正,余弦定理的向量证明
证明余弦定理的三种方法

证明余弦定理的三种方法方法一:向量法证明假设在平面内有一个三角形ABC,其三边分别为a、b、c,对应的内角分别为A、B、C。
以A为原点,分别向B和C引出向量AB和AC。
根据向量的定义,可以得到向量AB和向量AC的长度分别为a和c,且向量AB与向量AC之间的夹角为角A。
根据向量的加法和减法,可以得到向量AC-向量AB的长度为c-a。
同样地,可以得到向量AB-向量AC的长度为a-c。
根据向量的模长和夹角的余弦关系,可以得到:(c-a)^2 = (b*cosA)^2 + (b*sinA)^2(a-c)^2 = (b*cosA)^2 + (b*sinA)^2将上述两个式子相加,可以得到:(c-a)^2 + (a-c)^2 = 2*(b*cosA)^2 + 2*(b*sinA)^2化简上述式子,可以得到:c^2 + a^2 - 2ac = 2b^2*cos^2A + 2b^2*sin^2A化简上述式子,可以得到:c^2 + a^2 - 2ac = 2b^2*(cos^2A + sin^2A)根据三角恒等式cos^2A + sin^2A = 1,可以得到:c^2 + a^2 - 2ac = 2b^2化简上述式子,可以得到:c^2 + a^2 - 2ac - 2b^2 = 0即:a^2 + b^2 - 2ab*cosC = 0即:a^2 + b^2 = 2ab*cosC这就是余弦定理的向量法证明。
方法二:几何法证明假设在平面内有一个三角形ABC,其三边分别为a、b、c,对应的内角分别为A、B、C。
以A为原点,向B和C引出向量AB和AC。
根据三角形的定义,可以得到:AB = b*cosA + b*sinAAC = c根据向量的减法,可以得到:AB - AC = b*cosA + b*sinA - c根据向量的模长和夹角的余弦关系,可以得到:(AB - AC)^2 = (b*cosA + b*sinA - c)^2化简上述式子,可以得到:(AB - AC)^2 = (b*cosA)^2 + (b*sinA)^2 - 2*b*cosA*c + c^2 - 2*b*sinA*c + 2*b*cosA*b*sinA化简上述式子,可以得到:(AB - AC)^2 = b^2*(cos^2A + sin^2A) - 2*b*c*cosA + c^2 - 2*b*c*sinA + 2*b^2*cosA*sinA根据三角恒等式cos^2A + sin^2A = 1,可以得到:(AB - AC)^2 = b^2 - 2*b*c*cosA + c^2 - 2*b*c*sinA + 2*b^2*cosA*sinA化简上述式子,可以得到:(AB - AC)^2 = b^2 + c^2 - 2*b*c*cosA根据向量的模长和夹角的余弦关系,可以得到:(AB - AC)^2 = a^2即:b^2 + c^2 - 2*b*c*cosA = a^2即:a^2 = b^2 + c^2 - 2*b*c*cosA这就是余弦定理的几何法证明。
余弦定理的三种几何证明

余弦定理的三种几何证明余弦定理是在三角形中,通过三边的长度来求解三角形的一些角度的方法,其数学表达式为:c² = a² + b² - 2ab·cos(C)其中,a、b、c表示三角形的三边的长度,C表示对应于边c的角的大小,cos(C)表示角C的余弦值。
余弦定理有多种几何证明方法,下面将分别介绍三种常用的几何证明方法。
方法一:极坐标证明法根据余弦定理的表达式,我们可以将其化简为:cos(C) = (a² + b² - c²) / (2ab)在平面直角坐标系中,我们可以将三角形的三个顶点分别表示为点A(x1,y1),B(x2,y2),C(x3,y3)。
根据点到原点的距离公式,我们有:a=√(x1²+y1²)b=√(x2²+y2²)c=√(x3²+y3²)进一步,我们可以得到:a²+b²-c²=(x1²+y1²)+(x2²+y2²)-(x3²+y3²)=[(x1-x3)²+(y1-y3)²]+[(x2-x3)²+(y2-y3)²]-(x3²+y3²)=2((x1-x3)(x2-x3)+(y1-y3)(y2-y3))cos(C) = (a² + b² - c²) / (2ab)=(2((x1-x3)(x2-x3)+(y1-y3)(y2-y3)))/(2√(x1²+y1²)√(x2²+y2²)) =((x1-x3)(x2-x3)+(y1-y3)(y2-y3))/(√(x1²+y1²)√(x2²+y2²))根据极坐标系中余弦的几何意义,cos(C)可表示为向量AC和向量BC 的内积除以它们的模的乘积。
余弦定理公式的含义及其证明

余弦定理公式的含义及其证明余弦定理是解决三角形中边长和角度之间关系的重要公式。
它描述了三角形的一个边的平方和另外两边平方的差,与这两边之间的夹角余弦函数的乘积的关系。
余弦定理的数学表达式为:c² = a² + b² - 2abcosC其中,a、b、c分别表示三角形的三边,C表示夹角C的大小。
证明余弦定理可以使用向量法和三角法两种方法。
1.向量法证明:假设三角形ABC中,向量AB的模为a,向量AC的模为b,向量BC的模为c。
向量AB与向量AC之间的夹角为夹角C,设其大小为θ。
根据向量的加法和平方模长定义,可以得到:a² = AB² = AA² + BB² - 2(AA)(BB)cosθb² = AC² = AA² + CC² - 2(AA)(CC)cosθc² = BC² = BB² + CC² - 2(BB)(CC)cosθ将以上三个等式相加,得到:a² + b² + c² = 2(AA² + BB² + CC²) - 2(AA)(BB)cosθ -2(AA)(CC)cosθ - 2(BB)(CC)cosθ化简可得:2(AA² + BB² + CC²) = a² + b² + c² + 2(AA)(BB)cosθ +2(AA)(CC)cosθ + 2(BB)(CC)cosθ设向量AA、BB、CC的模长分别为x、y、z,则上式变成:2(x² + y² + z²) = a² + b² + c² + 2xycosθ + 2xzcosθ +2yzcosθ由于AA=BB=CC=x+y+z(向量AA、BB、CC的模长相等),进一步化简得到:2(x² + y² + z²) = a² + b² + c² + 2(xy + xz + yz)cosθ所以,余弦定理成立。
余弦定理的八种证明方法1500字

余弦定理的八种证明方法1500字余弦定理是高中数学中一个非常重要的定理,它可以描述三角形边长和角度之间的关系。
余弦定理有很多种证明方法,以下我们简单介绍其中的八种证明方法。
方法一:向量法证明推导过程如下:设三角形ABC的顶点坐标分别为A(x1,y1),B(x2,y2),C(x3,y3)。
根据向量的定义和运算法则,可以得到向量AB=a,向量AC=b,向量BC=c。
由向量的点积公式可知,向量a·b=|a||b|cos(∠{向量AB,向量AC}),即(a-b)·(a-c)=-|a|²cosA。
对称地,还可以得到(b-c)·(b-a)=-|b|²cosB,(c-a)·(c-b)=-|c|²cosC。
进一步推导可知,(a-b)·(a-c)+(b-c)·(b-a)+(c-a)·(c-b)=-(|a|²+|b|²+|c|²),即2(a·b+b·c+c·a)=|a|²+|b|²+|c|²,最终可得到余弦定理的向量形式。
方法二:面积法证明推导过程如下:设∠ACB=C,根据三角形的面积公式可知,△ABC的面积S=1/2|AC||BC|sinC。
又根据正弦定理可知,sinC=a/2R,其中R为△ABC的外接圆半径。
将sinC带入上述公式可得S=1/4R|AC||BC|a。
同样地,也可以得到S=1/4R|AB||BC|c和S=1/4R|AB||AC|b。
将这三个式子相加,并将△ABC的面积用△ABC的周长p和半周长s表示,可得2S/abc=(ac+ab-bc)/2sb+(ab+bc-ac)/2sc+(ac+bc-ab)/2sa。
经过化简可以得到余弦定理的面积形式。
方法三:勾股定理证明推导过程如下:考虑△ABC的边AB与边AC之间的夹角∠BAC=A,根据勾股定理可得AB²=BC²+AC²-2BC·ACcosA。
证明余弦定理的方法

证明余弦定理的方法余弦定理是解决非直角三角形的一种三角函数关系定理,用于求解任意三角形其中一个角的边之间的关系。
证明余弦定理的方法可以利用向量、三角函数以及勾股定理。
我们假设有一个非直角三角形ABC,三边分别为a,b,c,其中∠A、∠B、∠C 分别对应于边a、b、c。
方法一:利用向量法证明余弦定理将三角形向量化,我们可以得到:向量AB = 向量AC + 向量CB利用向量之间的内积关系:AB * AB = (AC + CB) * (AC + CB)展开和化简上式,我们可以得到:AB * AB = AC * AC + 2 * AC * CB + CB * CB根据向量之间的内积关系以及余弦公式cosθ= (向量A * 向量B) / (∥向量A∥* ∥向量B∥),我们可以将上式变为:AB * AB = AC * AC + CB * CB + 2 * AC * CB * cos∠C根据向量的定义,我们可以得到:AB = √(AB * AB),AC = √(AC * AC),CB = √(CB * CB)将上述关系代入上式,我们可以得到:√(AB * AB) = √(AC * AC) + √(CB * CB) + 2 * √(AC * AC) √(CB * CB) * cosC化简上式,我们可以得到:AB^2 = AC^2 + CB^2 + 2 * AC * CB * cosC即余弦定理。
方法二:利用三角函数法证明余弦定理根据三角函数的定义,我们可以得到:cosA = AC / BCcosB = AB / ACcosC = AB / CB根据向量内积的定义,我们可以得到:AB * BC = ∥AB∥∥BC∥cosAAC * BC = ∥AC∥∥BC∥cosC将上式代入cosB的定义中,我们可以得到:cosB = (AB * BC) / (∥AB∥∥BC∥) = (AB * BC) / (√(AB * AB) √(BC * BC))代入向量AB * BC的定义,我们可以得到:cosB = (AB * AC + AB * CB) / (√(AB * AB) √(AC * AC + CB * CB + 2 * AC * CB * cosC))化简上式,我们可以得到:cosB = (AC + CB * cosC) / √(AC * AC + CB * CB + 2 * AC * CB * cosC)移项化简上式,我们可以得到:AC * AC + CB * CB + 2 * AC * CB * cosC = AC^2 + 2 * AC * CB * cosC + CB^2即余弦定理。
正余弦定理的四种证明方法

正余弦定理的四种证明方法余弦定理是解三角形问题的重要工具之一,它表达了三角形的一个边的平方与其他两边平方的关系。
以下将介绍余弦定理的四种证明方法。
方法一:向量法证明这是一种直接而简洁的证明方法。
我们可以将三角形的任意边表示为向量,然后利用向量的运算进行证明。
假设三角形的三个顶点为A、B、C,边a、b、c对应的向量分别为→a、→b、→c。
根据向量的定义,→c=→a-→b。
利用向量的模的定义有:→c,^2 = ,→a - →b,^2 = (∥→a∥ - ∥→b∥)^2 =∥→a∥^2 - 2∥→a∥∥→b∥cosC + ∥→b∥^2根据余弦定理,→c,^2 = a^2 = b^2 + c^2 - 2bc⋅cosA。
将上述两个表达式相等,整理可得余弦定理:a^2 = b^2 + c^2 - 2bc⋅cosA方法二:平面几何法证明这种证明方法是通过利用三角形的几何性质来证明余弦定理。
首先,我们可以进行如下构造:在边b上取一点D,使得BD与AC垂直相交于点E。
由此可得AE⊥BC。
根据直角三角形的性质,我们有:1. AE = AC⋅cosA2. AD = AC⋅sinA3. CD = BC - BD = BC - AD = b - AC⋅sinA由三角形的余弦定理可得:a^2 = AB^2 = AD^2 + BD^2 = (AC⋅sinA)^2 + (b - AC⋅sinA)^2展开并整理上式,可得到与余弦定理等价的表达式。
方法三:三角函数法证明这是一种基于三角函数的三角恒等式来进行证明的方法。
根据三角函数的定义,我们有:sinA = BC/AC,sinB = AC/BC由此可得AB = AC⋅sinB = BC⋅sinA。
假设三角形的高为h,利用三角形面积公式S = 1/2⋅AB⋅h也可得到:S = 1/2⋅BC⋅AC⋅sinA = 1/2⋅BC⋅AC⋅sinB此外,根据S=1/2⋅BC⋅h也可得到:h = BC⋅sinA联立上述三个等式,整理可得到余弦定理。
正弦定理、余弦定理和解斜三角形

5.6正弦定理、余弦定理和解斜三角形正弦定理:,22sin sin sin ∆====S abcR C c B b A a (2R 为三角形外接圆直径), (∆S 为三角形面积),其他形式: a :b :c = sinA :sinB :sinCa=2RsinA, b=2RsinB , c=2RsinC余弦定理:a 2=b 2+c 2-2bccosA,(可按a,b,c,轮换得另二式)余弦定理变式:bca cb A 2cos 222-+= , (轮换得另二式)余弦定理向量式:如图 a=b+ c , c= a – b c 2=|c|2=|a-b |2=(a-b)2=a 2+b 2- 2﹒a ﹒b=a 2+b 2- 2abcosC(其中|a|=a,|b|=b,|c|=c)【例1】 在△ABC 中,求证:tan A tan B =a 2+c 2-b2b 2+c 2-a2.►变式训练1 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边.求证:cos B cos C =c -b cos A b -c cos A .【例2】在△ABC 中,若B =60°,2b =a +c ,试判断△ABC 的形状.►变式训练2 在△ABC 中,已知(a +b +c )(b +c -a )=3bc ,且sin A =2sin B cos C ,试确定△ABC 的形状.CABa cb【当堂训练】1、在三角形ABC 中, 如果B A cos sin =, 那么这个三角形是 ( ) A .直角三角形 B . 锐角三角形C .钝角三角形D . 直角三角形或钝角三角形2、在△ABC 中,“︒A>30”是“1sinA>2”的 ( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件3、在△ABC 中,已知B=30°, ,那么这个三角形是 ( )A .等边三角形B .直角三角形C .等腰三角形D .等腰三角形或直角三角形4、设A 是△ABC 中的最小角,且1cos 1a A a -=+,则实数a 的取值范围是 ( ) A .a ≥3 B .a >-1 C .-1<a ≤3 D .a >05、在△ABC 中,a,b,c,分别是三内角A 、B 、C 所对的边,若B=2A ,则b:a 的取值范围是( )A .()2,2-B .()1,2C .()1,1-D .()0,16、在△ABC 中,若三个内角A ,B ,C 成等差数列且A<B<C ,则cos cos A C 的取值范围是( ) A .11,24⎛⎤-⎥⎝⎦ B .31,44⎡⎤-⎢⎥⎣⎦ C .11,24⎛⎫- ⎪⎝⎭ D .31,44⎛⎫- ⎪⎝⎭7、在A B C ∆中,C B A ∠∠∠、、所对的边长分别为c b a 、、,设c b a 、、满足条件222a bc c b =-+和12c b =+A ∠和B tan 的值.8、已知ABC ∆的三边a 、b 、c 成等比数列,且cot cot A C +=,3=+c a . (1)求B cos ;(2)求ABC ∆的面积.【家庭作业】 一、填空题1.在ABC Δ中,已知613πB ,b ,a ===,则=c ___________ 2.已知等腰三角形的底边上的高与底边长之比为34:,则它的顶角的正切值是__________3.在ABC Δ中,若2cos cos sin cos cos sin sin sin =+++B A B A B A B A ,那么三角形的形状为_______________4.在ABC Δ中,()()211=++B cot A cot ,则=C sin log 2_______________ 5.在ABC Δ中,313===S ,b ,πA ,则=++++Csin B sin A sin c b a 6.在锐角ABC Δ中,若11-=+=t B tan ,t A tan ,则t 的取值范围是__________ 7.在ABC Δ中,若1222=-+Csin B sin Asin C sin B sin ,则=A ________________8.在ABC Δ中,已知42πA ,a ==,若此三角形有两解,则b 的取值范围是__________________ 9.(A)在ABC Δ中,ac b ,B C A ==+22,则三角形的形状为________________(B) 已知A B C π++=,且sin cos cos A B C =⋅,则在cot cot tan tan B C B C ++、、s i nB+s i nC 及cos cos B C +中必为常数的有_________ 10.(A)在ABC Δ中,21==a ,c ,则C 的取值范围是__________________(B)已知三角形的三边长分别是()2223,33,20a a a a a a ++++>,则三角形的最大角等于______________ 二、 选择题11.在ABC Δ中,B cos A cos B sin A sin +=+是2πC =( ) A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件12.在ABC Δ中,若543::C sin :B sin :A sin =则此三角形是 ( ) A. 等腰三角形 B.直角三角形 C.锐角三角形 D.钝角三角形 13.在ABC Δ中,若232222b A cosc C cos a =+,那么其三边关系式为 ( ) A.c b a 2=+ B. b c a 2=+ C.a c b 2=+ D. b c a 322=+14.(A)在ABC Δ中,c ,b ,a 为三角形三条边,且方程02222=++-b a cx x 有两个相等的实数根,则该三角形是 ( )A.直角三角形B.锐角三角形C.钝角三角形D.等腰三角形(B)已知关于x 的方程2cos cos 1cos 0x x A B C +⋅-+=的两根之和等于两根之积的一半,则ABC Δ是 ( )A.等腰三角形B.直角三角形C.等腰或直角三角形D.等腰直角三角形 三、解答题15.在ABC Δ中,若22Acos C sin B sin =,试判断三角形的形状16.在ABC Δ中,若()()ac c b a c b a =+-++,求B 。
应用向量法证明正(余)弦定理

应用向量法证明正(余)弦定理作者:于志洪来源:《中学数学杂志(高中版)》2008年第05期向量法是一种解析方法,此法在证几何题时,由于具有几何的直观性,表述的简洁性和处理方法的一般性,因此对于数学知识的融汇贯通很有帮助现仅就著名的正(余)弦定理的向量证明进行介绍,供高二学生学习时参考1 正弦定理的向量法证明在任意△ABC中,a、b、c分别为∠A、∠B、∠C的对边,则asinA=bsinB=csinC证明如图1,作CD⊥AB于D因为封闭线段在任意轴上投影的代数和为零又因为AB⊥DC,所以AB在轴DC上投影为零;而AC在DC上投影为bsinA,CB在DC 上投影为-asinB.所以bsinA-asinB=0,所以bsinA=asinB.所以asinA=bsinB同理可证得bsinB=csinC,csinC=asinA,所以asinA=bsinB=csinC2 余弦定理的向量法证明在任意△ABC中,a、b、c为∠A、∠B、∠C的对边,则a2=b2+c2-2bccosA,b2=a2+c2-2accosB,c2=a2+b2-2abcosC,证明:如图2,在已知△ABC的三边AB、BC和CA上,分别取从B向A、从B向C和从A向C为正方向,这样就得到三个向量BA、BC和AC,并且BA+AC=BC根据关于向量的射影定理可知:BC的射影=BA的射影+AC的射影BC在轴BC上的射影=|BC|cos0°=a;BA在轴BC上的射影=|BA|cosB=ccosB;AC在轴BC上的射影=|AC|cosC=bcosC;所以a=ccosB+bcosC①同理可证得:b=acosC+ccosA②c=acosB+bcosA③再由①·a-②·b-③·c,即可得到a2=b2+c2-2bccosA.同法:b2=a2+c2-2bccosBc2=a2+b2-2abcosC上述向量法证明正(余)弦定理,不必去区分锐角、钝角、直角三角形,从而大大简化了证明过程,因而值得介绍注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、在 ABC中,若 ,求角A。
5、用余弦定理证明:在 中,当 为锐角时, ;
D
C
B
A
当 为钝角时, .
6、如图,在四边形 中,已知 ,
, , ,
,求 的长.
7、在 中,已知 ,
求 的最大内角;
8、已知 的两边 是方程 的两个根,三角形的面积是 ,周长是 ,试求 及 的值;
, ,
[理解定理]
从而知余弦定理及其推论的基本作用为:
①已知三角形的任意两边及它们的夹角就可以求出第三边;
②已知三角形的三条边就可以求出其它角。
思考:勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?
(由学生总结)若 ABC中,C= ,则 ,这时
∴
解法二:∵sin 又∵ >
< ∴ < ,即 < <
∴
评述:解法二应注意确定A的取值范围。
练习:第8页第1(1)、2(1)题。
例3.在 中, , , 是方程 的两个根,且 ,求:①角 的度数;② 的长度;③ .
三、归纳总结
1)正,余弦定理是任何三角形边角之间存在的共同规律,勾股定理是余弦定理的特例;
由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。
二、典例分析
例1.在 中, , , ,求 , 。
分析:正弦定理可以用于解决已知两角和一边,求另两边和一角的问题
解:
例2.在 ABC中,已知 , , ,求⑴b,⑵A.
⑴解:∵
= cos
=
=
∴
注:求 可以利用余弦定理,也可以利用正弦定理:
⑵解法一:∵cos
(2)正,余弦定理的应用范围:
四、作业设计
①课后阅读:课本第9页[探究与发现]
②课时作业:
(1)在△ABC中,若_
(2)在△ABC中,若 ,求证: 。
五、精彩一练
1、在 中,已知 , , ,则 __________, ______________.
2、在 中,如果 , , ,那么 ___________, 的面积是____________.
课题
正、余弦定理
总课时数
课型
新授课
编定人:管玉秀
执教时间
教
学
目标
知识
目标
掌握正,余弦定理的两种表示形式及证明余弦定理的向量方法,并会运用余弦定理解决两类基本的解三角形问题。
能力
目标
利用向量的数量积推出正余弦定理及其推论,并通过实践演算掌握运用正,余弦定理解决两类基本的解三角形问题
情感
目标
培养学生在方程思想指导下处理解三角形问题的运算能力;通过三角函数、余弦定理、向量的数量积等知识间的关系,来理解事物之间的普遍联系与辩证统一。
[理解定理]
(1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k使 , , ;
(2) 等价于 , ,
(二)联系已经学过的知识和方法,可用什么途径来解决这个问题?
用正弦定理试求,发现因A、B均未知,所以较难求边c。
由于涉及边长问题,从而可以考虑用向量来研究这个问题。
一、新知探究
(一)利用向量如何在三角形的边长与三角函数建立联系?
在锐角 ABC中,过A作单位向量j垂直于 ,则有j与 的夹角为 ,j与 的夹角为 ,等式 ,
,
同理,过C作单位向量j垂直于 ,可得
在钝角 ABC中,过A作单位向量j垂直于 ,则有j与 的夹角为 ,j与 的夹角为 .等式 ,
同样可证得
正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即
培养学生自学能力。
巩固提高。
练习巩固
如图1.1-5,设 , , ,那么 ,则A
C B
(图1.1-5)
从而
同理可证 , .
余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。即 , , .
思考:这个式子中有几个量?从方程的角度看已知其中三个量,可以求出第四个量,能否由三边求出一角?
(由学生推出)从余弦定理,又可得基本应用;
难点
勾股定理在余弦定理的发现和证明过程中的作用。
教学方法
探究学习,学案导学
教学手段
彩笔,三角板
教学过程
师生活动
学情分析:定理以学生探究为主,注重启发诱导,上课要积极鼓励学生,提高学生学习兴趣。要充分积累方法,注重解的情况分析,总结规律,逐步提高。教会学生思考问题的方法,规范化训练要求严格化,分层要求作业,引导好学生积极参与,循序渐进的提高。通过题目及时探究结论与要求,教会学生运算技能,精彩一练以后强化,难度不大。
六、板书设计
课题
正,余弦定理推导例1例3
正,余弦定理
例2练习
七、预习提纲
参照学案预习题纲
积极调动学生探究的兴趣。
引导学生从向量方面入手,讨论交流,进一步体会利用向量解决问题的方便。
引导学生归纳探究,培养学生自学能力。
讨论,交流,加深学生对新学的余弦定理的理解。
通过典型例题,培养学生解决问题的能力
思考:有几种方法?