中科院-量子力学-2012考研真题

合集下载

中科院量子力学题90-11

中科院量子力学题90-11

a 2
中国科学院研究生院 2010 年招收攻读硕士研究生学位研究生入学统一考试试题 811 ) 试题名称:量子力学( 试题名称:量子力学(811 811)
ˆ、B ˆ 与泡利算符对易,证明: 一、 (1)设 A ˆ )(σ ˆ ⋅B ˆ ⋅B ˆ) = A ˆ + iσ ˆ) ˆ⋅A ˆ ⋅B ˆ(A (σ ˆ、σ ˆ 为单位算符。 ˆ x + iσ ˆ y ) 2 表示成 I ˆ x、σ ˆ y、σ ˆ z 的线性叠加, I (2)试将 ( Iˆ + σ
θ 2
θ 2
(4)求演化成 −ψ ( x, t ) 所需要的最短时间 tmin 。 三、设基态氢原子处于弱电场中,微扰哈密顿量是:
-2-
t ≤ 0; ⎧ 0, ˆ' =⎪ 其中 λ、T 为常数。 H t ⎨ − T ⎪ > λ ze , t 0. ⎩
(1) 求很长时间后 t ≫ T 电子跃迁到激发态的概率,已知基态中 a 为玻尔半 径,基态和激发态波函数为:
0 ⎤ ⎡1 λ ⎢ ˆ 三、 在 H = ⎢λ 3 0 ⎥ 中的粒子的本征值, 设 λ ≪ 1, 利用微扰求其本征值 (精 ⎥ ⎢0 0 λ − 2⎦ ⎥ ⎣ ⎧ 0, 0 < ϕ < ϕ0 ,求粒 other ⎩∞,
确到二级近似) ,并与精确求解相比较。
⎡ cos θ e −iωt ⎤ ⎡1 ⎤ ℏ 四、两个自旋为 的粒子,两个粒子分别为 X 1 = ⎢ ⎥ , X 2 = ⎢ ,求系统处 − iωt ⎥ 2 ⎣0 ⎦ ⎣ sin θ e ⎦
一、在一维无限深方势阱 ( 0 < x < a ) 中运动的粒子受到微扰
a 2a ⎧ < x<a 0, 0 < x < , ⎪ ⎪ 3 3 ' ˆ H ( x) = ⎨ 作用。试求基态能量的一级修正。 a 2a ⎪ −V , < x< 1 ⎪ 3 3 ⎩

811《量子力学》 - 中国科学院

811《量子力学》 - 中国科学院

811《量子力学》中科院研究生院硕士研究生入学考试《量子力学》考试大纲本《量子力学》考试大纲适用于中国科学院研究生院物理学相关各专业(包括理论与实验类)硕士研究生的入学考试。

本科目考试的重点是要求熟练掌握波函数的物理解释,薛定谔方程的建立、基本性质和精确的以及一些重要的近似求解方法,理解这些解的物理意义,熟悉其实际的应用。

掌握量子力学中一些特殊的现象和问题的处理方法,包括力学量的算符表示、对易关系、不确定度关系、态和力学量的表象、电子的自旋、粒子的全同性、泡利原理、量子跃迁及光的发射与吸收的半经典处理方法等,并具有综合运用所学知识分析问题和解决问题的能力。

一.考试内容:(一)波函数和薛定谔方程波粒二象性,量子现象的实验证实。

波函数及其统计解释,薛定谔方程,连续性方程,波包的演化,薛定谔方程的定态解,态叠加原理。

(二)一维势场中的粒子一维势场中粒子能量本征态的一般性质,一维方势阱的束缚态,方势垒的穿透,方势阱中的反射、透射与共振,d--函数和d-势阱中的束缚态,一维简谐振子。

(三)力学量用算符表示坐标及坐标函数的平均值,动量算符及动量值的分布概率,算符的运算规则及其一般性质,厄米算符的本征值与本征函数,共同本征函数,不确定度关系,角动量算符。

连续本征函数的归一化,力学量的完全集。

力学量平均值随时间的演化,量子力学的守恒量。

(四)中心力场两体问题化为单体问题,球对称势和径向方程,自由粒子和球形方势阱,三维各向同性谐振子,氢原子及类氢离子。

(五)量子力学的矩阵表示与表象变换态和算符的矩阵表示,表象变换,狄拉克符号,谢振子的占有数表象。

(六)自旋电子自旋态与自旋算符,总角动量的本征态,碱金属原子光谱的双线结构与反常塞曼效应,电磁场中的薛定谔方程,自旋单态与三重态,光谱线的精细和超精细结构,自旋纠缠态。

(七)定态问题的近似方法定态非简并微扰轮,定态简并微扰轮,变分法。

(八)量子跃迁量子态随时间的演化,突发微扰与绝热微扰,周期微扰和有限时间内的常微扰,光的吸收与辐射的半经典理论。

中科院量子力学真题

中科院量子力学真题
ˆ = 四、设系统哈密顿算符为 H ˆ2 p � + V (r ) ,粒子处于归一化的束缚定态 ψ n 中, 2m ⎧V0δ ( x ), ⎪ ⎩ ∞,
x <a 势场中运动 (V0 > 0 ) 。试求系统能级或能级方 x >a
-6-
putiansong 3@
试证明位力定理:
ψn
ˆ2 p 1 � � ψ n = ψ n r ⋅∇V (r ) ψ n 2m 2 ˆ2 1 p 4 ˆ ' = −λ p ˆx + mω 2 x 2 ,设受到微扰 H 的作 2m 2
-1-
putiansong 3@
(1)求其能级和本征函数;
⎧V1 , −α < ϕ < 0 ˆ ' = V (ϕ ) = ⎪ (2)加 H ⎨V2 , 0 < ϕ < α 微扰, ⎪ 0, 其他 ⎩
求对最低的两能级的一级微扰修正。 注:在坐标系中 ∇ 2 =
1 ∂ ∂ 1 ∂2 ∂2 。 (r ) + 2 + r ∂r ∂r r ∂ϕ 2 ∂z 2 ⎧ 0, 0 < x < a 中运动, t = 0 时刻处于基态, 此 ⎩∞, a < x, x < 0
ˆ = 五、一维谐振子系统哈密顿量为 H 0
用,试求对第 n 个谐振子能级的一级微扰修正。
ˆ n = (已知矩阵元 n ' x ℏ ( n + 1δ n ', n+1 + nδ n ', n−1 ) ) 2mω
� � 1⎛r � � r⎞ ˆ ˆ ˆ r = ⎜ ⋅ p + p ⋅ ⎟ ,则: 二、 (30') 在三维体系中粒子的径向动量算符 p 2⎝ r r⎠ ˆ r 是否为厄密算符,为什么? (1) p ˆ r 的表示; (2)写出在球坐标系中 p ˆr ] = ? (3)求 [ r, p

2012中国科学院量子力学真题解答

2012中国科学院量子力学真题解答


a
当 m n时 2 a m x 2 xmn x s i n ( )dx a 0 a a 2
二 、 解 : Pn 0 其 中 n0
1 n H ' 0 e i n 0 t d t 2 0 ( E n E 0 ) / n
2
n H ' 0 qE exp( x n = x 0 =
3
1/ 2
0
( 3) ( ) N (1 H ') 0 , ( ) 0 N (1 H ')
( ) ( ) 1 N
2

1 1 2 H ' 0
2
H ' 0
2

1
2
1 H '2 0
E ( ) ( ) H ( ) ( ) H 0 H ' ( ) = 0 N (1 H ')( H 0 H ') N (1 H ') 0 N 2[E0 H '
0
0
+ 2 E 0 H '2
0
]
E0 由 E ( ) 0

2
2
2
[ H ', [ H 0 , H ']] H ' 0
2
1

2 H '2
2 2
0 0
[ H ', [ H 0 , H ']]

2a02 1 2 e E0
E ( ) E 0 2e a0
四、解: 1) [ J x , J y ] i J z ; [ J y , J z ] i J x ; [ J z , J x ] i J y ; J J iJ 2) m J x n 1 m Jy Jz JzJy n i 1 [ m Jy Jz n m Jz Jy n ] i 1 [n m J y n m m J y n ] i nm m Jy n i 1 m Jz Jx JxJz n i m n = m Jx n i nm m Jy n i nm m n . m Jx n i i (n m )2 m J x n 1 (n m )2 =0 m n 1 所 以 当 且 仅 当 m n 1时 , m J x n 不 为 0 . 3) 在 ( J 2 , J z ) 表 象 中 , J = 1 , m = - J , - J 1 , . . . . , J 1, J .所 以 m 0 , 1 . J z =, 相 应 的 1 本 征 态 为 1 0 ; J z =0, 0 0 1 1 1 2 ; J x =0, 2 ' 0 ; 2 1 1 0 1 ; J z =-, 0 J x =-, 0 1 0 1 1 1 3' 2 2 1

中科院量子力学历年详解(phileas)

中科院量子力学历年详解(phileas)

v v vi 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 17
1.10 2006 乙 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.11 2006 乙 B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.12 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.13 2004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.14 2001 理论型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 详解 2.1 2011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
2.10 2006 乙 A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.11 2006 乙 B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.12 2005 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.13 2004 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.14 2001 理论型 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A 四川大学量子力学入学试题 A.1 2010 试题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.2 2009 试题 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.3 2010 解答 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.4 2009 解答 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

硕士学位研究生入学量子力学试卷

硕士学位研究生入学量子力学试卷

附件中国科学院-中国科技大学2000年招收攻读硕士学位研究生入学试卷 试卷名称:量子力学(理论型) 选做五题,毎题20分1、 一个质量为m 的粒子被限制在一维区域0x a ≤≤运动,0t =的波函数为(),012cos sin x x x t A a a ππψ⎡⎤⎛⎫⎛⎫==+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ A 为常数。

(1) 后来某一时刻0t t =时波函数是什么?(2) 体系在0t t =和0t =时平均能量是多少? (3) 在0t t =时于势阱右半部(即2ax a ≤≤)发现粒子的几率是多少? 2、3、设粒子处于(),lm Y θϕ状态,计算角动量的x 分量和y 分量的方均差22,x y l l ∆∆4、记123,,σσσ为Pauli 矩阵,定义12,i σσσ±=±(1) 计算[][][]()233,,,,,,σσσσσσσ+-+-+和()2σ-, (2) 证明(ξ为常数 )332e e e ξσξσξσσ±±±=,证:[]3,2σσσ±±=± ()33322σσσσσσσ±±±±∴=±=±()()2233333322σσσσσσσσσσ±±±±==±=±反复利用即得()332nn σσσσ±±=± 两边同乘实数nξ得 ()332nn n nξσσσξσ±±=± 即()33322e ee e ξσξσξσξσσσ±±±±±==(3) 化简下面二式331112,e e e e ξσξσξσξσσσ--。

5、设0H 为一量子系统的能量算符,其本征态为0,1,2,⋅⋅⋅若体系受到微扰作用,微扰算符为ˆˆˆ,(H i A B λλ⎡⎤'=⎣⎦为实数),ˆA为厄密算符,ˆˆ,B C 为另外的厄密算符,且ˆˆˆ,.C i A B ⎡⎤=⎣⎦如在微扰作用前的基态0中,ˆˆˆ,,A B C 的平均值已知为000,,A B C ,试对微扰后的基态(非简并)计算厄密算符ˆB的平均值B ,精确到量级λ。

2012量子物理A卷

2012量子物理A卷

扬州大学试题纸( 12 -13 学年第 1 学期)物理 学院 光科11、微电11 班(年)级课程 量子物理 (A )卷题目 一 二 三 四 五 六 七 八 九 十 总分 得分一.简答题(每题10分,共30分)1.量子力学中,微观粒子具有什么特性?微观粒子的状态由什么描述?其运动规律满足什么方程?2.力学量算符的本征函数具有什么特性?力学量算符的本征值与力学量的测量值之间有什么关系?在什么情况下,力学量的测量值是确定的?3.两力学量同时具有确定值的充要条件是什么?如果两力学量不能同时具有确定值,则测量这两个力学量的值的涨落满足什么关系?你知道量子力学课本中哪些现象例子可用这种关系来理解解释?学院___________ 系____________ 班级_____________ 学号____________ 姓名_____________------------------------------------------------装---------------------------------------订-------------------------------------------线-----------------------------------------------二.证明题 (每题10分,共20分)1.已知算符αˆ、βˆ满足对易关系1ˆˆˆˆ=-αββα,证明: (1)βαββαˆ2ˆˆˆˆ22=-; (2)233ˆ4ˆˆˆˆβαββα=-。

2.已知力学量算符F ˆ的本征方程为n n n F F φφ=ˆ,对任意波函数ψ可有∑=nn n a φψ,证明:(1)τψφd a n n ⎰=*;(2)n nn F a d F 2*ˆ∑⎰=τψψ。

三.计算题 (每题10分,共50分)1.一粒子在一维有限深势阱⎩⎨⎧≤>>=ax ax U x U ,0,0)(0中运动, (1)求:当粒子能量0U E >时,阱外即a x >区间的波函数形式;(2)讨论说明为什么0U E >时不可能有束缚态,0U E <时才可能存在束缚态。

中国科技大学2001-2002年硕士研究生入学考试试题(量子力学)

中国科技大学2001-2002年硕士研究生入学考试试题(量子力学)

中国科技大学2001-2002年硕士研究生入学考试试题(量子力学)中国科技大学2001-2002年硕士研究生入学考试试题(量子力学)中国科学院——中国科技大学2001年招收攻读硕士学位研究生入学试卷试题名称:量子力学(实验型)一、(10分)设质量为m 的粒子在一维无限深势阱中运动()()()?<<><∞=a x a x x x V 00,0 试用de Broglie 的驻波条件,求粒子能量的可能取值。

二、(10分)设一个质量为m 的粒子束沿正x 方向以能量E 向x=0处的势垒运动()()()>≤=04300x E x x V 试用量子力学的观点回答:在x=0处被反射的反射系数是多少?三、(20分)1、在坐标表名胜中写出一维量子体系的坐标算符q和动量算符p ?,并推导其间的对易关系。

2、在动量表象中做1所要求做的问题。

四、(20分)设一个微观粒子在球对称的中心势场()r V 中运动,且处于一个能量和轨道角动量的共同本征态。

1、在球坐标系中写出能量本征态波函数的基本形式,写出势能()r V 在此态中平均值〈V 〉的表达式,并最后表示成径向积分的形式。

2、设V(r)为r 的单调上升函数(即对任意r,0>drdV )。

试证明:对任意给定的r 0,均有 ()[]()022<-?dr r r R V r V ro o ,其中R(r)是径向波函五、(20分)设一个质量为m 的微观粒子的哈密顿量不显含时间,试证明:在能量表象中有 ()mh X E Enm n m n 222=-∑ ,其中E 为能量,x 为坐标。

六、(20分)设一微观体系的哈密顿H=H 0+H ‘,其中H ’为微扰。

在一个由正交归一函数作为基的表象中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国科学院研究生院 2012 年招收攻读硕士学位研究生入学统一考试试题 科目名称:量子力学
考生须知:
1.本试卷满分为 150 分,全部考试时间总计 180 分钟。 2.所有答案必须写在答题纸上,写在试题纸上或草稿纸上一律无效。 一、 (共 30 分)质量为 的粒子在一维无限深势阱中运动,势能
0, 0 x a V , x 0 或 x a
p 2 e2 ,基态波函数及基态能量为 2 r
E0 0 (r ) ( a 0 3 ) 1 2 e r a0 ,
e2 e4 2 2 , 其中 a0 2 为第一 Bohr 轨道半径。 2a0 2 e
设体系受到微扰 H e z 的作用(沿 z 方向加上均匀电场 ) ,哈密顿量变成
(1) 求粒子的能级和归一化波函数。 (2) 画出处于第二、第三激发态的粒子的概率密度的示意图。 (3) 求坐标算符在能量表象下的矩阵元。 二、 (共 30 分) 质量为 的一维谐振子, 带电 q,初始 t 时处于基态 | 0 . 设
t2 加上微扰 H qE x exp 2 ,其中 E 为外电场强度, 为参数。求 t 时
H H0 H 。
(1)计算对易关系: [ H 0 , H ] 及 [ H ,[ H 0 , H ]] 。 (2)计算 0 下的平均值: H
0

H 2 。
0
(3)取基态试探波函数为 ( ) N (1 H ) 0 ,其中 N 为归一化常数。试以 为 变分参数,用变分法求 H 的基态能量上限(准确到 2 量级) 。
m 、 n 分别为 J z 的本征值为 m 、 n 的本征态。
(3) 设角动量量子数 j 1。 已知在 J z 的某一个本征态 m 中, J x 取值为 0 的概 率为 1 2 。求 J x 取值为 的概率。 科目名称:量子力学 第 1 页,共 2 页
五、 (共 30 分)氢原子的哈密顿量为 H 0
谐振子仍停留在基态的概率。 三、 (共 30 分)设一转动惯量为I、电偶极矩为 D 的转子自由地在 XY 平面内 转动, 转角为。 (1)试求其能量本征值和本征态。 (2)设沿 X 方向加上电场 E,即微扰哈密顿量为 H DE cos ,试用微扰论求其 基态能量的一级和二级微扰修正。 四、 (共 30 分) (1) 写出角动量算符的三个分量 J x 、 J y 、 J z 相互间满足的所有对易关系。 (2) 试利用这些对易关系,证明矩阵元 m J x n 仅当 m n 1 时不为零。其中
科目名称:量子力学
第 2 ห้องสมุดไป่ตู้,共 2 页
相关文档
最新文档