电缆用模具的分类和设计

浙江三科线缆有限公司

模具有关知识

1模具的分类

此类模具一般称为线模,可分圆模和型模,常用线模材料有钻石模、硬质合金模、聚晶模等。

a钻石模:钻石模也称金刚石,具有最高的硬度,耐磨,但价格较贵。在拉丝中,一般用在拉小规格单丝,如Φ0.40mm及以下规格。

b硬质合金模:在拉伸生产中,过去使用的钨钢模全为硬质合金模所代替的。因为硬质合金模拉伸模与钢模相比具有:耐磨性较好,抛光性好、对被加工金属的粘附性小,摩擦系数小,导热系数高和具有很高的耐腐蚀性。

c 聚晶模:也称人造钻石,是目前最常用的模丝模,它具有耐磨性,但也有不足之处就是生产出产品表面不光滑。

d 钨钢模:目前常用于铝拉,且使用寿命较短,一般用于过桥模,钨钢模耐磨性一般、价格低廉,其强度不适合于铜拉,拉制线芯表面不光滑。

2模孔结构

2.1入口区:

一般有圆弧,便于拉制线材进入工作区,不被模孔边缘所损伤;润滑液储蓄、并起到润滑拉制线材作用,在拉伸模孔中靠这部分来加大工作区的高一般为模坯总高H的25%,角度为60度。

2.2工作区:

是整个模孔的重要部分,金属拉伸塑性变形是该区进行的就是金属材料通过此区由尺寸的截面。此区的选择主要是高度和锥角,高度的选择原则是:

a)拉制软金属线材应拉制硬金属线材为短,

b)拉制小直径线材应拉制较大直径线材为短,

c)湿法拉伸应干式润滑拉伸为短,

d)一般为定径区d的1~1.4倍。

工作锥角根据下列原则选择:

a)压缩率越小,工作锥角越小,

b)拉制材料越硬,工作锥角越小,

c)拉制小直径的材料的材料为小,一般有金属及其合金拉伸时,角度为16~26°,一般拉铜线圆锥角为16~18°,拉铝线时圆锥角为20~24°。

2.3定径区:

它的作用是使制品得到最终尺寸,其高度的选择原则是:

a)拉制软金属材料较拉制金属材料要短,

b )拉制大直径材料应较拉制小直径的炎短,

c )湿式拉伸较之干式润滑拉伸的为短,一般选择h=0.5~1.0d。

2.4出口区:

出口区是拉制材料离开模孔的最后一部分,它能保护定径区不致于崩裂,出口锥角可避免金属线材被定径的出口处损伤和停机时线倒退被括伤,一般为45°。金属的强度极限与拉伸应力之比称为拉伸的安全系数。它的制范围:1.4~2.0。

电缆行业紧压成型类模具最常见的是异型压轮,适用于多芯电缆线芯的压制。

按其用途及角度主要分:180°两芯电缆用、120°三芯电缆用、90°四芯或3+1芯电缆及3+2或4+1芯电缆用。也有将3+1芯、3+2芯及4+1芯电缆用紧压成型模具细分为:90°、100°等。

圆形线芯经异型压轮紧压后,可获得我们设计给定的形状,从而较小电缆的外径,节省材料。压轮的设计面积S与线芯计算面积S1的关系为:

S=S1/k

k—填充系数,等于紧压系数k1×延伸系数k2。

根据线芯截面大小,一般:

70mm2及以下,k1取0.84,k2取1.03;

120 mm2~185 mm2,k1取0.83,k2取1.03;

240 mm2及以上,k1取0.85,k2取1.02。

以上均为全国标线芯的经验值,供大家可以参考,针对目前导体多元化的情形,k值一定需经验证后才能知晓。影响S值的关键因素有大圆弧半径R及扇高H。因R、H值的计算公式较为烦琐,在此我就不详细说明,大家可以参考电线电缆手册第一册P1133页相关资料。

此类模具(图1)的设计主要是根据成缆模架的装配尺寸决定成缆压模的外形尺寸,其孔径根据我们成缆缆芯的外径来决定。注意的是,在模具的两端有圆弧过渡,在进线端需取一个较大圆弧来保护线芯,其主要计算方法可以采用下列方法(本方法是实践总结得出,仅供大家参考):

图1

1、测出成缆绞笼的最大外径D1,测出绞笼至压模架的距离L,利用三角形计算出角度α,见图2。

图2

2、将α角引入到成缆模具中,从B点作α角线段BA与端面交于A点,作AB垂直平分线CO,作BO线与中心线垂直并相交CO线与O点,得到∠COB=α,设计时根据模架尺

寸给定成缆压模的总长L1,设计给定成缆模定径区长度L2,出线区长度等于圆弧半径(一般R1取5或10),通过求三角函数关系得到我们需要的大圆弧半径R=OB(见图3):

图3

cosα=(L1-L2-L3)/AB

sinα=(0.5×AB)/ OB

通过以上公式,可以计算得到大圆弧半径R=OB。

模具是产品定型的装置,是塑料挤出全过程中最后热压作用装置,其几何形状、结构形式和尺寸,温度高低、压力大小等直接决定电缆加工的成败,因此任何挤塑产品模具的设计、选配及其保温措施都受到高度重视。在用塑料挤出机挤制电线电缆的绝缘层和护套层时,模具是控制塑料挤包层厚度的关键。

一般挤出模具按挤出方式可分为:挤压式、挤管式、半挤管(挤压)式三种。其配合方式见图:

挤压式模具挤管式模

具半挤管式模具

挤压式模具:模芯与模套定径区内侧有一定的距离,利用压力实现产品最后定型的,塑料通过挤压,直接挤包在线芯或缆芯上,挤出紧密结实、表面平整光滑。但其易偏心,使用寿命不长,配模要求较高,挤出线芯弯曲性能不好。适合用于小规格线芯的挤出;挤包要求紧密、外表要求圆整、均匀的线芯;以及塑料拉伸比较小者等。

挤管式模具:模芯有“长嘴”,配合时一般将模芯嘴与模套口持平,这样就组成挤管式模具。其是利用塑料的可拉伸性,与挤压式模具相比,具有高效率、易调偏、挤出线芯的弯

曲性能好、使用寿命长、配模互换性强等优点,但在挤出致密性、挤出质量等方面不如挤压式模具。

半挤管式模具:又称半挤压式模具,模芯有“短嘴”,一般模芯模嘴在模套定径区的1/2处。半挤管式模具与挤管式模具大体相同,只是模嘴长度比挤管式短,模套定径区长度也比挤管式稍短,其吸取了挤管式和挤压式的优点,改善了上面两种方式模具的缺点,适用性较广,但线芯柔软性较差或线芯弯曲时,不宜采用此类模具挤出。

1模芯

1)模芯外锥最大外径ΦD1:该尺寸是由模芯座的尺寸决定的,要求严格吻合,不得出现“前台”,也不可出现“后台”,否则会造成存胶死角,直接影响塑料组织和挤出表面质量。

2)内锥最大外径ΦD2:该尺寸决定于加工条件及模芯螺纹壁厚,在保证螺纹壁厚的前提下,ΦD2越大越好,便于穿线,也便于加工。

3)连接螺纹M1:该尺寸必须与模芯座的螺纹尺寸一致,保证螺纹连接紧密。

4)模芯孔径Φd1:此尺寸是影响挤出质量最大的结构尺寸,按线芯结构特性及其几何尺寸设计。一般情况下,单线取d1=线芯直径+(0.05~0.15)mm;绞合线芯取d1=线芯外径+(0.3~1.3)mm,具体根据线芯大小而定。

5)模芯外锥最小外径Φd2:实际上是模芯出线端口厚度的尺寸,端口厚度Δ=1/2

(d2-d1)不能太薄,否则影响模具使用寿命;也不宜太厚,否则塑料不能直接流到线芯上,且在结合处容易形成涡流区,引起挤出压力的波动,挤出质量不稳定,一般壁厚控制在0.5~1mm为宜。

6)模芯定径区长度l1:l1决定了线芯通过模芯的稳定性,不能设计的太长,否则造成加工困难,工艺要求的必要性也不大,一般取l1=(0.5~1.5)d1。但同时必须考虑加工制造的因素,太短或太长,都会引起加工困难,在设计时需综合考虑,根据模芯总长度取一个合适的值。

7)模芯外锥角度β:这是设计给出的参考尺寸,从图6中不难看出,tgβ/2=(D1-d2)/[2*(L1-l2)],即(L1-l2)=(D1-d2)/[2*tg(β/2)]。所以,模芯外锥部分长度可以依据上述决定的尺寸确定,经计算如果太长或太短,与机头内部结构配合不当,可回过头来修正锥角β,然后在计算外锥长度,直至合适。设计时,一般模芯外锥角度β应不大于45°,与模套内锥角度γ的角度差应控制在3~10°,具体应根据机头实际结构尺寸及挤出材料的不同,选择一个合理角度。

2模套

1)模套最大外径ΦD3:根据模套座(或机头内筒直径)设计,一般小于筒径2~3mm,此间隙工艺调整偏心、确保同心度的必须。

2)内锥最大直径ΦD4:这是模套设计的精密尺寸之一。其尺寸必须严格与模套座(或机头内锥)末端内径一致,否则装配后将产生阶梯死角,这是工艺设计不允许的。

3)模套定径区直径Φd3:这也是模套设计的精密尺寸之一。要根据产品外径、考虑挤出各工艺参数及塑料特性严格设计。一般d3=成品标称直径+(0.1~0.3)mm,根据材料的不同,有时则设计为d3=成品标称外径-(0.1~0.3)mm。

4)模套内锥角γ:角γ是由ΦD4、Φd3及模套长度制约的,角γ同时又受到与其配套的模芯的外锥角的制约,需控制模套内锥角γ-模芯外锥角β=3~10°。若角度差过小,保证不了挤出压力;角度差也不能太大,太大则挤出压力过大,减少挤出量,影响生产效率,可能会引起生产时厚度不能满足我们的工艺要求。

5)模套定径区长度l3:一般取l3=(0.5~1)d3为宜,定径区长些对成型有利,但越长阻力越大,影响产量。所以当模套孔径d3较大时,不能取上限。

6)模套压座厚度l4:按模套座深度(或机头内筒出口处深度)设计,一般要大0.5~1mm。

7)模套总长L2:这是设计给出的参考尺寸,由模套内锥角γ、模套内锥最大外径ΦD4及模套定径区长度l3来决定。但还应考虑到,设计的模套在装配时,模套最外端伸出机头部分的长度不宜过长,太长会影响传热效果,导致模套口塑料的温度受到影响,从而影响挤出质量。

1挤管式模芯

其结构设计除定径区部分外,其余外形尺寸与挤压式模芯基本相同,现对挤管式模芯定径部分的尺寸设计进行说明。

1)模芯定径区内径Φd1:又叫模芯孔径。

该尺寸根据选用材料的耐磨性、半制品(线芯或缆芯)尺寸的大小及其材质与外径规整程度等进行设计,一般设计为:绝缘时,d1=d线芯+(2~3)mm;护套时,d1=d线芯+(3~7)mm。通常,在设计模具规格时,应考虑系列化,将模具尺寸调整成整数。

2)模芯定径区外圆柱直径Φd2:从图8中,我们可以看出d2决定于d1及其壁厚δ,即d2=d1+2δ ,这个壁厚的设计既要考虑到模芯的寿命,又要考虑塑料的拉伸特性及挤包紧密程度等因素,一般都设计为d2=d1+2(0.5~1.5)mm,即模芯壁厚为0.5~1.5mm。 3)模芯定径区外圆柱长度l1:该尺寸依照尺寸d1考虑挤出塑料成型特性设计,一般设计为l1=(0.5~1)d1+(1~2)mm。

4)定径区内圆柱长度l2:该尺寸由加工条件及半制品结构特性所决定。无论如何l2都必须比l1长2~4mm,主要是保证模芯模嘴部分的强度。

2挤管式模套

挤管式模套的结构型式与挤压式模套基本相同,如图7所示。所不同之处是其结构尺寸中的模套定径区的直径d3及其长度l3,必须按与其配合的挤管式模芯来设计

1)模套定径区直径d3:该尺寸按挤管式模芯模嘴外圆直径d2、线芯或缆芯外径、挤包塑料厚度等因素来设计。一般设计为d3=d2+2δ厚度+拉伸余量。挤管式模具应用理论基础是塑料的可拉伸性,我们在设计模具时要了解塑料的拉伸特性,利用并控制它。

拉伸比的定义:塑料模口的圆环面积S1与包覆于电缆的圆环面积S2之比。(实际上,拉伸比就是面积转换)

S1=π/4(d32-d22)

S2=π/4(d挤包后2-d线芯2)

拉伸比K=S1/S2=(d32-d22)/(d挤包后2-d线芯2)

一般设计时,聚氯乙烯(PVC)的拉伸比取1.2~1.8,聚乙烯(PE)及交联聚乙烯(XLPE)的拉伸比取1.3~2.0。则,模套定径区直径d3=d2+(2+K)δ厚度,K值根据绝缘和护套的不同,适当调整。由此,可以看出,挤管式模具的适用范围较广。

2)模套定径区长度l3:该尺寸往往根据塑料的成型特性和模芯定径区外圆柱的长度l2而定。一般设计为l3= l2-(1~6)mm,同时应满足l3=(0.5~1)d3 mm,而且厚度小时取下限,否则,反之。

半挤管式模具的设计与挤管式模具的设计基本是一样的,所不同的是:模芯——模嘴部分的长度没有挤管式长,且模嘴应在模套定径区的1/2处;模套——定径区的长度较挤管式模套的定径区稍短。其他参数的设计与挤管式模具的设计是一样的。

总之,设计模具时,除考虑材料、加工、使用寿命外,还应满足下列条件:

①增加模具的压力,使塑料从机筒进入模具后的压力均匀稳定增加,增加塑料的致密性;

②增长模具配合部分的塑料流动通道,使流动中的塑料进一步塑化,从而提高塑料塑化的程度;

③消除模具配合中产生的流动死角,防止塑料在死角中发生老化、产生老胶。

模具设计,可以先设计模芯再设计模套,也可以先设计模套再设计模芯。为了较少设计验证次数,一般先设计模套再设计模芯。

我们以65型挤出机机头来举例,已知机头装配尺寸,要求设计模芯、模套。

经测绘,得65型挤出机模头尺寸。

1、先设计模套,根据模套拆装要求,其伸出模头的长度约10mm,则得到模套的总长10+20=30mm;

2、确定模套内锥最大外径=Φ25mm;

3、根据要求,确定模套定径区直径ΦD;

4、取定径区长度=0.5D;

5、计算模套内锥半角γ/2=ATAN((25-D)/(2*(30-0.5D))*180/PI();绘制模套的草图(见图10);

6、因采用挤压式,模芯与模套的模间距L=2δ厚度;

7、选模头右边平面为基准面A,模芯口至基准面A的距离=10-2δ厚度;

8、为模芯拆卸方便以及模芯强度,选模芯伸出模头左边约10mm,则可以得到模芯总长=10+(10-2δ厚度)+65;

9、绘制模芯草图(如图);

10、为便于调节偏芯,模芯螺纹长度一般取8~10mm,即b=8mm;

11、根据模头尺寸结构,取d4=18mm;

12、根据第8条,我们知道模芯伸出模头左侧10mm,则a+b=27+10=37mm,

a=37-b=37-8=31mm;

13、为保证调偏螺钉能正面受力在模芯上,一般c取12~15mm,即c=15mm;

14、根据线芯大小,我们确定模芯定径区直径d1=d线芯+(0.2~0.5)mm,取d1=d 线芯+0.2 mm,那么模芯外锥最小外径d2=d1+0.5*2=d线芯+1.2 mm;

15、那么根据以上数据,我们可以得出模芯外锥部分的长度=L-a-b-c=10+(10-2δ厚度)+65-31-8-15=31-2δ厚度mm;

16、根据锥角计算公式,求的模芯外锥角β= ATAN((18- d线芯+1.2)/(2*(31-2δ厚度))*180/PI()

17、将计算出模芯的锥角β与计算的模套外锥角γ比较,看看其差值是不是符合我们设计要求,若在设计范围内,设计成功,绘制零件图;若有出入,再次循环以上内容,直至符合设计要求为止,但必须保证在满足角度的前提下,还必须满足装配上的要求。

以上,我们是用最简单的65型挤出机模具设计来举的一个例子,实际中比以上设计要复杂多,但万变不离其中,请大家在设计时,必须根据机头的装配图及零件图的尺寸来合理设计。具体步骤大致如下:

1、根据机头的零件图设计模套:

1.1 先根据给定一个角度以及模套不要伸出机头太长的原则,将模套的总长确定;

1.2 根据机头零件图,确定模套装配尺寸,包括模套内锥最大外径、模套外径等尺寸;

1.3 根据产品工艺要求,暂现确定模套孔径及定径区长度;

1.4 根据确定好的模套各数据,计算出模套的内锥角。

2、根据机头装配图、模芯座零件图以及设计好的模套,来设计模芯:

2.1 首先确定挤出类型:挤压式、挤管式、半挤管式,确定好模芯与模套的距离;

2.2 在机头装配图中,选择一个基准面,以基准面来计算相关长度;

2.3 得到模芯的长度后,根据模芯座的结构尺寸确定模芯装配尺寸;

2.4 根据线芯规格确定模芯孔径以及模芯外锥最小外径等尺寸;2.5 根据获得的模芯的相关数据计算处模芯外锥锥角,并验证与模套的角度差是否符合设计要求;

3、根据模芯、模套的相关尺寸绘制零件图,加工使用验证。

3.6 下面,我们再简单介绍挤出机螺杆的压力及出胶量等方面的知识,供大家参考:

3.6.1普通挤出机用等距不等深螺杆(渐变型螺杆)的出胶量计算公式:

Q= (u×b×h1×h2) /( h1+h2) –(b×g×p×h12×h22)/( b×η×L×(h1+h2))

其中:Q:挤出量cm3/min

u:螺杆在推进方向的速度(即螺杆转速)cm/min

b:螺槽的宽度(法向)cm

h1:填实点螺杆深度(进料口螺杆深度)cm

h2:端部螺杆深度(出料口螺杆深度)cm

g:重力加速度cm/min

η:塑料的粘度kg/cm?min

p:挤出压力kg/cm2

L:从填实点到端部螺纹展开长度(螺纹旋合长度)cm

从上式中,我们可以发现:

1、挤出压力越大,挤出量就越小;

2、螺槽深度越浅,挤出量越稳定;

3、螺槽宽度越大,挤出量越大,但宽度加大会使得螺纹宽度减小或塑化路径缩短;

4、螺纹深度要适当控制,螺纹深度越浅,则螺槽容积减小,挤出量减小,故太浅不行,但也不宜太深,太深则形成挤出量不稳定;

3.6.2塑料在螺杆中呈螺旋运动,螺杆旋转产生剪切力,产生的剪切力将塑料剪切塑化,不同的材料需要不同的剪切力,才能达到理想的塑化效果,故使用不同的材料,螺杆也应不同。产生的剪切应变率的大小是由螺杆与套筒间的剪切应变力所决定。

Δ=(π×D×N)/h

其中:Δ:剪切应变率(1/min)

h:螺槽深度(cm)

D:螺杆直径(cm)

N:螺杆转速(转/min)

由此可见:螺槽深度越浅,转速越高,剪切应变率就越大。

3.6.3挤出压力传输关系

塑料在挤出中的流向为:螺杆-- 机头分流面--模具--线芯表面。

从上面的流程中,我们分析出:

1、从螺杆到分流面的压力是靠挤出机螺杆的剪切力及旋转推力产生的,将其压力视为零损耗,那么它就是面积的转换:

分流面压缩比K1=S螺杆筒末端截面/S分流面截面

2、从分流面到模具口的压力是靠模具的角度差产生的:

模具口压缩比K2= K1×(1+tanα)×K损耗

α—模套与模芯的角度差;

K损耗—塑料在行程中的损耗。

3、从模具到线芯表面是靠1和2的压力将塑料挤出的:

分流面与电缆出口压缩比K3= S螺杆筒末端截面/S塑料实际挤出截面,考虑到在模具配合中压力变化的复杂性,直接用分流面变化到线芯。

电缆用模具的分类和设计

浙江三科线缆有限公司 模具有关知识 1模具的分类 此类模具一般称为线模,可分圆模和型模,常用线模材料有钻石模、硬质合金模、聚晶模等。 a钻石模:钻石模也称金刚石,具有最高的硬度,耐磨,但价格较贵。在拉丝中,一般用在拉小规格单丝,如Φ0.40mm及以下规格。 b硬质合金模:在拉伸生产中,过去使用的钨钢模全为硬质合金模所代替的。因为硬质合金模拉伸模与钢模相比具有:耐磨性较好,抛光性好、对被加工金属的粘附性小,摩擦系数小,导热系数高和具有很高的耐腐蚀性。 c 聚晶模:也称人造钻石,是目前最常用的模丝模,它具有耐磨性,但也有不足之处就是生产出产品表面不光滑。 d 钨钢模:目前常用于铝拉,且使用寿命较短,一般用于过桥模,钨钢模耐磨性一般、价格低廉,其强度不适合于铜拉,拉制线芯表面不光滑。 2模孔结构 2.1入口区: 一般有圆弧,便于拉制线材进入工作区,不被模孔边缘所损伤;润滑液储蓄、并起到润滑拉制线材作用,在拉伸模孔中靠这部分来加大工作区的高一般为模坯总高H的25%,角度为60度。 2.2工作区: 是整个模孔的重要部分,金属拉伸塑性变形是该区进行的就是金属材料通过此区由尺寸的截面。此区的选择主要是高度和锥角,高度的选择原则是: a)拉制软金属线材应拉制硬金属线材为短, b)拉制小直径线材应拉制较大直径线材为短, c)湿法拉伸应干式润滑拉伸为短, d)一般为定径区d的1~1.4倍。 工作锥角根据下列原则选择: a)压缩率越小,工作锥角越小, b)拉制材料越硬,工作锥角越小, c)拉制小直径的材料的材料为小,一般有金属及其合金拉伸时,角度为16~26°,一般拉铜线圆锥角为16~18°,拉铝线时圆锥角为20~24°。 2.3定径区: 它的作用是使制品得到最终尺寸,其高度的选择原则是: a)拉制软金属材料较拉制金属材料要短, b )拉制大直径材料应较拉制小直径的炎短, c )湿式拉伸较之干式润滑拉伸的为短,一般选择h=0.5~1.0d。 2.4出口区: 出口区是拉制材料离开模孔的最后一部分,它能保护定径区不致于崩裂,出口锥角可避免金属线材被定径的出口处损伤和停机时线倒退被括伤,一般为45°。金属的强度极限与拉伸应力之比称为拉伸的安全系数。它的制范围:1.4~2.0。 电缆行业紧压成型类模具最常见的是异型压轮,适用于多芯电缆线芯的压制。 按其用途及角度主要分:180°两芯电缆用、120°三芯电缆用、90°四芯或3+1芯电缆及3+2或4+1芯电缆用。也有将3+1芯、3+2芯及4+1芯电缆用紧压成型模具细分为:90°、100°等。

电力电缆结构及种类

电力电缆的结构及种类简介 一、电力电缆的基本结构 不论是何种种类的电力电缆,其最基本的组成有三部分,即导体、绝缘层和护层。对于中压及以上电压等级的电力电缆,导体在输送电能时,具有高电位。为了改善电场的分布情况,减小导体表面和绝缘层外表面处的电场畸变,避免尖端放电,电缆还要有内外屏蔽层。总得来说,电力电缆的基本结构必须有导体(也可称线芯)、绝缘层、屏蔽层和护层四部分组成,这四部分在组成和结构上得差异,就形成了不同类型、不同用途的电力电缆,多芯电缆绝缘线芯之间,还需要添加填芯和填料,以利于将电缆绞制成圆形,便于生产制造和施工敷设。 1.导体(或称导电线芯): 其作用是传导电流。有实芯和绞合之分。材料有铜、铝、银、铜包钢、铝包钢等,主要用的是铜与铝。铜的导电性能比铝要好得多。 2.耐火层: 只有耐火型电缆有此结构。其作用是在火灾中电缆能经受一定时间,给人们逃生时多一些用电的时间。 3.绝缘层: 包覆在导体外,其作用是隔绝导体,承受相应的电压,防止电流泄漏。 绝缘材料有多种多样,有的要求介电系数要小,以减少损耗,有的要求有阻燃性能或能耐高温,有的要求电缆在燃烧时不会或少产生浓烟或有害气体,有的要求能耐油、耐腐蚀,有的则要求柔软等。 4.屏蔽层: 在绝缘层外,外护层内,作用是限制电场和电磁干扰。 对于不同类型的电缆,屏蔽材料也不一样,主要有:铜丝编织、铜丝缠绕、铝丝(铝合金丝)编织、铜带、铝箔、铝(钢)塑带、钢带等绕包或纵包等。 5.填充层: 填充的作用主要是让电缆圆整、结构稳定,有些电缆的填充物还起到阻水、耐火等作用。主要的材料有聚丙烯绳、玻璃纤维绳、石棉绳、橡皮等,种类很多,但有一个主要的性能要求是非吸湿性材料,当然还不能导电。 6.内护层:

模具类型

六、模具类型(Mold Types): 两板模(Two-Plate Molds)﹕ 两板模是最常用的模具类型,与三板模比较,两板模具有成本低、结构简单及成型周期短的优点。 单模穴两板模 许多单穴模具采用两板模的设计方式,如果你的产品只用一个浇口,不要流道,那么塑料会由竖流道直接流到型腔中。 多模穴与家族模穴两板模 你可以使用两板模在一模多穴和家族模穴模中,但是这种结构中限制进浇的位置,因为在两板模中流道和浇口也位于分模面上,这样他们才能随开模动作一起作业。 在你设计多穴模具之前,你应该分析单个成品(分析类型用Part Only)来决定浇口位置。如果分模面与浇口在同一线上,那么就能用两板模。 当你设计一模多穴的模具时,到 达流动平衡对你设计流道是重要的。 对于一模多穴而言,使用常用的两板 模结构,使各模穴的流动到达平衡不 大可能,因此你或许要用三板模或者 用热流道的两板模代替。 采用热流道的两板模 它能保证塑料以熔融状态通过竖流道、横流道、浇口,只有到了模穴时才开始冷却、凝固。当模具打开时,成品(或冷流道)被顶出,当模具再次关闭时,流道中的塑料仍然是热的,因此可以直接充填模穴,此种模具中的流道可能由冷热两部分组成。 采用热流道的两板模可以用来改变成三板模。 在这种模具中,进浇位置必需放在模穴中心,以避免在成品可见侧上留下痕迹,这就意味着流道 必需远离分模面。(脱模时避免碰 到划伤) 假设你使用热流道模具,流

道不需顶出,因此流道远离分模面也不会引起任何问题。 热流道也适用于小产品的一模多穴模具中,假如有许多小产品,常用的流道系统可能会浪费许多材料,如果它不能回收的话。 热流道的优点: 较少的废料,无需回收 较不明显的浇口痕迹 可以不要切除浇口 缩短成型周期 可较大程度上控制模穴充填和胶体流动 热流道的缺点: 较高的成本 难于改变材料颜色 易于出故障,特别是加热控制系统 对热敏性材料不适用 对高数量、高品质的产品,采用热流道系统利大于弊。在有些案中,最好的结果也许是采用热流道与冷流道的结合。 三板模(Three-Plate Molds)﹕ 三板模的流道系统位于与主分模面平行的拨料板上,开模时拨料板顶出流道及衬套内的废料,在三板模中流道与成品将分开顶出。 当整个流道系统不可能与浇口放于同一平板上时,使用三板模。这可能因为: 模具包含多穴或家族模穴; 一模一穴较复杂的成品需要多个进浇点; 进浇位置在不便于放流道的地方; 平衡流动要求流道设计在分模面以外的地方。

电线电缆产品主要分为五大类(二)

电线电缆产品主要分为五大类(三) 1、裸电线及裸导体制品 本类产品的主要特征是:纯的导体金属,无绝缘及护套层,如钢芯铝绞线、铜铝汇流排、电力机车线等;加工工艺主要是压力加工,如熔炼、压延、拉制、绞合/紧压绞合等;产品主要用在城郊、农村、用户主线、开关柜等。 2、电力电缆 本类产品主要特征是:在导体外挤(绕)包绝缘层,如架空绝缘电缆,或几芯绞合(对应电力系统的相线、零线和地线),如二芯以上架空绝缘电缆,或再增加护套层,如塑料/橡套电线电缆。主要的工艺技术有拉制、绞合、绝缘挤出(绕包)、成缆、铠装、护层挤出等,各种产品的不同工序组合有一定区别。 产品主要用在发、配、输、变、供电线路中的强电电能传输,通过的电流大(几十安至几千安)、电压高(220V至500kV及以上)。 3、电气装备用电线电缆 该类产品主要特征是:品种规格繁多,应用范围广泛,使用电压在1kV及以下较多,面对特殊场合不断衍生新的产品,如耐火线缆、阻燃线缆、低烟无卤/低烟低卤线缆、防白蚁、防老鼠线缆、耐油/耐寒/耐温/耐磨线缆、医用/农用/矿用线缆、薄壁电线等。 4、通讯电缆及光纤 随着近二十多年来,通讯行业的飞速发展,产品也有惊人的发展速度。从过去的简单的电话电报线缆发展到几千对的话缆、同轴缆、光缆、数据电缆,甚至组合通讯缆等。 该类产品结构尺寸通常较小而均匀,制造精度要求高。 5、电磁线(绕组线) 主要用于各种电机、仪器仪表等。 电线电缆的衍生/新产品:北京塑力亿航线缆有限公司联系电话:86-010-******** 86-010-******** 电线电缆的衍生/新产品主要是因应用场合、应用要求不同及装备的方便性和降低装备成本等的要求,而采用新材料、特殊材料、或改变产品结构等; 采用不同材料如阻燃线缆、低烟无卤/低烟低卤线缆、防白蚁、防老鼠线缆、耐油/耐寒/耐温线缆等; 改变产品结构如:耐火电缆等; 提高工艺要求如:医用线缆等; 组合产品如:OPGW等; 方便安装和降低装备成本如:预制分支电缆等。

常见电线电缆的规格型号

常见电线电缆的规格型号 BVVB:铜芯聚氯乙烯绝缘聚氯乙烯护套扁形(B)电线 AVR:铜芯聚氯乙烯绝缘安装(A)用软(R)电线 RV:软铜导体无护套电缆 AVRB :铜芯聚氯乙烯绝缘扁形安装用软电线 RVB:软铜导体扁形无护套电缆 RVS:铜芯聚氯乙烯绝缘绞型(S)连接用软电线 RVV:铜芯聚氯乙烯绝缘聚氯乙烯护套软电线(前一个V表示聚氯乙烯绝缘,后一个V表示聚氯乙烯护套)AVVR:铜芯聚氯乙烯绝缘聚氯乙烯护套安装用软电缆 至于规格有3等芯4等芯和3+1 3个常用规格等芯就是截面一样的3+1就是地线的截面是相线的一半。目前50平方以下都是等芯。 电线电缆 3.6/6kv 指额定电压(使用场合/电压等级) 电线型号中:字母B表示布电线,字母V表示塑料中的聚氯乙烯,字母R表示软线(导体为很多细丝绞在一起)。还有铜芯符号、硬线(常见的单芯导体)符号省略没有表示。 BVV表示聚氯乙烯绝缘,聚氯乙烯护套,铜芯(硬)布电线。常常简称护套线,单芯的是圆的,双芯的就是扁的。常常用于明装电线。 BVR表示聚氯乙烯绝缘,铜芯(软)布电线。常常简称软线。由于电线比较柔软,常常用于电力拖动中和电机的连接以及电线常有轻微移动的场合。 附:电线电缆命名 电线电缆的完整命名通常较为复杂,所以人们有时用一个简单的名称(通常是一个类别的名称)结合型号规格来代替完整的名称,如“低压电缆”代表 0.6/1kV级的所有塑料绝缘类电力电缆。电线电缆的型谱较为完善,可以说,只要写出电线电缆的标准型号规格,就能明确具体的产品,但它的完整命名是怎样的呢? 电线电缆产品的命名有以下原则: 1、产品名称中包括的内容 (1)产品应用场合或大小类名称 (2)产品结构材料或型式; (3)产品的重要特征或附加特征 基本按上述顺序命名,有时为了强调重要或附加特征,将特征写到前面或相应的结构描述前。 2、结构描述的顺序 产品结构描述按从内到外的原则:导体-->绝缘-->内护层-->外护层-->铠装型式。 3、简化 在不会引起混淆的情况下,有些结构描述省写或简写,如汽车线、软线中不允许用铝导体,故不描述导体材料。 案例: 额定电压8.7/15kV阻燃铜芯交联聚乙烯绝缘钢带铠装聚氯乙烯护套电力电缆 (太长了!) “额定电压8.7/15kV”——使用场合/电压等级 “阻燃”——强调的特征 “铜芯”——导体材料 “交联聚乙烯绝缘”——绝缘材料 “钢带铠装”——铠装层材料及型式(双钢带间隙绕包) “聚氯乙烯护套”——内外护套材料(内外护套材料均一样,省写内护套材料) “电力电缆”——产品的大类名称 与之对应的型号写为ZR-YJV22-8.7/15,型号的写法见后面的说明。

电力电缆分类

电力电缆分类 N H-E E铜芯低烟无卤聚氯乙烯绝缘及护套耐火电力电缆 N H-V V 铜芯聚氯乙烯绝缘及护套耐火电力电缆 N H Z R-V V 铜芯聚氯乙烯绝缘及护套耐火阻燃电力电缆 N H-V V22铜芯聚氯乙烯绝缘及护套钢带铠装耐火电力电缆 N H Z R-V V22铜芯聚氯乙烯绝缘及护套钢带铠装耐火阻燃电力电缆 N H-V V32铜芯聚氯乙烯绝缘及护套细钢丝铠装耐火电力电缆 N H Z R-V V32铜芯聚氯乙烯绝缘及护套细钢丝铠装耐火阻燃电力电缆 N H-V D V D铜芯低烟低卤聚氯乙烯绝缘及护套耐火电力电缆 N H-V D V D22铜芯低烟低卤聚氯乙烯绝缘及护套钢带铠装耐火电力电缆 N H-V D V D32铜芯低烟低卤聚氯乙烯绝缘及护套细钢丝铠装耐火电力电缆 N H-E E铜芯低烟无卤聚氯乙烯绝缘及护套耐火电力电缆

N H-E E22铜芯低烟无卤聚氯乙烯绝缘及护套钢带铠装耐火电力电缆 N H-E E32铜芯低烟无卤聚氯乙烯绝缘及护套细钢丝铠装耐火电力电缆 N H-Y J V 铜芯交联聚乙烯绝缘聚氯乙烯护套耐火电力电缆 N H Z R-Y J V 铜芯交联聚乙烯绝缘聚氯乙烯护套耐火阻燃电力电缆 N H-Y J V22铜芯交联聚乙烯绝缘聚氯乙烯护套钢带铠装耐火电力电缆 N H Z R-Y J V22铜芯交联聚乙烯绝缘聚氯乙烯护套钢带铠装耐火阻燃电力电缆 N H-Y J V32铜芯交联聚乙烯绝缘聚氯乙烯护套细钢丝铠装耐火电力电缆 N H Z R-Y J V32铜芯交联聚乙烯绝缘聚氯乙烯护套细钢丝铠装耐火阻燃电力电缆 N H-Y J V D铜芯交联聚乙烯绝缘低烟低卤聚氯乙烯护套耐火电力电缆 N H-Y J V D22铜芯交联聚乙烯绝缘低烟低卤聚氯乙烯护套钢带铠装耐火电力电缆 N H-Y J V D32铜芯交联聚乙烯绝缘低烟低卤聚氯乙烯护套细钢丝铠装耐火电力电缆

模具种类

模具的分类 [用途上分]: A [塑胶模]Plastic mould :用于制造塑胶产品,如:3C类产品[3C:计算机(Computer),通讯(Communication), 消费类电子:(Consumer Electrics)]汽车摩托车结构件,内饰件,日用品,儿童玩具,建筑用PVC水管接头,各种工具的手柄,精密仪器零件等涉及生活的每一个角落。 B [冲压模]die ( Pressed tooling):用于制造金属钣金,片状材料的剪裁下料等。如:电脑等各类机箱、机柜、不锈钢厨具、连接器端子、接插件铜片、电路板切孔,钣金成型,快餐盒成型等。 C [压铸模]Die casting (alloy mould):主要用于生产铝合金,锌合金,镁铝合金等铸件,如笔记本外壳,汽车摩托车发动机,音箱,阀体配件等。 D [压缩模] Compression mould:主要用于生产橡胶,硅橡胶制品,如各种防水圈,饰件,缓冲件,衬垫,手机按键等。 E [吹塑,吸塑模] blow mold:主要用于生产塑胶类中空容器类产品,如各种饮料瓶,塑料壶,化妆品盒,洗发水瓶,充气玩具,塑料包装等。 F [挤出模具]extrusion mould :主要是各种型材,如建筑用铝合金门窗,电线槽, G [半导体模具]semiconductor mold:主要是生产各种二级管,三级管等电子电气元件。 H 玻璃钢模具(SMC/BMC) Phenolic mould 电木模具属于热固性模具 其中应用最广泛的就是塑胶模具,由于塑胶产品种类繁多,所以塑胶模具也有各种分类: [品质要求]: A. production mould量产模 模具产量主要指的是:在模具使用寿命期间所能生产的最大的产品数 按照美国[SPI-SPE]标准可以分为以下几类 一、101类模。(长期精密生产模具,产量在1,000,000shots或以上) 二、102类模。(不超过1,000,000shots,大量生产模具) 三、103类模。(少于500,000shots,中量产模具) 四、104类模。(少于100,000shots,少量产模具) 五、105类模。(少于500shots,手办模或试验模)

常见电线电缆的规格型号

常见电线电缆的规格型号 BVVB :铜芯聚氯乙烯绝缘聚氯乙烯护套扁形(B)电线 AVR :铜芯聚氯乙烯绝缘安装(A)用软(R)电线 RV :软铜导体无护套电缆 AVRB :铜芯聚氯乙烯绝缘扁形安装用软电线 RVB :软铜导体扁形无护套电缆 RVS :铜芯聚氯乙烯绝缘绞型(S)连接用软电线 RVV :铜芯聚氯乙烯绝缘聚氯乙烯护套软电线(前一个V表示聚氯乙烯绝缘,后一个V表示聚氯乙烯护套) AVVR :铜芯聚氯乙烯绝缘聚氯乙烯护套安装用软电缆 至于规格有3 等芯 4 等芯和3+1 3 个常用规格等芯就是截面一样的3+ 1 就是地线的截面是相线的一半。目前50 平方以下都是等芯。 电线电缆 3.6/6kv 指额定电压(使用场合/ 电压等级) 电线型号中:字母B表示布电线,字母V表示塑料中的聚氯乙烯,字母R表示软线(导体为很多细丝绞在一起)。还有铜芯符号、硬线(常见的单芯导体)符号省略没有表示。 BVV 表示聚氯乙烯绝缘,聚氯乙烯护套,铜芯(硬)布电线。常常简称护套线,单芯的是圆的,双芯的就是扁的。常常用于明装电线。 BVR 表示聚氯乙烯绝缘,铜芯(软)布电线。常常简称软线。由于电线比较柔软,常常用于电力拖动中和电机的连接以及电线常有轻微移 动的场合。 附:电线电缆命名 电线电缆的完整命名通常较为复杂,所以人们有时用一个简单的名称(通常是一个类别的名称)结合型号规格来代替完整的名称,如“低压电缆”代表0.6/1kV 级的所有塑料绝缘类电力电缆。电线电缆的型谱较为完善,可以说,只要写出电线电缆的标准型号规格,就能明确具体的产品,但它的完整命名是怎样的呢? 电线电缆产品的命名有以下原则: 1、产品名称中包括的内容 (1)产品应用场合或大小类名称 (2)产品结构材料或型式; (3)产品的重要特征或附加特征基本按上述顺序命名,有时为了强调重要或附加特征,将特征写到前面或相应的结构描述前。 2、结构描述的顺序 产品结构描述按从内到外的原则:导体-->绝缘-->内护层-->外护层-->铠装型式。 3、简化在不会引起混淆的情况下,有些结构描述省写或简写,如汽车线、软线中不允许用铝导体,故不描述导体材料。 案例: 额定电压8.7/15kV 阻燃铜芯交联聚乙烯绝缘钢带铠装聚氯乙烯护套电力电缆(太长了!) “额定电压8.7/15kV ”——使用场合/电压等级 “阻燃”——强调的特征 “铜芯”——导体材料 “交联聚乙烯绝缘”——绝缘材料 “钢带铠装”——铠装层材料及型式(双钢带间隙绕包) “聚氯乙烯护套”——内外护套材料(内外护套材料均一样,省写内护套材料) “电力电缆”——产品的大类名称 与之对应的型号写为ZR-YJV22-8.7/15 ,型号的写法见后面的说明。 电线与电缆的区分 其实,“电线”和“电缆”并没有严格的界限。通常将芯数少、产品直径小、结构简单的产品称为电线,没有绝缘的称为裸电线,其他的称为电缆;导体截面积较大的(大于6平方毫米)称为大电线,较小的(小于或等于6平方毫米)称为小电线,绝缘电线又称为布电线。 电线电缆的型号组成与顺序如下: [1:类别、用途][2:导体][3:绝缘][4:内护层][5:结构特征][6:外护层或派生]-[7:使用特征] 1-5项和第7项用拼音字母表示,高分子材料用英文名的第位字母表示,每项可以是1-2个字母;第6项是1-3个数字。 型号中的省略原则: 电线电缆产品中铜是主要使用的导体材料,故铜芯代号T 省写,但裸电线及裸导体制品除外。裸电线及裸导体制品类、电力电缆类、电磁线类产品不表明大类代号,电气装备用电线电缆类和通信电缆类也不列明,但列明小类或系列代号等。 第7 项是各种特殊使用场合或附加特殊使用要求的标记,在“- ”后以拼音字母标记。有时为了突出该项,把此项写到最前面。 如ZR-(阻燃)、NH-(耐火)、WDZ-(低烟无卤、企业标准)、-TH(湿热地区用)、FY-(防白蚁、企业标准)等。电力电缆铠装和外护套数字代

电缆的种类和选型

电缆种类及选型计算 一、电缆的定义及分类 广义的电线电缆亦简称为电缆。狭义的电缆是指绝缘电缆。它可定义为:由下列部分组成的集合体,一根或多根绝缘线芯,以及它们各自可能具有的包覆层,总保护层及外护层。电缆亦可有附加的没有绝缘的导体。 我国的电线电缆产品按其用途分成下列五大类:1.裸电线 2.绕组线 3.电力电缆 4.通信电缆和通信光缆 5.电气装备用电线电缆 电线电缆的基本结构: 1.导体传导电流的物体,电线电缆的规格都以导体的截面表示 2.绝缘外层绝缘材料按其耐受电压程度 二、工作电流及计算 电(线)缆工作电流计算公式: 单相 I=P÷(U×cosΦ)

P-功率(W);U-电压(220V);cosΦ-功率因素 (0.8);I-相线电流(A) 三相 I=P÷(U×1.732×cosΦ) P-功率(W);U-电压(380V);cosΦ-功率因素 (0.8);I-相线电流(A) 一般铜导线的安全截流量为5-8A/平方毫米,铝导线的安全截流量为3-5A/平方毫米。 在单相220V线路中,每1KW功率的电流在4-5A左右,在三相负载平衡的三相电路中,每1KW功率的电流在2A左右。 也就是说在单相电路中,每1平方毫米的铜导线可以承受1KW功率荷载;三相平衡电路可以承受 2-2.5KW的功率。 但是电缆的工作电流越大,每平方毫米能承受的安全电流就越小。 电缆允许的安全工作电流口诀: 十下五(十以下乘以五) 百上二(百以上乘以二)

二五三五四三界(二五乘以四,三五乘以三) 七零九五两倍半(七零和九五线都乘以二点五) 穿管温度八九折(随着温度的变化而变化,在算好的安全电流数上乘以零点八或零点九) 铜线升级算(在同截面铝芯线的基础上升一级,如二点五铜芯线就是在二点五铝芯线上升一级,则按四平方毫米铝芯线算) 裸线加一半(在原已算好的安全电流数基础上再加一半) 三、常用电(线)缆类型 线缆规格型号含义: 电线型号中:字母B表示布电线,字母V表示塑料中的聚氯乙烯,字母R表示软线(导体为很多细丝绞在一起)。还有铜芯符号、硬线(常见的单芯导体)符号省略没有表示。 常用线缆类型: BV-表示单铜芯聚氯乙烯普通绝缘电线,无护套线。适用于交流电压450/750V及以下动力装置、日用电器、仪表及电信设备用的电线电缆。

模具分类

1.2模具类别和分类方法有哪些? 模具分类方法很多,过去常使用的有:按模具结构形式分类,如单工序模、连续冲模等;按使用对象分类,如汽车覆盖件模具、电机模具等;按零件材料性质分类,如金属制品用模具、非金属制用模具等;按模具制造材料分类,如硬质合金模具等;按工艺性质分类,如拉深模、粉末冶金模、锻模等。这些分类方法中,有些不能全面地反映各种模具的结构和成形加工工艺的特点以及他们的使用功能。为此,采用以模具进行成形加工的工艺性质和使用对象为主的综合分类方法,将模具分为十大类,如表1-1所示,又可根据模具结构、材料、使用功能以及制模方法等分为若干小类或品种。 表1-1模具分类

1.4冲压模具如何分类? 五金冲压模具的形式很多,一般可按以下几个主要特征分类。 (1) 根据工艺性质分类 ①冲裁模沿封闭或敞开的轮廓线使材料产生分离的模具。如落料模、冲孔模、切断模、切口模、切边模、剖切模等。 ②弯曲模使板料毛坯或其他坯料沿着直线(弯曲线)产生弯曲变形,从而获得一定角度和形状的工件的模具。 ③拉深模是把板料毛坯制成开口空心件,或使空心件进一步改变形状和尺寸的模具。 ④成形模是将毛坯或半成品工件按凸、凹模的形状直接复制成形,而材料本身仅产生局部塑性变形的模具。如胀形模、缩口模、扩口模、起伏成形模、翻边模、整形模等。 (2) 根据工序组合程度分类 ①单工序模在压力机的一次行程中,只完成一道冲压工序的模具。 ②复合模只有一个工位,在压力机的一次行程中,在同一工位上同时完成两道或两道以上冲压工序的模具。 ③级进模(也称连续模)在毛坯的送进方向上,具有两个或更多的工位,在压力机的一次行程中,在不同的工位上逐次完成两道或两道以上冲压工序的模具。 (3) 根据材料的变形特点分类 有落料模、冲孔模、切断模、切口模、切边模、弯曲模、拉深模、成形模、压花模、冷挤压模等。 1.5冲压模具工艺术语有哪些? (1) 冲裁是利用冲模使部分材料或工件与另一部分材料、工件或废料分离的一种冲压工序。冲裁是切断、落料、冲孔、冲缺、冲槽、剖切、凿切、切边、切舌、切开、整修等分离工序的总称。 (2) 切开是将材料沿敞开轮廓局部而不是完全分离的一种冲压工序。被切开而分离的材料位于或基本位于分离前所处的平面。 (3) 切边是利用冲模修边成形工序件的边缘,使之具有一定直径、一定高度或一定形状的一种冲压工序。 (4) 切舌是将材料沿敞开轮廓局部分离而不是完全分离的一种冲压工序。被局部分离的材料,具有工件所要求的一定位置,不再位于分离前所处的平面上。 (5) 切断是将材料沿敞开轮廓分离的一种冲压工序,被分离的材料成为工件或工序件。 (6) 扩口是将空心件或管状件敞开处向外扩张的一种冲压工序。 (7) 冲孔是将多余材料沿封闭轮廓从材料或工序件上分离的一种冲压工序,在材料或工序件上获得需要的孔。 (8) 冲缺是将多余材料沿敞开轮廓从材料或工序件上分离的一种冲压工序,敞开轮廓形成缺口,其深度不超过宽度。 (9) 冲槽是将多余材料沿敞开轮廓从材料或工序件上分离的一种冲压工序,敞开轮廓呈槽形,其深度超过宽度。 (10) 冲中心孔是在工序件表面形成浅凹中心孔的一种冲压工序,背面材料并无相应凸起。 (11) 精冲是光洁冲裁的一种,他利用有带齿压料板的精冲模使冲件整个断面光洁。 (12) 连续模是具有两个或更多工位的冲模,材料随压力机行程逐次送进,从而使冲件逐步成形。 (13) 单工序模是在压力机一次行程中只完成一道工序的冲模。 (14) 组合冲模是按几何要素(直线、角度、圆弧、孔)逐步形成各种冲件的通用可调式成套冲模。平面状冲件的外形轮廓一般需要几副组合冲模分次冲成。 (15) 压凸是用凸模挤入工序件一面,迫使材料流入对面凹坑以形成凸起的一种冲压工序。 (16) 压花是局部强行排挤材料,在工序件表面形成浅凹花纹、图案、文字或符号的一种冲压工序。被压花表面的背面并无对应于浅凹的凸起。 (17) 成形是依靠材料流动而不依靠材料分离使工序件改变形状和尺寸的冲压工序的统称。 (18) 光洁冲裁是不经整修直接获得整个断面全部或基本全部光洁的冲裁工序。扭弯是将平直或局部平直工序件的一部分相对另一部分扭转一定角度的冲压工序。 (19) 卷边是将工序件边缘卷成接近封闭圆形的一种冲压工序。卷边圆形的轴线呈直线形。 (20) 卷缘是将空心件上口边缘卷成接近封闭圆形的一种冲压工序。

电线电缆种类及选型计算

电线电缆种类及选型计算! 广义的电线电缆亦简称为电缆。狭义的电缆是指绝缘电缆。它可定义为:由下列部分组成的集合体,一根或多根绝缘线芯,以及它们各自可能具有的包覆层,总保护层及外护层。电缆亦可有附加的没有绝缘的导体。 我国的电线电缆产品按其用途分成下列五大类: 1.裸电线; 2.绕组线; 3.电力电缆; 4.通信电缆和通信光缆; 5.电气装备用电线电缆。 电线电缆的基本结构: 1.导体:传导电流的物体,电线电缆的规格都以导体的截面表示。 2.绝缘:外层绝缘材料按其耐受电压程度。

电(线)缆工作电流计算公式: 单相 I=P÷(U×cosΦ) P-功率(W);U-电压(220V);cosΦ-功率因素(0.8);I-相线电流(A)。 三相 I=P÷(U×1.732×cosΦ) P-功率(W); U-电压(380V); cosΦ-功率因素(0.8); I-相线电流(A)。 一般铜导线的安全截流量为5-8A/平方毫米,铝导线的安全截流量为3-5A/平方毫米。在单相220V线路中,每1KW功率的电流在4-5A左右,在三相负载平衡的三相电路中,每1KW功率的电流在2A左右。 也就是说在单相电路中,每1平方毫米的铜导线可以承受1KW功率荷载;三相平衡电路可以承受2-2.5KW的功率。 但是电缆的工作电流越大,每平方毫米能承受的安全电流就越小。

电缆允许的安全工作电流口诀: 十下五(十以下乘以五)。 百上二(百以上乘以二)。 二五三五四三界(二五乘以四,三五乘以三)。 七零九五两倍半(七零和九五线都乘以二点五)。 穿管温度八九折(随着温度的变化而变化,在算好的安全电流数上乘以零点八或零点九)。 铜线升级算(在同截面铝芯线的基础上升一级,如二点五铜芯线就是在二点五铝芯线上升一级,则按四平方毫米铝芯线算)。 裸线加一半(在原已算好的安全电流数基础上再加一半)。

常用电力电缆规格型号

常用电力电缆规格型号 Revised by Liu Jing on January 12, 2021

聚氯乙烯绝缘聚氯乙烯护套电力电缆 1、用途:本产品适用于交流50HZ,额定电压1KV的线路中,供输配电能之用。 2、产品标准:GB12706·2-91额定电压35KV及以下铜芯、铝芯塑料绝缘电力电缆、聚氯乙烯绝缘电力电缆 3、使用特性:1)电缆导体的最高额定温度为70℃。2)短路时(最长持续时间不超过5S)电缆导体的最高温度不超过160℃。3)敷设电缆时的环境温度应不低于0℃,最小弯曲半径应不小于电缆外径的10倍。 4、型号、名称和使用范围 6、生产范围

交联聚乙烯绝缘电力电缆 1、产品用途:本产品适用于额定电压(U0/U)为6至26/35KV电力线路,供输配电能之用。 2、产品标准:GB12706-91额定电压35KV及以下铜芯,铝芯塑料绝缘电力电缆。 3、产品使用特性:(1)电缆在环境温度不低于0℃条件下敷设时,无须预先加温。电缆的敷设落差不受限制。(2)电缆线芯长期允许工作温度不得超过下列规定:外护层是聚氯乙烯套的电缆为90℃;外护层是聚乙烯套的电缆为80℃。(3)线芯短路时(最长持续5S)温度不得超过250℃(4)电缆敷设时的最小弯曲半径规定如下:单芯电缆:20(d+D)±5%;三芯电缆:15(d+D)±5%。式中:D为电缆的实际外径,d为导体的实际外径。 4、产品型号、名称及使用范围

注:一根或二根单芯电缆不允许敷设在铁质管道中。 5、生产范围 聚氯乙烯绝缘电线

1、用途:本产品适用于交流额定电压450/750V及以下的动力装置的固定敷设。 2、产品标准:GB502 3、2-85《额定电压450/750V及以下聚氯乙烯绝缘电缆(电线)固定敷设用电缆(电线)》 3、产品使用特性:1)额定电压U0/U分为450/750V和300/500V。2)电缆的长期允许工作温度:BV-105型……应不超过105℃;其他型号……应不超过70℃。3)电缆的敷设温度应不低于0℃;4)电缆的允许弯曲半径为:电缆外径(D)小于25mm者……应不小于4D;电缆外径(D)为25mm及以上者……应不小于6D 4、电缆型号、名称及使用范围 5、生产范围

电线电缆制造流程概述

电线电缆制造流程概述内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

电线电缆制造流程概述 电线电缆的制造与大多数机电产品的生产方式是完全不同的。机电产品通常采用将另件装配成部件、多个部件再装配成单台产品,产品以台数或件数计量。电线电缆是以长度为基本计量单位。所有电线电缆都是从导体加工开始,在导体的外围一层一层地加上绝缘、屏蔽、、成缆、护层等而制成电线电缆产品。产品结构越复杂,叠加的层次就越多。 一、电线电缆产品制造的工艺特性: 1.大长度连续叠加组合生产方式 大长度连续叠加组合生产方式,对电线电缆生产的影响是全局性和控制性的,这涉及和影响到: (1)生产工艺流程和设备布置 生产车间的各种设备必须按产品要求的工艺流程合理排放,使各阶段的半成品,顺次流转。设备配置要考虑生产效率不同而进行生产能力的平衡,有的设备可能必须配置两台或多台,才能使生产线的生产能力得以平衡。从而设备的合理选配组合和生产场地的布置,必须根据产品和生产量来平衡综合考虑。 (2)生产组织管理 生产组织管理必须科学合理、周密准确、严格细致,操作者必须一丝不苟地按工艺要求执行,任何一个环节出现问题,都会影响工艺流程的通畅,影响产品的质量和交货。特别是多芯电缆,某一个线对或基本单元长度短了,或者质量出现问题,则整根电缆就会长度不够,造成报废。反之,如果某个单元长度过长,则必须锯去造成浪费。 (3)质量管理

大长度连续叠加组合的生产方式,使生产过程中任何一个环节、瞬时发生一点问题,就会影响整根电缆质量。质量缺陷越是发生在内层,而且没有及时发现终止生产,那么造成的损失就越大。因为电线电缆的生产不同于组装式的产品,可以拆开重装及更换另件;电线电缆的任一部件或工艺过程的质量问题,对这根电缆几乎是无法挽回和弥补的。事后的处理都是十分消极的,不是锯短就是降级处理,要么报废整条电缆。它无法拆开重装。 电线电缆的质量管理,必须贯串整个生产过程。质量管理检查部门要对整个生产过程巡回检查、操作人自检、上下工序互检,这是保证产品质量,提高企业经济效益的重要保证和手段。 2.生产工艺门类多、物料流量大 电线电缆制造涉及的工艺门类广泛,从有色金属的熔炼和压力加工,到塑料、橡胶、油漆等化工技术;纤维材料的绕包、编织等的纺织技术,到金属材料的绕包及金属带材的纵包、焊接的金属成形加工工艺等等。 电线电缆制造所用的各种材料,不但类别、品种、规格多,而且数量大。因此,各种材料的用量、备用量、批料周期与批量必须核定。同时,对废品的分解处理、回收,重复利用及废料处理,作为管理的一个重要内容,做好材料定额管理、重视节约工作。 电线电缆生产中,从原材料及各种辅助材料的进出、存储,各工序半成品的流转到产品的存放、出厂,物料流量大,必须合理布局、动态管理。 3.专用设备多 电线电缆制造使用具有本行业工艺特点的专用生产设备,以适应线缆产品的结构、性能要求,满足大长度连续并尽可能高速生产的要求,从而形成了线缆制造的专用设备系列。如挤塑机系列、拉线机系列、绞线机系列、绕包机系列等。

矿用电缆分类标准

矿用电缆分类标准

矿用电缆 一、煤矿用额定电压10KV及以下铜芯固定敷 设阻燃电力电缆 1、产品命名 ⑴电缆的命名由六部分组成: 第一部分第二 部分 第三 部分 第四 部分 第五 部分 第六 部分 芯数×截面 额定电压U0/U(KV) 外护层 护套(内衬层)材料代号 绝缘材料代号 系列代号 其中:第一、第二、第三、第四、第五部分构成电缆的型号;第六部分构成电缆的规格。

第六部分:用阿拉伯数字分别表示电缆芯数及标称截面积,二者之间以“×”连接。标称截面积为mm2。 2、产品标志 ⑴绝缘线芯识别标志。绝缘线芯识别标志应符合GB6995的相应规定。 ⑵成品电缆的护套表面应用压印方式或颜色明显区别于护套颜色的油墨印制产品标志。产品标志应包括如下内容: a)制造厂名称; b)电缆型号及规格; c)质检中心颁发的产品合格证号。 印字必须清晰、耐擦,印字间隔不超过1m。 ⑶在电缆内部或外部,允许制造厂设置其它标志,但其它标志的使用不得损害规定印字的明显性和清晰度。 ⑷包装标志 每卷或每盘电缆上应附标签,标明如下内容:a)制造厂名称; b)产品型号及规格; c)长度(m)及毛重(kg); d)制造年月或生产批号;

e)产品标准编号; f)质检中心颁发的产品合格证号。 3、煤矿用聚氯乙烯绝缘电力电缆 ⑴型号 电缆型号见表1 表1 型号名称 MVV MVV22 MVV32 MVV42 煤矿用聚氯乙烯绝缘聚氯乙烯护套电力电缆 煤矿用聚氯乙烯绝缘钢带铠装聚氯乙烯护套电力电缆 煤矿用聚氯乙烯绝缘细钢丝铠装聚氯乙烯护套电力电缆 煤矿用聚氯乙烯绝缘粗钢丝铠装聚氯乙烯护套电力电缆 ⑵规格 电缆规格应符合表2规定 表 2 型号芯 数 额定电压(KV) 0.6/1 1.8/3 3.6/6、6/6、 6/10 标称截面(mm2)

常见的电缆电线种类及工程知识

常见的电缆电线种类及工程知识 1、常用的电线、电缆按用途分有哪些种类? 答:按用途可分为裸导线、绝缘电线、耐热电线、屏蔽电线、电力电缆、控制电缆、通信电缆、射频电缆等。 2、绝缘电线有哪几种? 答:常有的绝缘电线有以下几种:聚氯乙烯绝缘电线、聚氯乙烯绝缘软线、丁腈聚氯乙烯混合物绝缘软线、橡皮绝缘电线、农用地下直埋铝芯塑料绝缘电线、橡皮绝缘棉纱纺织软线、聚氯乙烯绝缘尼龙护套电线、电力和照明用聚氯乙烯绝缘软线等。 3、电缆桥架适合于何种场合? 答:电缆桥架适用于一般工矿企业室内外架空敷设电力电缆、控制电缆,亦可用于电信、广播电视等部门在室内外架设。 4、电缆附件有哪些? 答:常用的电附件有电缆终端接线盒、电缆中间接线盒、连接管及接线端子、钢板接线槽、电缆桥架等。 5、什么叫电缆中间接头? 答:连接电缆与电缆的导体、绝缘屏蔽层和保护层,以使电缆线路连接的装置,称为电缆中间接头。

电缆的型号由八部分组成: 一、用途代码-不标为电力电缆,K为控制缆,P为信号缆; 二、绝缘代码-Z油浸纸,X橡胶,V聚氯乙稀,YJ交联聚乙烯 三、导体材料代码-不标为铜,L为铝; 四、内护层代码-Q铅包,L铝包,H橡套,V聚氯乙稀护套 五、派生代码-D不滴流,P干绝缘; 六、外护层代码 七、特殊产品代码-TH湿热带,TA干热带; 八、额定电压-单位KV 有关电缆型号的问题 1、SYV:实心聚乙烯绝缘射频同轴电缆 2、SYWV(Y):物理发泡聚乙绝缘有线电视系统电缆,视频(射频)同轴电缆(SYV、SYWV、SYFV)适用于闭路监控及有线电视工程 SYWV(Y)、SYKV 有线电视、宽带网专用电缆结构:(同轴电缆)单根无氧圆铜线+物理发泡聚乙烯(绝缘)+(锡丝+铝)+聚氯乙烯(聚乙烯) 3、RVV护套线、RVVP屏蔽线信号控制电缆适用于楼宇对讲、防盗报警、消防、自动抄表等工程 RVVP:铜芯聚氯乙烯绝缘屏蔽聚氯乙烯护套软电缆电压300V/300V 2-24芯 用途:仪器、仪表、对讲、监控、控制安装 4、RG:物理发泡聚乙烯绝缘接入网电缆用于同轴光纤混合网(HFC)中传输数据模拟信号 5、KVVP:聚氯乙烯护套编织屏蔽电缆用途:电器、仪表、配电装置的信号传输、控制、测量 6、RVV(227IEC52/53)聚氯乙烯绝缘软电缆用途:家用电器、小型电动工具、仪表及动力照明 7、AVVR聚氯乙烯护套安装用软电缆

终端电缆盒基础组合模具

终端电缆盒基础组合模具 一. 工程概况 越南北方铁路通信信号现代化工程,包括河内枢纽8个车站、正线86km ;河内—同登线19个车站、正线167km ;河内—太原线7个车站、正线76km ;河内—老街线31个车站、正线295km 范围内全部通信及信号设备改造。工程全部采有中国铁路技术设备,执行中华人民共和国铁道行业标准“铁路信号工程质量检验评定标准”和“铁路通信工程质量检验评定标准”。 二. 终端电缆盒 电缆盒基础分为终端电缆盒和方向电缆盒两种。终端电缆盒基础如图所示: M10*200 终端电缆盒基础 三. 终端电缆盒组合模具的设计及使用 为提高预制终端电缆盒混凝土基础的施工效率,同时保证施工质量,我们没 有按照书本教条的打造站立式的单个模具。经过经理和书记,以及有十几年工作经验的老职工们共同研究,献计献策,产生了一次打造多个基础的组合模具的想法。这样把此大型组合模具平躺在地面上,既能按照规定造出混凝土基础,又使各种工序变得轻松方便,而且节省时间,提高效率。 模具主要由两块角钢和十二块经精确测量而打造的标准铁板组成。模具的组装及拆卸非常方便。如下图所示:

模具的组装 组装好的模具

拆卸模具,打造出的基础美观而且质量俱佳 四.终端电缆盒组合模具的优点及经济效益 如果使用单个模具一个一个的生产终端电缆盒基础,不但要耗费大量用于支撑模具的钢材料,而且使加入混凝土,振捣,抹面等工序变得非常困难。此组合模具一次可以打造出十一个终端电缆盒基础,不但节约了用于支撑单个模具所用 的大量钢材料,而且使用起来省时省力,使加入混凝土,平振变得简单可行。

加入混凝土省时省力,操作简单。 抹面工序轻松方便,且效果显著

模具分类及其成型方式

模具分类 模具是现代工业的重要工艺装备,是许多工业产品生产中不可缺少的组成部分。我国加入WTO以后,吸引外资能力的逐年增强,成为世界产品制造工厂地位愈加突出,各类工业品模具的进口越来越多。 模具的类型通常是按照加工对象和工艺的不同进行分类,从行业角度的区分来看主要有塑料模具、橡胶模具、金属冷冲模具、金属冷挤压模具和热挤压模具、金属拉拔模具、粉末冶金模具、金属压铸模具、金属精密铸造模具、玻璃模具、玻璃钢模具等等。 下面仅就进口最为常见的塑料制品成型加工中所用不同类型的模具如何进行归类作一介绍。 塑料最常见的成型方法一般分为熔体成型和固相成型两大类:熔体成型是把塑料加热至熔点以上,使之处于熔融态进行成型加工的方式,属于此种成型方法的模塑工艺主要有注射成型、压塑(缩)成型、挤出成型等;固相成型是指塑料在熔融温度以下保持固态下的一类成型方法,如一些塑料包装容器生产的真空成型、压缩空气成型和吹塑成型等。此外还有液态成型方式,如铸塑成型、搪塑和蘸浸成型法等。 按照上述成型方法的不同,可以划分出对应不同工艺要求的塑料加工模具类型,主要有注射成型模具、挤出成型模具、压塑成型模具、吹塑成型模具、吸塑成型模具、高发泡聚苯乙烯成型模具等。 塑料注射(塑)模具 它主要是热塑性塑料件产品生产中应用最为普遍的一种成型模具,塑料注射成型模具对应的加工设备是塑料注射成型机,塑料首先在注射机底加热料筒内受热熔融,然后在注射机的螺杆或柱塞推动下,经注射机喷嘴和模具的浇注系统进入模具型腔,塑料冷却硬化成型,脱模得到制品。其结构通常由成型部件、浇注系统、导向部件、推出机构、调温系统、排气系统、支撑部件等部分组成。制造材料通常采用塑料模具钢模块,常用的材质主要为碳素结构钢、碳素工具钢、合金工具钢、高速钢等。注射成型加工方式通常只适用于热塑性塑料品种的制品生产,用注射成型工艺生产的塑料制品十分广泛,从生活日用品到各类复杂的机械、电器、交通工具零件等都是用注射模具成型的,它是塑料制品生产中应用最广的一种加工方法。 塑料压塑模具

线缆技术中选配模具的必备经验

线缆技术中选配模具的必备经验 选配模具的经验 <1> 16mm 及以下的绝缘线芯的配模,要用导线试验模芯,以导线通过模芯为宜。不要过大,否则将产生倒胶现象。 <2> 抽真空挤塑时,选配模具要合适,不宜过大,绝缘层或护套层容易生耳朵,起棱松套现象。 <3> 挤塑过程中,实际上塑料均有拉伸现象存在,一般塑料的实际拉伸在2.0mm左右.根据拉伸考虑模套的放大值,拉伸比大的塑料模套放大值大于拉伸比小的塑料模套放大值,如聚乙烯大于聚氯乙烯.<4>安装模具时要调整好模芯与模套间的距离,防止堵塞,造成设备事故. 2挤压式模具设计中主要参数的选择 电线电缆塑料模具设计要保证线缆制品的三个基本要求:形状正确;尺寸合格;粗糙度小。 2.1挤压式模芯的主要参数的确定 各参数见图2。 β—模芯外锥角。一般可在20°~40°范围内选取,对于塑料挤包层较厚而又需挤包得紧些时,也可取β=60°。 图2挤压式模芯各参数示意图 D—模芯外锥最大直径。该尺寸由模芯支持器(或模芯座)的尺寸决定的,要求严格吻合,不得出现“前台”和“后台”,否则将造成存胶死角,直接影响胶层组织和表面质量。 D"—内锥最大直径。该尺寸主要取决于加工条件和螺柱的壁厚,在保证螺柱壁厚的前提下,越大越好。 d—模芯孔径。这是对挤压质量影响最大的结构尺寸,按线芯结构特性及其几何尺寸设计。若线芯直径为d0,则 单线取d=d0+(0.05~0.15)mm; 绞合线芯d=d0+(0.1~0.25)mm; 成缆芯线d=d0+(0.2~0.50)mm; 大截面成缆芯线d=d0+(0.40~1.0)mm; 对镀锡线d要相应增加(0.10~0.50)mm。 d'—模芯外锥最小直径。 若模芯头部端面厚度为δ0,则 一般δ0=(0.3~1)mm;d'=d+2δ0 l—模芯定径区长度。 l=(0.5~1.5)d l决定线芯通过模芯的稳定性,但也不能设计得太长,否则将造成加工的困难,工艺上的必要性也不大。因此,模孔d大的取下限,模孔d小的取上限。 L—模芯锥体长度。 由图2可知,,所以。 如果由上式计算出来的L太长或太短,与机头内部结构配合不当,可重新改变锥角β。 2.2挤压式模套主要参数的确定 各参数见图3。 图3挤压式模套各参数示意图 D2—模套压座外径,根据模套座内孔设计。若模套座内孔直径为φ0则D2=φ0-(0.5~1)mm。 D3—内锥最大直径。这是模套设计的精密尺寸之一。其大小必须严格与模套座(或机头内锥)末端内径一致,组装后不准产生阶梯死角。 D0—模套定径区直径。这又是模套设计的精密尺寸之一,要根据产品直径,考虑挤出各工艺参数及挤制塑料特性严格设计,一般 D0=d0+(0.05~0.15)mm 有时可设计为D0=d0-(0.05~0.10)mm。 式中:d0—电线(或电缆)外径。 D0决定挤出层外径大小及挤出层表面质量。D0太大,塑料拉伸较大,使挤出物表面粗糙无光。D0

相关文档
最新文档