用向量法证明正弦定理教学设计
《正弦定理》优秀教案

《正弦定理》教学设计一、教学目标分析1、知识与技能:通过对锐角三角形中边与角的关系的探索,发现正弦定理;掌握正弦定理的内容及其证明方法;能利用正弦定理解三角形以及利用正弦定理解决简单的实际问题。
2、过程与方法:让学生从实际问题出发,结合以前学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理,使学生体会完全归纳法在定理证明中的应用;让学生在应用定理解决问题的过程中更深入的理解定理及其作用。
3、情感态度与价值观:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,发现并证明正弦定理。
从发现与证明的过程中体验数学的探索性与创造性,让学生体验成功的喜悦,激发学生的好奇心与求知欲。
培养学生处理解三角形问题的运算能力和探索数学规律的推理能力,并培养学生坚忍不拔的意志、实事求是的科学态度和乐于探索、勇于创新的精神。
二、教学重点、难点分析重点:通过对锐角三角形边与角关系的探索,发现、证明正弦定理并运用正弦定理解决一些简单的三角形度量问题。
难点:①正弦定理的发现与证明过程;②已知两边以及其中一边的对角解三角形时解的个数的判断。
三、教法与学法分析本节课是教材第一章《解三角形》的第一节,所需主要基础知识有直角三角形的边角关系,三角函数相关知识。
在教法上,根据教材的内容和编排的特点,为更有效的突出重点,突破难点,教学中采用探究式课堂教学模式,首先从学生熟悉的锐角三角形情形入手,设计恰当的问题情境,将新知识与学生已有的知识建立起密切的联系,通过学生自己的亲身体验,使学生经历正弦定理的发现过程,激发学生的求知欲,调动学生主动参与的积极性,引导学生尝试运用新知识解决新问题,即在教学过程中,让学生的思维由问题开始,通过猜想的得出、猜想的探究、定理的推导等环节逐步得到深化。
教学过程中鼓励学生合作交流、动手实践,通过对定理的推导、解读、应用,引导学生主动思考、总结、归纳解答过程中的内在规律,形成一般结论。
最新正弦定理余弦定理说课稿优秀5篇

最新正弦定理余弦定理说课稿优秀5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!最新正弦定理余弦定理说课稿优秀5篇作为一位无私奉献的人·民教师,通常会被要求编写说课稿,说课稿有助于教学取得成功、提高教学质量。
正弦定理教案优秀5篇

正弦定理教案优秀5篇《正弦定理、余弦定理》教学设计篇一一、教学内容:本节课主要通过对实际问题的探索,构建数学模型,利用数学实验猜想发现正弦定理,并从理论上加以证实,最后进行简单的应用。
二、教材分析:1、教材地位与作用:本节内容安排在《普通高中课程标准实验教科书。
数学必修5》(A 版)第一章中,是在高二学生学习了三角等知识之后安排的,显然是对三角知识的应用;同时,作为三角形中的一个定理,也是对初中解直角三角形内容的直接延伸,而定理本身的应用(定理应用放在下一节专门研究)又十分广泛,因此做好该节内容的教学,使学生通过对任意三角形中正弦定理的探索、发现和证实,感受“类比--猜想--证实”的科学研究问题的思路和方法,体会由“定性研究到定量研究”这种数学地思考问题和研究问题的思想,养成大胆猜想、善于思考的品质和勇于求真的精神。
2、教学重点和难点:重点是正弦定理的发现和证实;难点是三角形外接圆法证实。
三、教学目标:1、知识目标:把握正弦定理,理解证实过程。
2、能力目标:(1)通过对实际问题的探索,培养学生数学地观察问题、提出问题、分析问题、解决问题的能力。
(2)增强学生的协作能力和数学交流能力。
(3)发展学生的创新意识和创新能力。
3、情感态度与价值观:(1)通过学生自主探索、合作交流,亲身体验数学规律的发现,培养学生勇于探索、善于发现、不畏艰辛的创新品质,增强学习的成功心理,激发学习数学的爱好。
(2)通过实例的社会意义,培养学生的爱国主义情感和为祖国努力学习的责任心。
四、教学设想:本节课采用探究式课堂教学模式,即在教学过程中,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以四周世界和生活实际为参照对象,为学生提供充分自由表达、质疑、探究、讨论问题的机会,让学生通过个人、小组、集体等多种解难释疑的尝试活动,将自己→←所学知识应用于对任意三角形性质的深入探讨。
让学生在“活动”中学习,在“主动”中发展,在“合作”中增知,在“探究”中创新。
向量正弦定理教案

向量正弦定理教案导语:在初中数学的学习中,学生们经常会遇到三角函数的相关内容,其中向量正弦定理是三角函数中的重要定理之一。
通过学习和掌握向量正弦定理,可以帮助学生进一步理解和应用三角函数的概念和性质。
本文将针对向量正弦定理的教学内容进行详细介绍和讲解。
一、知识背景在介绍向量正弦定理之前,首先需要了解一些相关的背景知识。
在三角形ABC中,可以定义三个边向量AB、AC和BC,它们的长度分别为a、b和c。
根据向量的性质,可以知道这三个边向量之间有如下关系:AB + BC = AC。
二、向量正弦定理的表述向量正弦定理的表述为:在任意三角形ABC中,有以下关系式成立:a/sinA = b/sinB = c/sinC = 2R其中,a、b和c分别为三角形的边长,A、B和C为对应的角度,R为三角形的外接圆半径。
三、向量正弦定理的证明1. 假设在三角形ABC中,有一个角度为A的弧AB,它所对应的线段AB的长度为L。
现在,我们将向量AB沿着方向AB进行平移,记为向量AB'。
此时,线段AB被平移至线段AB'。
2. 假设平移的距离为d,且向量AB与向量AB'之间的夹角为θ。
可以得到以下关系式:AB' = AB + d*cosθ。
3. 在AB'上取一点C',使得AB' = AC',则向量AC' = AB' - BC'。
由于线段AB与AC'相等,且它们都是向量AB'的平移结果,因此有以下关系式:BC' = AB - AC'。
4. 根据向量的性质,可以得到以下关系式:BC' = AB - AC' = AB - (AB' - BC') = BC' + BC。
5. 由于三角形ABC和AB'C'是等边的,所以它们的外接圆半径相等,记为R。
根据外接圆半径的定义,可以得到以下关系式:AB' * BC' = 2R * BC'。
《正弦定理》优秀教案

《正弦定理》教学设计一、教学目标分析1、知识与技能:通过对锐角三角形中边与角的关系的探索,发现正弦定理;掌握正弦定理的内容及其证明方法;能利用正弦定理解三角形以及利用正弦定理解决简单的实际问题。
2、过程与方法:让学生从实际问题出发,结合以前学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理,使学生体会完全归纳法在定理证明中的应用;让学生在应用定理解决问题的过程中更深入的理解定理及其作用。
3、情感态度与价值观:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,发现并证明正弦定理。
从发现与证明的过程中体验数学的探索性与创造性,让学生体验成功的喜悦,激发学生的好奇心与求知欲。
培养学生处理解三角形问题的运算能力和探索数学规律的推理能力,并培养学生坚忍不拔的意志、实事求是的科学态度和乐于探索、勇于创新的精神。
二、教学重点、难点分析重点:通过对锐角三角形边与角关系的探索,发现、证明正弦定理并运用正弦定理解决一些简单的三角形度量问题。
难点:①正弦定理的发现与证明过程;②已知两边以及其中一边的对角解三角形时解的个数的判断。
三、教法与学法分析本节课是教材第一章《解三角形》的第一节,所需主要基础知识有直角三角形的边角关系,三角函数相关知识。
在教法上,根据教材的内容和编排的特点,为更有效的突出重点,突破难点,教学中采用探究式课堂教学模式,首先从学生熟悉的锐角三角形情形入手,设计恰当的问题情境,将新知识与学生已有的知识建立起密切的联系,通过学生自己的亲身体验,使学生经历正弦定理的发现过程,激发学生的求知欲,调动学生主动参与的积极性,引导学生尝试运用新知识解决新问题,即在教学过程中,让学生的思维由问题开始,通过猜想的得出、猜想的探究、定理的推导等环节逐步得到深化。
教学过程中鼓励学生合作交流、动手实践,通过对定理的推导、解读、应用,引导学生主动思考、总结、归纳解答过程中的内在规律,形成一般结论。
正弦定理教学设计(精选5篇)

正弦定理教学设计正弦定理教学设计(精选5篇)作为一名专为他人授业解惑的人民教师,常常要根据教学需要编写教学设计,教学设计是实现教学目标的计划性和决策性活动。
教学设计应该怎么写才好呢?下面是小编精心整理的正弦定理教学设计(精选5篇),仅供参考,希望能够帮助到大家。
正弦定理教学设计1一、教学内容分析本节课是高一数学第五章《三角比》第三单元中正弦定理的第一课时,它既是初中“解直角三角形”内容的直接延拓,也是坐标法等知识在三角形中的具体运用,是生产、生活实际问题的重要工具,正弦定理揭示了任意三角形的边角之间的一种等量关系,它与后面的余弦定理都是解三角形的重要工具。
本节课其主要任务是引入证明正弦定理及正弦定理的基本应用,在课型上属于“定理教学课”。
因此,做好“正弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,学生通过对定理证明的探究和讨论,体验到数学发现和创造的历程,进而培养学生提出问题、解决问题等研究性学习的能力。
二、学情分析对高一的学生来说,一方面已经学习了平面几何,解直角三角形,任意角的三角比等知识,具有一定观察分析、解决问题的能力;但另一方面对新旧知识间的联系、理解、应用往往会出现思维障碍,思维灵活性、深刻性受到制约。
根据以上特点,教师恰当引导,提高学生学习主动性,注意前后知识间的联系,引导学生直接参与分析问题、解决问题。
三、设计思想:培养学生学会学习、学会探究是全面发展学生能力的重要方面,也是高中新课程改革的主要任务。
如何培养学生学会学习、学会探究呢?建构主义认为:“知识不是被动吸收的,而是由认知主体主动建构的。
”这个观点从教学的角度来理解就是:知识不仅是通过教师传授得到的,更重要的是学生在一定的情境中,运用已有的学习经验,并通过与他人(在教师指导和学习伙伴的帮助下)协作,主动建构而获得的,建构主义教学模式强调以学生为中心,视学生为认知的主体,教师只对学生的意义建构起帮助和促进作用。
用向量法证明正弦定理教学设计

用向量法证明正弦定理教学设计一、 教学目标1、知识与技能:掌握正弦定理的内容及其证明方法;会运用正弦定理解决一些简单的三角形度量问题。
2、过程与方法:让学生通过向量方法证明正弦定理,了解知识之间的联系,让学生在应用定理解决问题的过程中更深入地理解定理及其作用。
3、情感、态度与价值观:通过正弦定理的发现与证明过程体验数学的探索性与创造性,让学生体验成功的喜悦。
二、教学重难点分析重点:正弦定理的向量证明过程并运用正弦定理解决一些简单的三角形度量问题。
难点:正弦定理的发现并证明过程以及已知两边以及其中一边的对角解三角形时解的个数的判断。
三、教学过程1.借助Rt △ABC ,中找出边角关系。
在Rt ∆ABC 中,设BC=a, AC=b, AB=c, 根据锐角三角函数中正弦函数的定义, 有sin A= ,sinB= ,sinC= , 则在这三个式子中,能得到c= = = 从而在直角三角形ABC 中,sin sin sin abcABC==2.那么在任意三角形中这个结论是否成立?通过向量进行证明。
过点A 作单位向量j AC ⊥, 由向量的加法可得 AB AC CB =+ 则 ()j AB j AC CB ⋅=⋅+CAB∴j AB j AC j CB ⋅=⋅+⋅()()00cos 900cos 90-=+-j AB A j CB C∴sin sin =c A a C ,即sin sin =a c A C同理,过点C 作⊥j BC ,可得 sin sin =b c B C 从而sin sin abAB=sin cC =从上面的研探过程,可得以下定理3.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin abAB=sin cC =4.总结正弦定理适用范围范围a :已知三角形的两边及其中一边的对角,求另外一边的对角 范围b :已知三角形两角一边求出另外一边 5.定理变形:a:b:c=sinA:sinB:sinC 6.例题讲解例1:在△ABC 中,已知A=32.0°,B=81.8°,a=42.9cm ,解三角形。
高中数学《正弦定理》教案

高中数学《正弦定理》教案•相关推荐高中数学《正弦定理》教案4篇作为一名优秀的教育工作者,通常需要用到教案来辅助教学,教案有利于教学水平的提高,有助于教研活动的开展。
如何把教案做到重点突出呢?以下是小编为大家整理的高中数学《正弦定理》教案,仅供参考,大家一起来看看吧。
高中数学《正弦定理》教案1教材地位与作用:本节知识是必修五第一章《解三角形》的第一节内容,与初中学习的三角形的边和角的基本关系有密切的联系与判定三角形的全等也有密切联系,在日常生活和工业生产中也时常有解三角形的问题,而且解三角形和三角函数联系在高考当中也时常考一些解答题。
因此,正弦定理的知识非常重要。
学情分析:作为高一学生,同学们已经掌握了基本的三角函数,特别是在一些特殊三角形中,而学生们在解决任意三角形的边与角问题,就比较困难。
教学重点:正弦定理的内容,正弦定理的证明及基本应用。
教学难点:正弦定理的探索及证明,已知两边和其中一边的对角解三角形时判断解的个数。
(根据我的教学内容与学情分析以及教学重难点,我制定了如下几点教学目标)教学目标分析:知识目标:理解并掌握正弦定理的证明,运用正弦定理解三角形。
能力目标:探索正弦定理的证明过程,用归纳法得出结论。
情感目标:通过推导得出正弦定理,让学生感受数学公式的整洁对称美和数学的实际应用价值。
教法学法分析:教法:采用探究式课堂教学模式,在教师的启发引导下,以学生独立自主和合作交流为前提,以“正弦定理的发现”为基本探究内容,以生活实际为参照对象,让学生的思维由问题开始,到猜想的得出,猜想的探究,定理的推导,并逐步得到深化。
学法:指导学生掌握“观察——猜想——证明——应用”这一思维方法,采取个人、小组、集体等多种解难释疑的尝试活动,将自己所学知识应用于对任意三角形性质的探究。
让学生在问题情景中学习,观察,类比,思考,探究,动手尝试相结合,增强学生由特殊到一般的数学思维能力,锲而不舍的求学精神。
教学过程(一)创设情境,布疑激趣“兴趣是最好的老师”,如果一节课有个好的开头,那就意味着成功了一半,本节课由一个实际问题引入,“工人师傅的一个三角形的模型坏了,只剩下如右图所示的部分,∠a=47°,∠b=53°,ab长为1m,想修好这个零件,但他不知道ac和bc的长度是多少好去截料,你能帮师傅这个忙吗?”激发学生帮助别人的热情和学习的兴趣,从而进入今天的学习课题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用向量法证明正弦定理教学设计
一、 教学目标
1、知识与技能:掌握正弦定理的内容及其证明方法;会运用正弦定理解决一些简单的三角形度量问题。
2、过程与方法:让学生通过向量方法证明正弦定理,了解知识之间的联系,让学生在应用定理解决问题的过程中更深入地理解定理及其作用。
3、情感、态度与价值观:通过正弦定理的发现与证明过程体验数学的探索性与创造性,让学生体验成功的喜悦。
二、教学重难点分析
重点:正弦定理的向量证明过程并运用正弦定理解决一些简单的三角形度量问
题。
难点:正弦定理的发现并证明过程以及已知两边以及其中一边的对角解三角形
时解的个数的判断。
三、教学过程
1.借助Rt △ABC ,中找出边角关系。
在Rt ∆ABC 中,设BC=a, AC=b, AB=c, 根据锐角三角函数中正弦函数的定义, 有sin A= ,sinB= ,sinC= , 则在这三个式子中,能得到c= = = 从而在直
角三角形ABC 中,
sin sin sin a
b
c
A
B
C
=
=
2.那么在任意三角形中这个结论是否成立?通过向量进行证明。
过点A 作单位向量j AC ⊥, 由向量的加法可得 AB AC CB =+ 则 ()j AB j AC CB ⋅=⋅+
C
A
B
∴j AB j AC j CB ⋅=⋅+⋅
()()00cos 900cos 90-=+-j AB A j CB C
∴sin sin =c A a C ,即sin sin =
a c A C
同理,过点C 作⊥j BC ,可得 sin sin =
b c B C 从而
sin sin a
b
A
B
=
sin c
C =
从上面的研探过程,可得以下定理
3.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即
sin sin a
b
A
B
=
sin c
C =
4.总结正弦定理适用范围
范围a :已知三角形的两边及其中一边的对角,求另外一边的对角 范围b :已知三角形两角一边求出另外一边 5.定理变形:a:b:c=sinA:sinB:sinC 6.例题讲解
例1:在△ABC 中,已知A=32.0°,B=81.8°,a=42.9cm ,解三角形。
评述:此类问题结果为唯一解,学生较易掌握,先利用内角和180°求出第
三角,再利用正弦定理.
7.能力提升
例2:在△ABC 中,,A=45°,a=2,求b,B,C 。
评述:此类问题结果为多解,学生容易产生漏解的情况,在此题的解题过程
中,让学生自主练习,然后在课堂上讨论,通过相互交流,总结出存在多解的情况,应与大边对大角结合分情况讨论,培养学生分类讨论的思想。
8.课堂总结
总结本堂课的内容:正弦定理、正弦定理适用范围、正弦定理应该注意的问题9.课后作业
(1)在ABC ∆中,已知角
33
4,2245=
==b c B , ,则角A 的值是
A.
15 B.
75 C.
105 D.
75或
15 (2)在△ABC 中,=︒=︒=c b a B A ::,60,30则若
(3)在ABC ∆中,若14,6760===a b B ,
,则A= (4)在ABC ∆中,已知
45,2,3===B b a ,解三角形。