超静定结构位移计算力学

合集下载

结构力学 超静定结构的位移计算

结构力学 超静定结构的位移计算

计算实例
超静定结构的位移计算
-150 +250
3750EI 7 L2
-150
535.17
317.14
218 .75EI 7 L2 静定结构在温度、荷载共 同作用下的位移计算问题
单位:
EI
L
弯计算
535.17 317.14
为求A截面的转角,作P=1
单位:
P=1
超静定结构的位移计算
计算实例
图示结构,各杆长都是 L,梁截面为矩形,截面高度h
数为 。求(1)绘弯矩图(2)求杆 A 端转角
L 10
,线膨胀系
-150 -150 +250
A
超静定结构的位移计算
计算实例 -150 +250 X1 X2 基本体系
-150
3750EI 解得: X 1 7 L2 218 .75EI X2 7 L2
22
3a 3 12 21 4 EI
2P
17Pa3 48EI
16 P X2 44
3P X1 44
EI
p
6Pa/44 3Pa/44
EI
2EI
16 P X2 44
3Pa/44 8Pa/44
M图
P=1
1
1 1 6Pa 1 Pa 1 1 3Pa 7 Pa2 A a 1 a 1 1 a EI 2 44 2 4 44 176EI 2EI 2
超静定结构的位移计算
引言: 超静定结构的位移计算不需要另外推导公式,在力法的计算 过程中,其方法已经存在了。 下面以例题的形式加以说明。 D 6m
A 6m C 6m
B

结构力学_11超静定结构-位移法

结构力学_11超静定结构-位移法

§11.3 位移法的基本未知量和基本体系
1、结点角位移数:
结构上可动刚结点数即为位移法计算的结点角位移数。
2、结构独立线位移:
每个结点有两个线位移,为了减少未知量,引入与实际相符的两个假设:
(1)忽略轴向力产生的轴向变形 (2)变形后的曲杆长度与其弦等长。





C
C
D
D
A
B
线位移数也可以用几何方法确定。 将结构中所有刚结点和固定支座,代之以铰结点和铰支座,分析新体系的
基本方法 (手算)
机算
力法
位移法
矩阵 力法
力矩分配法
矩阵 位移法
力法几次9超次静定?
位移法几1次次超静定?
§11.1
P C θA
θA
位移法的基本概念
B
A
附加
刚臂 C
P B
附加刚臂限制结
点位移,荷载作
A 用下附加刚臂上
产生附加力矩
C θA
B
θA
施加力偶使结点产 生的角位移,以实
A 现结点位移状态的
一致性。
D
2
C
F22
A
D
A
D
Fk1111
2i B
1 =1
i
A
C
kF2211
Fk122
B
i
D
A
建立基本方程
F11+F12+F1P=0………………(1a) F21+F22+F2P=0………………(2a)
k111 + k122 +F1P =0………..(1) k211 + k222 +F2P =0………..(2)

建筑材料力学第四章静定结构的位移计算

建筑材料力学第四章静定结构的位移计算
建筑材料力学第四章静 定结构的位移计算
2020/8/1
建筑力学
§4-1 概述
一、静定结构的位移
静定结构在荷载、温度变化、支座移动以及制 造误差等因素作用下,结构的某个截面通常会产 生水平线位移、竖向线位移以及角位移。
1. 截面位移
B
C
B
A
刚架受荷载作用
A
C
桁架受荷载作用
建筑力学
AC
B
C'
温度变化
2)上述虚功原理适用于各类结构(静定、超静 定、杆系及非杆系结构),适用于弹性或非 弹性结构。
3)考虑了杆件的弯曲、剪切及轴向变形。
建筑力学
二、各类结构的位移计算公式
1. 梁和刚架 在梁和刚架中,由于轴向变形及剪切变形产
生的位移可以忽略,故位移计算公式为:
(M 单位荷载1作用下的结构内弯矩)
(MP 外荷载作用下的结构内弯矩)
FP1 FP2 12
1、2之位移分别为
、 。然后加 ,则1、2截面产生新的
位移

建筑力学
FP1 FP2 12
实功: 虚功:
虚功强调作功的力与位移无关。
建筑力学
§4-2 变形体虚功原理及位移计 算一般公式
一、 变形体虚功原理
定义:设变形体在力系作用下处于平衡状 态,又设该变形体由于其它原因产生符合约束 条件的微小连续变形,则外力在位移上做的外 虚功W恒等于各微段应力的合力在变形上作的 内虚功Wi ,即W=Wi 。
一、图乘法基本公式
为方便讨论起见,把积分 。
改写成
建筑力学
y
Mk(x) dω=Mkdx
Mk图
A
Bx
x
dx
x0

结构力学 超静定结构计算)

结构力学 超静定结构计算)

0 0
(0)
(0)
0
00
0
绘M 图
17.67
3.17
(12)
D
A
B
C
1.9
M 图(kN·m)
21.6
【例】试用力矩分配法作图示刚架的弯矩图。
M
A
B
M/2
解:运算过程如图所示
运算过程
M图(kN·m)
本节小结
一、转动刚度S:
远端固定:S = 4i 远端铰支:S = 3i 远端滑动 S = i 远端自由 S = 0
锁住1结点,用单结点 的力矩分配法,对2结 点的不平衡力矩进行分 配。
第八章渐近线法及其他算法简述
§1 力矩分配法的基本概念 §2 多结点的力矩分配 §3 对称结构的计算 §4 无剪力分配法 §5 力矩分配法与位移法联合应用
渐近法有力矩分配法、无剪力分配法、迭代法等,它们 都是位移法的变体,其共同的特点是避免了组成和解算 典型方程,也不需要计算结点位移,而是以逐次渐近的 方法来计算杆端弯矩,计算结果的精度随计算轮次的增 加而提高,最后收敛于精确解。这些方法的物理概念生 动形象,每轮计算都是按相同步骤进行,易于掌握,适 合手算,并可不经过计算结点位移而直接求得杆端弯矩。 因此,在结构设计中得到广泛应用。在连续梁及无侧移 刚架中应用十分广泛。
超静定结构的计算方法: 力法、位移法
力法计算步骤
位移法计算步骤
1、选取基本体系
1、设基本未知量
2、列力法方程
2、列杆端弯矩方程
3、计算系数及自由项 3、列位移法方程
4、解方程 5、作内力图
4、解方程 5、求杆端弯矩
6、做内力图
为避免解力法和位移法方程,引入一种近似的计 算方法,这种方法是位移法的延伸,在计算过程 中进行力矩的分配与传递。

第八章-结构的位移计算

第八章-结构的位移计算
线位移 — 结构上某点沿直线方向移动的距离。 角位移 — 结构上某截面旋转的角度。
绝对位移
相对位移
截面A角位移A ,
A点线位移 A 包含: 水平线位移 AH 竖向线位移 AV
CD两点的水平相对线位移:
(CD )H C D
AB两截面的相对转角:AB A B
以上线位移、角位移及相对位移统称为广义位移
一.局部变形时的位移公式
如图所示,为一悬臂梁在B点附近有微段ds 有局部变形,结构其他部分没有变形,微
段 ds 局部变形包括三部分:
⑴ 轴向应变 ;⑵ 平均剪切应变 0 ;
⑶ 轴线曲率 ( 1 R,R 为轴线变形后
§8-2 结构位移计算的一般公式
—般情况下,结构发生位移在结构内部产生应变,因此,结构的位移计算 属于变形体体系的位移计算问题。计算变形体体系的位移采用的方法以虚 功原理最为普通。推导结构位移(变形体)计算的一般公式有两种途径:
一是根据变形体体系的虚功原理,然后由此导出变形体体系的位移公式, 另一种是先应用刚体体系的虚功原理导出局部变形时的位移公式,然后应 用叠加原理,导出整体变形时的位移公式。
第 六 章 结构位移计算
本章主要内容
➢ 应用虚功原理求刚体体系的位移 ➢ 结构位移计算的一般公式 ➢ 荷载作用下的位移计算 ➢ 图乘法 ➢ 温度作用及支座移动时的位移计算 ➢ 广义位移的计算 ➢ 互等定理
§8-1 应用虚功原理求刚体体系的位移
一.结构位移计算概述
◆结构位移的种类:结构在外界因素作用下发生变形。因此而使结构各点的 位置发生相应的改变,这种改变称为结构的位移。
在材料力学中,曾学过求梁的位移计算方法(如直接积分法等)。但这
些方法对于结构力学的研究对象,如多跨静定梁、桁架、刚架等结构,是

结构力学 位移法计算超静定结构

结构力学 位移法计算超静定结构

情景一 位移法的基本原理和典型方程 知识链接
(2)等截面直杆的转角位移方程 常见的单跨超静定梁根据支座情况的不同,可分为如图 3 – 45 所示三种。
情景一 位移法的基本原理和典型方程
知识链接
下面介绍常见的单跨超静定梁在杆端的位移和荷载作用下杆端弯矩的计 算公式,即等截面直杆的转角位移方程。为方便计算,可参照表 3 – 2 和表 3 – 3 查出杆端位移所引起的杆端弯矩及荷载作用下引起的杆端弯 矩进行叠加计算。 ① 两端固定。超静定结构中,凡两端与刚结点或固定支座(固定端) 连接的杆件,均可看作是两端固定梁。
2.位移法的基本未知量和基本结构的确定 位移法的基本未知量为结点角位移和独立结点线位移。结点角位移未知量
的数目等于刚结点的数目。确定独立结点线位移未知量的数目时,假定受弯 直杆两端之间的距离在变形后仍保持不变,具体方法是“铰化结点,增设链 杆”,即将结构各刚性结点改为铰结点,并将固定支座改为固定铰支座,使 原结构变成铰结体系,使该铰结体系成为几何不变体系,所需增加的最少链 杆数就等于原结构独立结点线位移数目。位移法的基本未知量确定后,在每 个结点角位移处加入附加刚臂,沿每个独立结点线位移方向加入附加链杆, 所形成的单跨超静定梁的组合体即为位移法的基本结构。
计算:
① 单位位移 Δ1=1 单独作用于基本结构引起相应的约束反力为 k11 和 k21, 其相应弯矩图为M1 图(图 3 – 43a)。
② 单位位移 Δ2=1 单独作用于基本结构引起相应的约束反力为 k12 和 k22, 其相应弯矩图为M2 图(图 3 – 43b)。 ③ 荷载单独作用于基本结构引起相应的约束反力为 F1P 和 F2P,其相应弯 矩图为 MP 图(图3 – 43c)。
情景一 位移法的基本原理和典型方程

结构力学上第8章 位移法

结构力学上第8章 位移法

(非独立角位移) l FQBA
M AB M BA
F 3i A 3i M AB l 0
3、一端固 FQAB
A
B1
B
l
F M AB i A i B M AB F M BA i A i B M BA
(非独立线位移)
q B EI C L
Z1
q B
EI C
Z2 4i
Z1=1
EI A 原结构
L
=
Z2=1
EI A qL2 8 基本体系
=
3i
M1图×Z1 2i
+
6EI L2 6EI M2图×Z2 L2
+
qL2 8 MP图
在M1、M2、MP三个 图中的附加刚臂和链杆 中一定有约束反力产生, 而三个图中的反力加起 来应等于零。
M
q
应用以上三组转角位移方程,即可求出三种基本的单跨超 静定梁的杆端弯矩表达式,汇总如下:
F 1)两端固定梁 M AB 4i A 2i B 6i M AB
M BA
l F 2i A 4i B 6i M BA l
2)一端固定另一端铰支梁
F M AB 3i A 3i M AB l M BA 0 3)一端固定另一端定向支承梁 F M AB i A i B M AB
3
2
1
结点转角的数目:7个
独立结点线位移的数目:3个
D
E
A
B
C
C
D
刚架结构,有两个刚结点D、E, 故有两个角位移,结点线位移由铰 结体系来判断,W=3×4-2×6=0, 铰结体系几何不变,无结点线位移。
A
B

结构力学 静定结构的位移计算

结构力学 静定结构的位移计算

情景一 引起结构位移的原因及位移计算的目的
能力拓展 如图 2 – 61a 所示屋架,通过对比左右两图,运用结构位移的相关知识 ,可以解释制作时为何通常将各下弦杆的实际下料长度做得比设计长度
要短些,这样可以使屋架拼装后,结点 C 位于 C′的位置(图 2 – 61b)
, 工程上将这种做法称为建筑起拱。那么预先应知道哪些位移量?
情景二 虚功原理及单位荷载法
项目表述
静定结构位移计算是演算结构刚度和计算超静定结构所必需的。变形 体虚功原理是结构力学中的重要理论。通过本项目学习,同学们重点理 解变形体的虚功原理、单位荷载法及位移计算一般公式。对变形体的虚 功原理的推导过程的理解是本项目的难点内容。
情景二 虚功原理及单位荷载法 学习进程
情景一 引起结构位移的原因及位移计算的目的 知识链接
情景一 引起结构位移的原因及位移计算的目的
知识链接
2.引起位移的原因 众所周知,引起位移的原因主要是荷载作用。除此之外,温度改变使材料膨胀 或收缩、结构构件的尺寸在制造过程中产生误差、基础的沉陷或结构支座产生 移动等因素,均会引起结构的位移。如图 2 – 56a、图 2 – 57a 所示,由荷载作 用产生的位移。如图 2 – 57b 所示,因温度改变或材料胀缩产生的位移。如图 2 – 57c 所示,因制造误差或支座移动产生的位移。
情景一 引起结构位移的原因及位移计算的目的
知识链接
1.结构位移的概念 建筑结构在施工和使用过程中常会发生变形,由于结构变形,其上各点或截面 位置会发生改变,这称为结构的位移。如图 2 – 56a 所示的刚架,在荷载作用 下,结构产生变形如图中虚线所示,使截面的形心 A 点沿某一方向移到 A′点, 线段 AA′称为 A 点的线位移,一般用符号 ΔA 表示。 它也可用竖向线位移 ΔAy 和水平线位移 ΔAx 两个位移分量来表示,如图 2 – 56b 所示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例:已知M图,EI=常数。求ΔCV。
q
A
l/2
C
B
ql2/12 l/2 ql2/24
ql2/12
CV ql 4 384EI
M图
ql2/12
ql2/12 l/4
1
基本体系2
可任取一个基本结 构加单位力与原结 构的弯矩图图乘计 算位移。
例:已知M图,EI=常数。求ΔBV,α
FPl/8
M图
A
B

FP C
X1
FP
6FP l 80 17 FP l 80
X2
l/2
基本体系
3FP l 80
M图
1、用位移协调条件检验多余约束力是否正确。 2、用力平衡条件检验内力图是否正确。
力法小结
1、力法的典型方程是变形协调方程; 2、主系数恒大于零、副系数满足位移互等定理; 3、柔度系数是体系固有常数,与外界因素无关; 4、荷载作用时,内力分布与绝对刚度大小无关, 与各杆刚度比值有关。在某固定荷载作用下, 调整各杆刚度比可使内力重分布; 5、温度变化和支座移动等非荷载因素作用产生的 内力和反力与杆件的绝对刚度成正比;
解决思路:把超静定结构等效替换为多余约束力 和支座移动或温度变化因素共同作用下的静定结 构,于是,问题转化为在静定结构上求某项位移 (注:不能忽略温度变化引起的轴向变形)。
已知:M,EI,l,q, 求αB 。
A
l
B
3i l
3i l

结构的弯矩图 及支座位移

基本体系
荷载作用 + 支座位移作用
6、选用不同基本结构其计算方便程度不同。
t1 t2
1 1 1
X1
X2
基本体系 MM 1 1 3 t2 t1 l B1 dx X l l 1 1 EI EI 2 4h
M1图
M1图
多余约束力引起的
B2
(t2 t1 )
h
AM 4h
l (t2 t1 )
h
温度变化引起的
B1 B 2
l (t2 t1 )
3. 超静定结构内力图的校核
(1)平衡条件校核
结构中的任意部分都必须满足平衡条件。但满 足平衡条件的解答不一定是真解。
(2)变形条件校核 在满足平衡条件的众多个解答中,满足原结构 变形条件的解答是唯一正确的解答。
i = 给定值

CV
M2图
1 1 l 6i 2 l ( ) EI 2 2 l 3 2 2
已知:EI,EA ,,X1 3 (t2 t1 ) EI 2hl ,X 2 (t 2 t1 ) EA 2 求: B
t1 t2 l
t1 t2
X 1l
B M图 1
A
X1
1 1 3i 3 B l 1 EI 2 l 2l
3i l2
FyB
基本体系
※尽量将有支座位移的多余 约束去掉,选取基本结构。
例:已知杆件EI=常数,求ΔCV。
6i l
M图
A
B
C

l/2 1
l/2
CV
M1图
l/4 l/2 1 1/2
M P M1 dx FR c EI 1 0 ( ) 2 2
FP
FPl/8
B
l/2
1
l/2
1 FP l l FP l B ( l )0 EI 8 2 4
M1图
l
BV
1
1 FP l l 1 FP l l ( l l ) EI 8 2 2 4 2 0
M2图
1
用这种方法可以验算原 结构的弯矩图是否正确
(2)支座移动或温度变化情况下的位移计算
验算图示弯矩图是否正确。
q
l l
2EI EI
l l
l
X1 1
l
X2 1
M1
Δ1 MM 1 ds 0 EI
M2
Δ2 MM 2 ds 0 EI
错误的(X1,X2) 能否满足平衡条件?
验算变形条件时可选任意 基本结构上的单位弯矩图, 都应满足。
B 2EI l EI A l/2
3i l
X1=1
X1=1

1/l
荷载作用 + 支座位移作用
3i l
X1=1
X1=1

1/l
1 1 3 B M1M P dx FR i ci ( ) EI 2l l 2l
A
l
B

1
比较一下, 有什么体会?
图乘
X1 1
3i l
结构的弯矩图 及支座位移
1. 理论依据
பைடு நூலகம்
变形体系虚功原理的应用 —— 单位荷载法
2. 位移计算
(1)荷载作用下的位移计算
ΔiP
M i M Pds EI
一般来说需要解超静定结构的Mi 和 MP, 工作量较大。
例:已知M图,EI=常数。求ΔCV。
q
A
l/2
C
B
ql2/12 l/2 ql2/24
ql2/12
l/8 A
1 M图
l/8 B
M图
AyC MMP 2 2 l ql2 l 1 ql4 ΔCV ds 0 EI EI EI 3 2 8 8 4 384EI

基本结构在多余约束力和荷载共同作用下的 内力和变形与原结构完全相同!
解决思路:如将超静定结构由力法求得的多余约 束力看作已知荷载,并作用在去掉多余约束的基 本结构(一般是静定的)上,超静定结构位移计 算问题就可采用在基本结构上建立虚拟力状态的 方法得到解决。
相关文档
最新文档