AB AC,则实数 的值为()A .13B .16C .23D .14【答案】B 【详解】由题意及图:1AP AB BP AB mBN AB m AN AB mAN m AB ,又23AN NC ,所以25AN AC,所以 215AP m AC m AB ,又13AP AB AC,所以12153m m,解得:51,66m .故选:B.二、填空题9.(2021·湖南·周南中学高二开学考试)在ABC 中,E 为AC 上一点,3AC AE ,P 为BE 上任一点,AD mAB ,AF nAC ,(0m ,0n ),若AP AD AF ,则当31m n取最小值时,四边形ADPF 的面积与ABC 的面积之比等于________.【答案】16##1:6【详解】解:由题意可知:3AP mAB nAC mAB nAE,而P ,B ,E 三点共线,则:31m n ,据此有:3131936612n m m n m n m n m n ,当且仅当12m,16n 时等号成立,取到最小值,此时12AD AB ,16AF AC,所以11sin sin 126116sin sin 22ADPF ABCAB AC ABC AD AF ABC S S AB AC ABC AB AC ABC .故答案为:16.10.(2021·黑龙江·大庆中学高一阶段练习)如图,经过OAB 的重心G 的直线与,OA OB 分别交于点P ,Q ,设,OP mOA OQ nOB,,m n R ,则11n m的值为________.【答案】3【详解】解:设,OA a OB b,由题意知211()()323OG OA OB a b ,11,33PQ OQ OP n b m a PG OG OP ma b,由P ,G ,Q 三点共线,得存在实数 使得PQ PG,即1133n b m a m a b,从而1,31,3m m n消去 ,得113n m .故答案为:3三、解答题11.(2021·全国·高一课时练习)如图,在AOB 中,14OC OA u u u r u u r ,12OD OB u u u r u u u r,AD 与BC 相交于点M ,设OA a,OB b,(1)试用a ,b表示向量OM :(2)在线段AC 上取一点E ,在BD 上取一点F ,使得EF 过点M ,设OE OA ,OF OB,求证:13177.【答案】(1)1377OM a ;(2)证明见解析.【详解】(1)解:由A ,M ,D 三点共线可知,存在实数1 使得11111122OM OA AM a AD a a b a b.由B ,M ,C 三点共线可知,存在实数2 使得22221144OM OB BM b BC b b a a b.由平面向量基本定理知21121412.解得126747,所以1377OM a b .(2)证明:若OE OA ,OF OB,则13137777OM a b OE OF.又因为E ,M ,F 三点共线,所以13177 .。

高考数学复习---《三点共线问题》规律方法与典型例题讲解

高考数学复习---《三点共线问题》规律方法与典型例题讲解

高考数学复习---《三点共线问题》规律方法与典型例题讲解【规律方法】证明共线的方法:(1)斜率法:若过任意两点的直线的斜率都存在,通过计算证明过任意两点的直线的斜率相等证明三点共线;(2)距离法:计算出任意两点间的距离,若某两点间的距离等于另外两个距离之和,则这三点共线;(3)向量法:利用向量共线定理证明三点共线;(4)直线方程法:求出过其中两点的直线方程,在证明第3点也在该直线上;(5)点到直线的距离法:求出过其中某两点的直线方程,计算出第三点到该直线的距离,若距离为0,则三点共线.(6)面积法:通过计算求出以这三点为三角形的面积,若面积为0,则三点共线,在处理三点共线问题,离不开解析几何的重要思想:“设而不求思想”.【典型例题】例1、(2023·全国·高三专题练习)已知2222:1(0,0)x y E a b a b −=>>的右焦点为2F ,点2F 到E 的2F 的直线与E 相交于,A B 两点.当AB x ⊥轴时,||AB =(1)求E 的方程.(2)若3,02M ⎛⎫⎪⎝⎭,N 是直线1x =上一点,当,,B M N 三点共线时,判断直线AN 的斜率是否为定值.若是定值,求出该定值;若不是定值,说明理由. 【解析】(1)根据对称性,不妨设()2,0F c 到直线0bx ay +=bcb c== 令x c =,则22221c y a b−=,解得2by a =±,所以当AB x ⊥轴时,22||b AB a ==a =故E 的方程为22122x y −=.(2)设()()1122,,,A x y B x y .当直线AB 的斜率不为0时,设直线AB 的方程为2x my =+, 联立方程组221222x y x my ⎧−=⎪⎨⎪=+⎩,化简得()221420m y my −++=, 由()22Δ81>010m m ⎧=+⎪⎨−≠⎪⎩,得1m ≠±,则12122242,11m y y y y m m +=−=−−设(1,)N t ,因为,,B M N 三点共线,所以221322y t x =−−,整理得2223y t x =−−. 因为()()()1221221212211222223212023232323y x y y my y my y y y y y t y x x x x −+++++−=+====−−−−,所以1101AN y tk x −==−,即直线AN 的斜率为定值0. 当直线AB 的斜率为0时,A ,B ,M ,N 都在x 轴上, 则直线AN 的斜率为定值. 综上所述,直线AN 的斜率为定值0.例2、(2023·全国·高三专题练习)已知椭圆C 的方程为22221(0)x y a b a b+=>>,右焦点为F(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线222(0)x y b x +=>相切.证明:M ,N ,F三点共线的充要条件是||MN 【解析】(1)由题意,椭圆半焦距cc e a ==,所以a = 又2221b a c =−=,所以椭圆方程为2213x y +=;(2)由(1)得,曲线为221(0)x y x +=>,当直线MN 的斜率不存在时,直线:1MN x =,不合题意; 当直线MN 的斜率存在时,设()()1122,,,M x y N x y , 必要性:若M ,N ,F三点共线,可设直线(:MN y k x =即0kx y −=,由直线MN 与曲线221(0)x y x +=>1=,解得1k =±,联立(2213y x x y ⎧=±⎪⎨⎪+=⎩可得2430x −+=,所以121234x x x x +=⋅=,所以MN 所以必要性成立;充分性:设直线():,0MN y kx b kb =+<即0kx y b −+=, 由直线MN 与曲线221(0)x y x +=>1=,所以221b k =+,联立2213y kx b x y =+⎧⎪⎨+=⎪⎩可得()222136330k x kbx b +++−=, 所以2121222633,1313kb b x x x x k k −+=−⋅=++,所以MN== 化简得()22310k −=,所以1k =±,所以1k b =⎧⎪⎨=⎪⎩1k b =−⎧⎪⎨=⎪⎩:MN y x =y x =−所以直线MN 过点F ,M ,N ,F 三点共线,充分性成立; 所以M ,N ,F 三点共线的充要条件是||MN =例3、(2023·全国·高三专题练习)已知椭圆()2222:10x y E a b a b +=>>经过点()0,1C ,离心率O 为坐标原点. (1)求椭圆E 的方程;(2)设A 、B 分别为椭圆E 的左、右顶点,D 为椭圆E 上一点(不在坐标轴上),直线CD 交x 轴于点P ,Q 为直线AD 上一点,且4OP OQ =⋅,求证:C 、B 、Q 三点共线. 【解析】(1)将点C 的坐标代入椭圆E 的坐标可得1b =,由题意可得2210c e a a c c ⎧==⎪⎪⎪−=⎨⎪>⎪⎪⎩,解得2a c =⎧⎪⎨=⎪⎩因此,椭圆E 的标准方程为2214x y +=;(2)椭圆E 的左、右顶点分别为()2,0A −、()2,0B ,设点()()0000,0D x y x y ≠,则220014x y +=,则220044x y −=,直线CD 的斜率为001CD y k x −=,则直线CD 的方程为0011y y x x −=+, 令0y =,可得001x x y =−,即点00,01x P y ⎛⎫⎪−⎝⎭, 设点()11,Q x y ,由104OP OQ x x ⋅==,可得()01041y x x −=, 直线AD 的斜率为002AD y k x =+,则直线AD 的方程为()0022y y x x =++, 将()0041y x x −=代入直线AD 的方程得()()000002222y x y y x x −+=+,所以点Q 的坐标为()()()000000041222,2y y x y x x x ⎛⎫−−+ ⎪ ⎪+⎝⎭, 直线BC 的斜率为101022BC k −==−− 直线BQ 的斜率为()()()2000000020000001012222222222424BQy x y x y y y y k x x y x x x y y −+−+===−+−−−−−20000200002214242BC x y y y k y x y y −+==−=−−, 又BQ 、BC 有公共点B ,因此,C 、B 、Q 三点共线.。

高考数学专项讲解:专题3.7三点共线证法多,斜率向量均可做

高考数学专项讲解:专题3.7三点共线证法多,斜率向量均可做

【题型综述】
三点共线问题证题策略一般有以下几种:①斜率法:若过任意两点的直线的斜率都存在,通过计算证明过任意两点的直线的斜率相等证明三点共线;②距离法:计算出任意两点间的距离,若某两点间的距离等于另外两个距离之和,则这三点共线;③向量法:利用向量共线定理证明三点共线;④直线方程法:求出过其中两点的直线方程,在证明第3点也在该直线上;⑤点到直线的距离法:求出过其中某两点的直线方程,计算出第三点到该直线的距离,若距离为0,则三点共线.⑥面积法:通过计算求出以这三点为三角形的面积,若面积为0,则三点共线,在处理三点共线问题,离不开解析几何的重要思想:“设而不求思想”.
122
x y -=点. 41,33M ⎛⎫ ⎪⎝⎭
(1)求椭圆的标准方程;
C (2)如图,已知是椭圆上的两个点,线段的中垂线的斜率为
且与交于点, 为坐标原,R S RS 12RS P O 点,求证: 三点共线.
,,P O M 【思路点拨】(1)由二者离心率互为倒数以及椭圆经过点,建立关于a ,b ,c 的方程组从而得到41,33M ⎛⎫
(2)根据题意,设直线PQ的方程为y=k(x﹣3),联立直线与椭圆的方程可得(3k2+1)
x2﹣18k2x+27k2﹣6=0,设出P、Q的坐标,由根与系数的关系的分析求出、的坐标,由向量平行的坐标表示方法,分析可得证明;
(3)设直线PQ的方程为x=my+3,联立直线与椭圆的方程,分析有(m2+3)y2+6my+3=0,设P(x1,y1 ),Q(x2,y2),结合根与系数的关系分析用y1.y2表示出△FPQ的面积,分析可得答案.
(),代入抛物线方程消去x整理得,再设,,进而得,可得直线的方程为,又,,故BD方程化为

高中数学例题:利用平面向量基本定理证明三点共线问题

高中数学例题:利用平面向量基本定理证明三点共线问题

高中数学例题:利用平面向量基本定理证明三点共线问题 例3.设OA 、OB 、OP 是三个有共同起点的不共线向量,求证:它们的终点A 、B 、P 共线,当且仅当存在实数m 、n 使m+n=1且OP mOA nOB ==.
【思路点拨】本题包含两个问题:(1)A 、B 、P 共线⇒m+n=1,且OP mOA nOB ==成立;(2)上述条件成立⇒A 、B 、P 三点共线.
【证明】(1)由三点共线⇒m 、n 满足的条件.
若A 、B 、P 三点共线,则AP 与AB 共线,由向量共线的条件知存在实数λ使AP AB λ=,即()OP OA OB OA λ-=-,∴(1)OP OA OB λλ=-+. 令1m λ=-,n=λ,则OP mOA nOB =+且m+n=1.
(2)由m 、n 满足m+n=1⇒A 、B 、P 三点共线.
若OP mOA nOB =+且m+n=1,则(1)OP mOA m OB =+-.
则()OP OB m OA OB -=-,即BP mBA =.
∴BP 与BA 共线,∴A 、B 、P 三点共线.
由(1)(2)可知,原命题是成立的.
【总结升华】 本例题的结论在做选择题和填空题时,可作为定理使用,这也是证明三点共线的方法之一.
举一反三:
【变式1】设e 1,e 2是平面内的一组基底,如果124AB e e =-,12BC e e =+,1269CD e e =-,求证:A ,C ,D 三点共线.
【解析】 因为1212121(4)()233
AC AB BC e e e e e e CD =+=-++=-=,所以AC 与CD 共线.。

第107课--三点共线问题

第107课--三点共线问题

第107课三点共线问题基本方法:三点共线问题解题策略一般有以下几种:①斜率法:若过任意两点的直线的斜率都存在,通过计算证明过任意两点的直线的斜率相等证明三点共线;②距离法:计算出任意两点间的距离,若某两点间的距离等于另外两个距离之和,则这三点共线;③向量法:利用向量共线定理证明三点共线;④直线方程法:求出过其中两点的直线方程,再证明第三点也在该直线上;⑤点到直线的距离法:求出过其中某两点的直线方程,计算出第三点到该直线的距离,若距离为0,则三点共线.⑥面积法:通过计算求出以这三点为三角形的面积,若面积为0,则三点共线.在处理三点共线问题时,离不开解析几何的重要思想:“设而不求思想”.一、典型例题1.已知椭圆22:12x C y +=,41,33M ⎛⎫ ⎪⎝⎭为椭圆上一点,若,R S 是椭圆C 上的两个点,线段RS 的中垂线l 的斜率为12且直线l 与RS 交于点P ,O 为坐标原点,求证:,,P O M三点共线.答案:见解析解析:因为线段RS 的中垂线l 的斜率为12,所以直线RS 的斜率为2-.所以可设直线RS 的方程为2y x m =-+.由222,1,2y x m x y =-+⎧⎪⎨+=⎪⎩得2298220x mx m -+-=.设点()11,R x y ,()22,S x y ,()00,P x y .所以1289m x x +=,()1212128222222299m m y y x m x m x x m m +=-+-+=-++=-⋅+=.所以120429x x m x +==,12029y y m y +==.因为0014y =,所以0014y x =.所以点P 在直线14y x =上.又点()0,0O ,41,33M ⎛⎫ ⎪⎝⎭也在直线14y x =上,所以,,P O M 三点共线.2.已知椭圆的焦点在x 轴上,它的一个顶点恰好是抛物线24x y =的焦点,离心率e =过椭圆的右焦点F作与坐标轴不垂直的直线l ,交椭圆于A 、B 两点.(1)求椭圆的标准方程;(2)设点(,0)M m 是线段OF 上的一个动点,且()MA MB AB +⊥ ,求m 的取值范围;(3)设点C 是点A 关于x 轴的对称点,在x 轴上是否存在一个定点N ,使得C 、B 、N 三点共线?若存在,求出定点N 的坐标,若不存在,请说明理由.答案:(1)2215x y +=;(2)805m <<;(3)在x 轴上存在定点5,02N ⎛⎫ ⎪⎝⎭,使得C 、B 、N 三点共线.解析:(1)设椭圆方程为22221(0)x y a b a b+=>>,由题意1b =,又e ===,∴25a =,故椭圆方程为2215x y +=.(2)由(1)得右焦点(2,0)F ,则02m ≤≤,设l 的方程为(2)y k x =-(0k ≠)代入2215x y +=,得2222(51)202050k x k x k +-+-=,∴220(1)0k ∆=+>,设1122(,),(,),A x yB x y 则21222051k x x k +=+,212220551k x x k -=+,且1212(4)y y k x x +=+-,2121()y y k x x -=-.∴11221212(,)(,)(2,)MA MB x m y x m y x x m y y +=-+-=+-+ ,2121(,)AB x x y y =-- ,由()MA MB AB +⊥ ,得()0MA MB AB +⋅= ,则12211221()(2)()()()0MA MB AB x x m x x y y y y +⋅=+--++⋅-= ,即12211221(2)()(4)()0x x m x x k x x k x x +--++-⋅-=,即2222220202(4)05151k k m k k k -+-=++,得2085m k m =>-,所以805m <<,∴当805m <<时,有()MA MB AB +⊥ 成立.(3)在x 轴上存在定点N ,使得C 、B 、N 三点共线.依题意11(,)C x y -,直线BC 的方程为211121()y y y x x y x x +=---,令0y =,则121122112121()N y x x y x y x x x y y y y -+=+=++, 点,A B 在直线:(2)l y k x =-上,∴1122(2),(2)y k x y k x =-=-,∴122112************(2)(2)22()(2)(2)()4N y x y x k x x k x x kx x k x x x y y k x k x k x x k +-⋅+-⋅-+===+-+-+-222222205202255151220451k k k k k k k k k k -⋅-⋅++==⋅-+,∴在x 轴上存在定点5,02N ⎛⎫ ⎪⎝⎭,使得C 、B 、N 三点共线.二、课堂练习1.抛物线2:4C y x =,已知斜率为k 的直线l 交y 轴于点P ,且与曲线C 相切于点A ,点B 在曲线C 上,且直线PB x 轴,P 关于点B 的对称点为Q ,判断点,,A Q O 是否共线,并说明理由.答案:点,,A Q O 共线,理由见解析解析:设直线:l y kx m =+,联立24y x y kx m⎧=⎪⎨=+⎪⎩,得()222240k x mk x m +-+=(*)由()()2222441610mk m k mk ∆=--=-=,解得1m =,则直线1:l y kx =+,得10,P k ⎛⎫ ⎪⎝⎭,211,4B k k ⎛⎫ ⎪⎝⎭,又P 关于点B 的对称点为Q ,故211,2Q k k ⎛⎫ ⎪⎝⎭,此时,(*)可化为222120k x x k -+=,解得21x k =,故12y kx k k =+=,即212,A k k ⎛⎫ ⎪⎝⎭,所以2OA OQ k k k ==,即点,,A Q O 共线.2.已知椭圆22143x y +=,点F 是椭圆的右焦点.是否在x 轴上存在定点D ,使得过D 的直线l 交椭圆于,A B 两点.设点E 为点B 关于x 轴的对称点,且,,A F E 三点共线?若存在,求D 点坐标;若不存在,说明理由.答案:存在定点()4,0D 满足条件,理由见解析解析:由题意易知直线l 斜率不为0.设直线l 方程为x my t =+,(),0D t ,联立22143x my t x y =+⎧⎪⎨+=⎪⎩,消去x 得()2223463120m y mt y t ++⋅+-=,设()11,A x y ,()22,B x y ,则()22,E x y -,则122212263431234mt y y m t y y m -⎧+=⎪+⎪⎨-⎪=⎪+⎩,且0∆>,由,,A F E 三点共线有()()2112110x y x y -+-=,即()()1212210my y t y y +-+=,()22231262103434t mt m t m m --∴⋅+-⋅=++,解得4t =,∴存在定点()4,0D 满足条件.三、课后作业1.已知抛物线2:4C y x =的焦点为F ,直线l 过点()1,0-,直线l 与抛物线C 相交于,A B 两点,点A 关于x 轴的对称点为D .证明:,,B F D 三点共线.解析:依题意,直线l 的斜率存在且不为零,设直线l 的方程为()10x my m =-≠,由214x my y x=-⎧⎪⎨=⎪⎩消去x 整理得2440y my -+=,设()()1122,,,A x y B x y ,则()11,D x y -,且12124,4y y m y y +==.又直线BD 的方程为()122221y y y y x x x x +-=--,即2222144y y y x y y ⎛⎫-=- ⎪ ⎪-⎝⎭,令0y =,得1214y y x ==.所以点()1,0F 在直线BD 上,即,,B F D 三点共线.2.已知椭圆:E 22162x y +=,其右焦点为F ,过x 轴上一点()3,0A 作直线l 与椭圆E 相交于,P Q 两点,设(1)AP AQ λλ=> ,过点P 且平行于y 轴的直线与椭圆E 相交于另一点M ,试问,,M F Q 是否共线,若共线请证明;反之说明理由.答案:,,M F Q 三点共线,理由见解析解析:设()11,P x y ,()22,Q x y ,则11(3,)AP x y =- ,22(3,)AQ x y =- ,由已知得方程组()12122211222233162162x x y y x y x y λλ-=-⎧⎪=⎪⎪⎪⎨+=⎪⎪⎪+=⎪⎩,注意到1λ>,解得2512x λλ-=,因为()()112,0,,F M x y -,所以11211211(2,)((3)1,),,22FM x y x y y y λλλλλ--⎛⎫⎛⎫=--=-+-=-=- ⎪ ⎪⎝⎭⎝⎭,又22(2,)FQ x y =- 21,2y λλ-⎛⎫= ⎪⎝⎭,所以FM FQ λ=- ,从而三点共线.3.已知椭圆22:1x y E +=,过定点()3,4P -且斜率为k 的直线交椭圆E 于不同的两点,M N ,在线段MN 上取异于,M N 的点H ,满足PMMHPN NH =,证明:点H 恒在一条直线上,并求出这条直线的方程.答案:210x y -+=,证明见解析解析:设()()()112200,,,,,M x y N x y H x y ,由PMMHPN NH =,得01122033x x x x x x -+=+-,整理可得()1212012236x x x x x x x ++=++设直线():3434l y k x kx k =++=++,联立2234132y kx k x y =++⎧⎪⎨+=⎪⎩,得()()()2222363433460k x k k x k +++++-=由题0∆>,∴()12263432k k x x k -++=+,()21223346k x x k +-=+,则22122218241812122463232k k k k x x k k --++-++==++,()()22121222692416125472728423+3232k k k k k x x x x k k ++---++==++,∴072846710312241212k k x k k k++===-+---,而P 在l 上,则001053433411212k y kx k k k k k =++=-+++=-+--,∴00210x y -+=,即H 恒在直线210x y -+=上.。

第2节 共线向量之三点共线

第2节  共线向量之三点共线

第2节共线向量之三点共线知识梳理1、三点共线的等价关系A ,P ,B 三点共线⇔AP →=λAB →(λ≠0)⇔OP →=(1-t)·OA →+tOB →(O 为平面内异于A ,P ,B 的任一点,t ∈R )⇔OP →=xOA →+yOB →(O 为平面内异于A ,P ,B 的任一点,x ∈R ,y ∈R ,x +y =1). 2.结论(1)P 为线段AB 的中点⇔ OP =12( OA +OB );(2)G 为△ABC 的重心⇔ GA + GB +GC =0.(3)若|a +b |=|a -b |,以a ,b 为邻边的平行四边形的形状是矩形 3.三角形三心:内心(三条角平分线交点)、外心(三条垂直平分线交点)、重心(三边中线的交点)、垂心(三条高的交点)。

1.已知O 是△ABC 所在平面上的一点,若)(31++=(其中P 为平面上任意一点), 则O 点是△ABC 的( )A. 外心B. 内心C. 重心D. 垂心2.已知O 是△ABC 所在平面上的一点,若OA OC OC OB OB OA ⋅=⋅=⋅,则O 点是△ABC 的( )A. 外心B. 内心C. 重心D. 垂心 3.已知O 是△ABC 所在平面上的一点,若⋅+)(=⋅+)(=⋅+)(= 0,则O 点是△ABC 的( )A. 外心B. 内心C. 重心D. 垂心4.已知O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足++=λ, ),0(+∞∈λ. 则P 点的轨迹一定通过△ABC 的A. 外心B. 内心C. 重心D. 垂心 5.三个不共线的向量,,满足+⋅=+⋅)=+⋅ 0,则O 点是△ABC 的( )A. 垂心B. 重心C. 内心D. 外心6.已知O 是△ABC 所在平面上的一点,若++= 0, 则O 点是△ABC 的( )A. 外心B. 内心C. 重心D. 垂心做一做1.设a 、b 是两个不共线向量,AB →=2a +p b ,BC →=a +b ,CD →=a -2b ,若A 、B 、D 三点共线,则实数p 的值为________.2.已知非零向量e 1,e 2不共线.(1)如果AB →=e 1+e 2,BC →=2e 1+8e 2,CD →=3(e 1-e 2),求证:A 、B 、D 三点共线;(2)欲使k e 1+e 2和e 1+k e 2共线,试确定实数k 的值.3.在平行四边形ABCD 中,AC 与BD 相交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F ,若AC →=a ,BD →=b ,则AF →等于( )A.14a +12bB.23a +13bC.12a +14bD.13a +23b 4.已知AB →=a +2b ,BC →=-5a +6b ,CD →=7a -2b ,则下列一定共线的三点是( )A .A 、B 、C B .A 、B 、D C .B 、C 、DD .A 、C 、D5.已知△ABC 和点M 满足MA →+MB →+MC →=0,若存在实数m 使得AB →+AC →=mAM →成立,则m 等于( )A .2B .3C .4D .56.已知点O 为△ABC 外接圆的圆心,且OA →+OB →+OC →=0,则△ABC 的内角A 等于( )A .30°B .60°C .90°D .120°7、在△ABC 中,D 为AB 边上的一点,AD=2DB,CD =13CA+x AC,则x =_______ 8.在△ABC 中,AN=12NC,P 为BN 上一点, AP=29AC+x AB,则x =_______9.10.作业:1.设O 在△ABC 的内部,D 为AB 的中点,且OA →+OB →+2OC →=0,则△ABC 的面积与△AOC的面积的比值为 ( )A .3B .4C .5D .6[答案] B2.M 为△ABC 变BC 上任意一点,N 为AM 的中点, AN=x AB+y AC,则x +y =_______3.4.第2节共线向量之三点共线答案答案:做一做1.[答案]-12.[答案]k=±1.3.B4.B5.B6.B7.238.1 39.10.作业:1.B2.123. 4.。

三点共线问题3

三点共线问题3

高考数学优质专题(附经典解析)三点共线问题基本方法:三点共线问题解题策略一般有以下几种:①斜率法:若过任意两点的直线的斜率都存在,通过计算证明过任意两点的直线的斜率相等证明三点共线;②距离法:计算出任意两点间的距离,若某两点间的距离等于另外两个距离之和,则这三点共线;③向量法:利用向量共线定理证明三点共线;④直线方程法:求出过其中两点的直线方程,再证明第三点也在该直线上;⑤点到直线的距离法:求出过其中某两点的直线方程,计算出第三点到该直线的距离,若距离为0,则三点共线.⑥面积法:通过计算求出以这三点为三角形的面积,若面积为0,则三点共线.在处理三点共线问题时,离不开解析几何的重要思想:“设而不求思想”.一、典型例题1.已知椭圆22:12x C y +=,41,33M ⎛⎫ ⎪⎝⎭为椭圆上一点,若,R S 是椭圆C 上的两个点,线段RS 的中垂线l 的斜率为12且直线l 与RS 交于点P ,O 为坐标原点,求证:,,P O M 三点共线.2.已知椭圆的焦点在x 轴上,它的一个顶点恰好是抛物线24x y =的焦点,离心率e =.过椭圆的右焦点F 作与坐标轴不垂直的直线l ,交椭圆于A 、B 两点. (1)求椭圆的标准方程;(2)设点(,0)M m 是线段OF 上的一个动点,且()MA MB AB +⊥,求m 的取值范围;(3)设点C 是点A 关于x 轴的对称点,在x 轴上是否存在一个定点N ,使得C 、B 、N 三点共线?若存在,求出定点N 的坐标,若不存在,请说明理由.二、课堂练习1.抛物线2:4C y x =,已知斜率为k 的直线l 交y 轴于点P ,且与曲线C 相切于点A ,点B 在曲线C 上,且直线PB x 轴,P 关于点B 的对称点为Q ,判断点,,A Q O 是否共线,并说明理由.2.已知椭圆22143x y +=,点F 是椭圆的右焦点. 是否在x 轴上存在定点D ,使得过D 的直线l 交椭圆于,A B 两点.设点E 为点B 关于x 轴的对称点,且,,A F E 三点共线?若存在,求D 点坐标;若不存在,说明理由.三、课后作业1. 已知抛物线2:4C y x =的焦点为F ,直线l 过点()1,0-,直线l 与抛物线C 相交于,A B 两点,点A 关于x 轴的对称点为D . 证明:,,B F D 三点共线.2.已知椭圆:E 22162x y +=,其右焦点为F ,过x 轴上一点()3,0A 作直线l 与椭圆E 相交于,P Q 两点,设(1)AP AQ λλ=>,过点P 且平行于y 轴的直线与椭圆E 相交于另一点M ,试问,,M F Q 是否共线,若共线请证明;反之说明理由.3.已知椭圆22:132x y E +=,过定点()3,4P -且斜率为k 的直线交椭圆E 于不同的两点,M N ,在线段MN 上取异于,M N 的点H ,满足PMMHPN NH =,证明:点H 恒在一条直线上,并求出这条直线的方程.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档