微积分基本公式PPT课件
合集下载
《高数》微积分的基本公式PPT共26页

《高数》微积分的基本公式
51、山气日夕佳,飞鸟相与还。 52、木欣欣以向荣,泉涓涓而始流。
53、富贵非吾愿,帝乡不可期。 54、雄发指危冠,猛气冲长缨。 55、土地平旷,屋舍俨然,有良田美 池桑竹 之属, 阡陌交 通过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
拉
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
51、山气日夕佳,飞鸟相与还。 52、木欣欣以向荣,泉涓涓而始流。
53、富贵非吾愿,帝乡不可期。 54、雄发指危冠,猛气冲长缨。 55、土地平旷,屋舍俨然,有良田美 池桑竹 之属, 阡陌交 通过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
拉
60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
高中数学选修2-2微积分基本定理课件

3 dx
-1 1 + x2
= arctanx
3 -1
= arctan 3 - arctan -1
=
π 3
-
-
π 4
=
7 12
π
新知探究
例2. 计算
3 1
2x
-
1 x2
dx
解: 因为x2来自'=2x,
1 x
'
=
-
1 x2
,
由微积分基本定理得:
3
1
2x
-
1 x2
dx
=
3
2xdx -
课前导入
学习微积分,数学和思维水平都将进入一个新的阶段,能切实地训练学生的辨证思维.毫不夸张地 说,不学或未学懂微积分,思维难以达到较高的水平,难以适应21世纪对高中学生素质的要求. 利用本节学习的微积分基本定理,我们就能轻松解决首页的问题.
课前导入
学习微积分的意义 微积分是研究各种科学的工具,在中学数学中是研究初等函数最有效的工具.恩格斯称之为“17 世纪自然科学的三大发明之一”. 微积分的产生和发展被誉为“近代技术文明产生的关键事件之一,它引入了若干极其成功的、对 以后许多数学的发展起决定性作用的思想.” 微积分的建立,无论是对数学还是对其他科学以至于技术的发展都产生了巨大的影响,充分显示 了数学对于人的认识发展、改造世界的能力的巨大促进作用.
新知探究
变速直线运动
如图,一个作变速直线运动的物体的运动规律是y=y(t).由导数的概念的可知,它在任意时刻t的
速度
v t = y' t .设这个物体在时间段[a,b]内的位移为s,你能分别用y(t),v(t)表示s吗?
课件:微积分基本公式

二、积分上限函数及其导数
设f ( x)在[a,b]上连续, x [a,b],
记 ( x) ax f (t)dt ----积分上限函数
◆积分上限函数的重要性质:
定理1 若f ( x)在[a,b]上连续,则积分上限函数
( x) ax f (t )dt在[a,b]上可导,且x (a,b)有 :
( x)
其中: I可以为任意形式的区间.
d
x
x
f (t)dt [ f (t)dt] f (x)
dx a
a
例1 已知f ( x) 0x t 2 sin tdt,求f ( x). 解 f ( x) [0x t 2 sin tdt ] x2 sin x.
例2
已知f
(
x)
x2
0
t2
sintdt,求f
证 x (a,b),
y
( x x) axx f (t )dt
( x x) ( x)
axx f (t )dt ax f (t )dt
( x) (x)
o a x x x b x
x
f (t)dt
x x
f (t)dt
x
f (t)dt
x x
f (t)dt,
a
x
a
x
由积分中值定理得:
sin x
arctan x
xf
(t )dt ,
求g( x).
思考题解答
1. 已知f ( x)在[a,b]上连续,问ax f (t )dt与xb f (u)du 是 谁 的 函 数? 它 们 在[a , b]上 可 导 吗? 如可导, 求其导数.
解: 都是x的函数; 可导;
d dx
ax
微积分公式(幻)

1 2 W = ∫ Lidi = Li 0 2
i
由此可见,磁场能量只与最终的电流值有关,而与电流 建立的过程无关。
练习3 [电流函数 电流函数] 练习3 [电流函数] 一电路中电流关于时间的变化率为 di = 4t 0.6t 2 dt 若t=0时i=2A,求电流i关于时间t的函数. 解 由
di = 4t 0.6t 2 得 dt
∫ f (x)dx
∫ f (x)dx = F(x) + C
C称为积分常数 积分常数, 积分常数 其它符号的名称与定积分中的名称一致.
函数的不定积分与导数(或微分)之间的运算关系: 运算关系: 运算关系
[∫ f (x)dx] = f (x)
′
或
d[∫ f(x)dx] = f ( x) dx
∫ f ′(x)dx = f (x) + C 或 ∫ df (x) = f (x) + C
3 0
1 6
即列车在距站台1.5km处开始减速.
二、概念和公式的引出 微积分基本公式 若函数 F( x) 是连续函数 f ( x)在区间 [a, b] 上的一个 原函数,则
∫
b
a
f ( x)dx = F ( b) F ( a) = F ( x) b a
此公式称为微积分基本公式 微积分基本公式,也称为牛顿-莱布尼兹公式 牛顿- 微积分基本公式 牛顿 莱布尼兹公式.
s′(t) = v(t) = 4t 3 + 3cost+ 且 s(0) = 3 2
求不定积分,得
s(t) = ∫ (4t3 + 3cos t + 2)dt = t 4 + 3sin t + 2t + C
将 s(0) = 3代入上式得 C=3.所以
i
由此可见,磁场能量只与最终的电流值有关,而与电流 建立的过程无关。
练习3 [电流函数 电流函数] 练习3 [电流函数] 一电路中电流关于时间的变化率为 di = 4t 0.6t 2 dt 若t=0时i=2A,求电流i关于时间t的函数. 解 由
di = 4t 0.6t 2 得 dt
∫ f (x)dx
∫ f (x)dx = F(x) + C
C称为积分常数 积分常数, 积分常数 其它符号的名称与定积分中的名称一致.
函数的不定积分与导数(或微分)之间的运算关系: 运算关系: 运算关系
[∫ f (x)dx] = f (x)
′
或
d[∫ f(x)dx] = f ( x) dx
∫ f ′(x)dx = f (x) + C 或 ∫ df (x) = f (x) + C
3 0
1 6
即列车在距站台1.5km处开始减速.
二、概念和公式的引出 微积分基本公式 若函数 F( x) 是连续函数 f ( x)在区间 [a, b] 上的一个 原函数,则
∫
b
a
f ( x)dx = F ( b) F ( a) = F ( x) b a
此公式称为微积分基本公式 微积分基本公式,也称为牛顿-莱布尼兹公式 牛顿- 微积分基本公式 牛顿 莱布尼兹公式.
s′(t) = v(t) = 4t 3 + 3cost+ 且 s(0) = 3 2
求不定积分,得
s(t) = ∫ (4t3 + 3cos t + 2)dt = t 4 + 3sin t + 2t + C
将 s(0) = 3代入上式得 C=3.所以
微积分基本公式幻灯片

dx a
x
Φ( x) a f (t)dt
y y f (x)
Φ( x)
oa
x
bx 2
Φ( x) d
x
f (t)dt f ( x) .
dx a
证 x (a, b) , 取x,使得 x x (a, b) ,
Φ( x) lim Φ( x x) Φ( x)
§6.3 微积分基本定理
用定义求定积分实际上是行不通 的,下面介绍计算定积分的方法
原函数存在定理 牛顿-莱布尼茨公式
1
原函数存在定理
定理6.3 设函数f ( x)在[a, b]上连续, 则变上限积分
x
Φ( x) a f (t)dt
在[a, b]上可导, 且), x [a, b]
f ( x) sinx et2 dt , f ( x) esin2 x cos x ; 1
d x2 f (t )dt f ( x2 ) 2x .
dx a
d
x3
f (t)dt
f (x3)3x2
f (x2)2x .
dx x2
9
例2
设 f (x) 为连续函数, F(x)
ln x 1
f (t)dt ,
则
x
F( x)
f
(ln
x)
1 x
f
1 x
1 x 2
1 x
f (ln x)
1 x2
f
1 x
10
例3 求下列极限.
x (arctant)2 dt
(1) lim 0
《高数》微积分的基本公式PPT文档26页

《高数》微积分的基本公式
61、辍学如磨刀之石,不见其损,日 有所亏 。 62、奇文共欣赞,疑义相与析。
63、暧暧远人村,依依墟里烟,狗吠 深巷中 ,鸡鸣 桑树颠 。 64、一生复能几,倏如流电惊。 65、少无适俗韵,性本爱丘山。
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
26
61、辍学如磨刀之石,不见其损,日 有所亏 。 62、奇文共欣赞,疑义相与析。
63、暧暧远人村,依依墟里烟,狗吠 深巷中 ,鸡鸣 桑树颠 。 64、一生复能几,倏如流电惊。 65、少无适俗韵,性本爱丘山。
▪
26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
▪
28、知之者不如好之者,好之者不如乐之者。的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
26
2-1微积分学基本定理及基本积分公式.ppt
1
0
f ( x )dx ′ = f ( x ) , ∫
d ∫ f ( x )dx = f ( x )dx
不定积分 积分再求导 先 不定积分再求导 =本身 本身
或
20
或
∫ f ′( x )dx = ∫ df ( x ) =
f ( x) + C ,
f ( x) + C .
运算法则 ② 运算法则
10
20
∫ [ f ( x ) ± g ( x ) ] dx = ∫
∫ kf ( x ) dx = k ∫
f ( x )dx ±
(可加性 (可加性) ∫ g ( x )dx , 可加性)
f ( x )dx , (齐次性) 齐次性)
∫∑k
i =1
n
i
f i ( x )dx =
∑k ∫
i =1 i
n
f i ( x )dx . 线性性质) (线性性质 (线性性质)
1
1
例2
证:(1)
≤∫
−
2 1 2
e
− x2
dx ≤ 2 ;
π 1 sin x 2 2 (2) < ∫π dx < . 2 x 2 4
例3
3∫
设 f ( x ) ∈ C[0, 1] , f ( x ) ∈ D(0, 1) ,且
1 2 f ( x )dx = 3
1]
f ( 0 ) .证: ∃ ξ∈( 0 , 1) ,使 f ′( ξ ) = 0 .
a
ξ
b
x
推广的积分中值 推广的积分中值 Thm
上可积, 若函数 f ( x ) ∈ C[ a , b ] , g ( x ) 在 [a , b] 上可积,
《微积分学基本定理,微积分基本公式》图文课件
b
a
f ( x )dx F ( x ) | F ( b ) F ( a )
b a
计算定积分的方法: f ( x )dx
a
b
(1)定义法 ( 2)面积法(曲边梯形面积 ) ( 3)公式法( 微积分基本定理 )F ( x ) f ( x )
/
b
a
f ( x )dx F ( x ) | F ( b ) F (a )
基本的不定积分公式: (1) K dx Kx C ; 1 ( 3) dx ln | x | C x (4) e dx e C
x x
1 n 1 ( 2) x dx x C n1
n
a (5) a dx C ln a
x
x
(6) ln xdx x ln x x C (8) sin xdx cos x C
v ( t )dt s(T2 ) s(T1 ). 其中 s(t ) v(t ). T
1
T2
三、牛顿—莱布尼茨公式
微积分基本定理
[a , b ] 上 如果F ( x ) 是连续函数 f ( x ) 在区间
的一个原函数,则a f ( x )dx F (b) F (a ) .
牛顿—莱布尼茨公式
b
a f ( x )dx F (b ) F (a ) F ( x )
b
b a
微积分基本公式表明:
一个连续函数在区间[a , b] 上的定积分等于 [a , b] 上的增量. 它的任意一个原函数在区间
求定积分问题转化为求原函数的问题. 注意 当a b 时, f ( x )dx F (b) F (a ) 仍成立. a
微积分第二版课件第二节微积分基本公式
y
y=f (x)
(x) ax f (t)dt ,
称为变上限的积分.
oa
x
bx
定理(微积分基本定理)
若函数f (x)在区间[a,b]上连续,则变上限函数
Φ(x)
x
f (t)dt
(a
x b)在[a,b]上具有导数,且
a
Φ '(x)
d dx
ax
f
(t
)dt
f (x)
(a x b).
即上限函数Φ(x)是f (x)在[a,b]上的一个原函数.
对应变上限积分函数还有变下限积分函数
(x) xb f (t)dt 对于变上(下)限积分函数也可以进行函数的复合, 由变上限积分函数导数与复合函数求导法则有结论:
若函数 (x), (x) 可微,函数 f (x) 连续,则
(1) d dx
a x
f
(t)dt
d dx
x a
f
(t
)dt
f (x)
0
cos
t
2
d
t
x2
lim
x0
2x cos 2x
x4
lim cos
x0
x4
1
1
lim
x0
0xarctan x2
tdt
.
lim
x0
arctan 2x
x
1 2
lim
x0
1
x2
1
1. 2
二、微积分基本公式
变速直线运动的路程问题
设物体作变速直线运动其路程函数为s=s(t) , 速度
函数为v=v(t) .则在时间间隔 [T1,T2 ] 内有
根据导数的定义及函 数的连续性,有
微积分基本公式
0
目录 上页 下页 返回
x
高等数学Ⅰ课件
三峡大学理学院
二、牛顿 – 莱布尼茨公式
定理5-5.
函数 , 则
b a
f ( x ) d x F ( b ) F ( a ) ( 牛顿 - 莱布尼茨公式)
证: 根据定理 5-3,
F ( x ) f ( x ) dx C
a x
故
因此 得
2 0
f ( x ) dx 3 x dx ( x 1) dx
2 0 1
2 x 7 3 1 2 [ x ]0 [ x ]1 2 2
1
2
目录
上页
下页
返回
高等数学Ⅰ课件
三峡大学理学院
例7. 汽车以每小时 36 km 的速度行驶,到某处减 速停车, 设汽车以等加速度 刹车, 问从
例5. 计算正弦曲线
的面积 . 解:
A sin x d x [ cos x ] 0
0 π
y
y sin x
π x
( 1 1) 2
O
目录
上页
下页
返回
高等数学Ⅰ课件
三峡大学理学院
例 6. 设 解: f在[0,2]上分段连续 , x 1是第一类间断点,由
定积分的区间可加性,得
T2 T1
定积分
原函数在该区间的增量
这种定积分与原函数的关系在一定条件下具有普遍性 .
目录 上页 下页 返回
高等数学Ⅰ课件
三峡大学理学院
一、积分上限的函数及其导数
定理5-3.
( x ) f ( t ) d t
a x
y
目录 上页 下页 返回
x
高等数学Ⅰ课件
三峡大学理学院
二、牛顿 – 莱布尼茨公式
定理5-5.
函数 , 则
b a
f ( x ) d x F ( b ) F ( a ) ( 牛顿 - 莱布尼茨公式)
证: 根据定理 5-3,
F ( x ) f ( x ) dx C
a x
故
因此 得
2 0
f ( x ) dx 3 x dx ( x 1) dx
2 0 1
2 x 7 3 1 2 [ x ]0 [ x ]1 2 2
1
2
目录
上页
下页
返回
高等数学Ⅰ课件
三峡大学理学院
例7. 汽车以每小时 36 km 的速度行驶,到某处减 速停车, 设汽车以等加速度 刹车, 问从
例5. 计算正弦曲线
的面积 . 解:
A sin x d x [ cos x ] 0
0 π
y
y sin x
π x
( 1 1) 2
O
目录
上页
下页
返回
高等数学Ⅰ课件
三峡大学理学院
例 6. 设 解: f在[0,2]上分段连续 , x 1是第一类间断点,由
定积分的区间可加性,得
T2 T1
定积分
原函数在该区间的增量
这种定积分与原函数的关系在一定条件下具有普遍性 .
目录 上页 下页 返回
高等数学Ⅰ课件
三峡大学理学院
一、积分上限的函数及其导数
定理5-3.
( x ) f ( t ) d t
a x
y
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xa a
x
( x a) f ( x) f (t)dt
证 F ( x)
a
(x a)2
x
只要证明 ( x a) f ( x) f (t)dt 0 即可. a
令 g( x) ( x a) f ( x)
x
f (t)dt ,
a
则 g( x) f ( x) ( x a) f ( x) f ( x)
原函数.
该定理告诉我们, 连续函数一定有原函数.
6
变限积分函数的求导:
d x f (t)dt f ( x) ,
dx a
d
b
f (t)dt
d
x f (t)dt f ( x) ,
dx x
dx b
设(x) 在[a, b]上可导,则
d
(x)
f (t)dt f [( x)]( x) .
dx a
证 设 Φ( x) x f (t)dt ,则 (x) f (t)dt Φ[( x)],
a
a
所以
d
(x)
f (t)dt Φ[ ( x)] ( x) f [( x)]( x) .
dx a
7
更一般地,设 ( x) , ( x) 在[a, b] 上可导,则
d (x)
f (t)dt
dx ( x)
§6.3 微积分基本定理
用定义求定积分实际上是行不通 的,下面介绍计算定积分的方法
原函数存在定理 牛顿-莱布尼茨公式
1
原函数存在定理
定理6.3 设函数f ( x)在[a, b]上连续, 则变上限积分
x
Φ( x) a f (t)dt
在[a, b]上可导, 且
Φ( x) d
x
f (t)dt f ( x), x [a, b]
x0 x
lim f ( ) x0
当x 0 时, x, 而 f ( x) 在[a, b] 上连续,
Φ( x) f ( x)
4
Φ( x) d
x
f (t)dt f ( x)
dx a
证 x (a, b) , Φ( x) f ( x) .
若x a , 取x 0, a x (a, b) ,
dx a
x
Φ( x) a f (t)dt
y y f (x)
Φ( x)
oa
x
bx 2
Φ( x) d
x
f (t)dt f ( x) .
dx a
证 x (a, b) , 取x,使得 x x (a, b) ,
Φ( x) lim Φ( x x) Φ( x)
x0
x
x x
x
lim a f (t)dt a f (t)dt
同上可证 Φ (a) f (a) ;
若x b , 取x 0, b x (a, b) ,
同上可证 Φ (b) f (b) . 证毕。
5
Φ( x) d
x
f (t)dt f ( x)
dx a
原函数存在定理 如果 f ( x) 在[a,b] 上连续,则变上限积分函数
x
Φ( x) f (t)dt 就是 f ( x) 在[a, b] 上的一个 a
11
例3 求下列极限.
x2 cos t 2 dt
(2) lim 0 x0 x sin x
分析:这是 0 型未定式, 0
等价无穷小
x2 cos t 2 dt
解 原式 lim 0 x0
x2
替换
2x cos lim
x4
limcos x4
1.
x0 2x
x0
12
例3 求下列极限.
1 et2 dt
(3) lim x0
f (t)dt ,
则
x
F( x)
f
(ln
x)
1 x
f
1 x
1 x 2
1 x
f (ln x)
1 x2
f
1 x
10
例3 求下列极限.
x (arctant)2 dt
(1) lim 0
x
1 x2
分析:这是 型未定式,应用洛必达法则.
解
原式
(arctan x )2
lim
x
x
2
4
.
1 x2
( x a) f ( x) 0 ,
15
令 g( x) ( x a) f ( x)
x
f (t)dt ,
a
则 g( x) ( x a) f ( x) 0 ,
所以 g(x) 单调不增,
而 g(a) 0 , 故当 x (a, b) 时, g(x) g(a) 0 .
16
例5 设 f ( x) 在 [a, b] 上连续,在(a, b) 内可导,且f ( x) 0 ,
x0
x
x
x x
x
lim a f (t)dt x f (t)dt a f (t)Байду номын сангаасt
x0
x
x x
lim x f (t)dt
x 0
x
3
y
x x
Φ( x) lim x f (t)dt
x 0
x
( x)
由积分中值定理得
o a x x x b x
Φ( x) lim f ( )x ( 在 x 与 x x 之间)
xa
xa x a
x
f (t)dt
a2 lim a
a2 lim f ( x)
xa x a
xa
a2 f (a) .
14
例5 设 f ( x) 在 [a, b] 上连续,在(a, b) 内可导,且f ( x) 0 ,
记 F ( x) 1 x f (t)dt .证明:在(a, b) 内F ( x) 0 .
记 F ( x) 1 x f (t)dt .证明:在(a, b) 内F ( x) 0 .
cos x
x2
分析:这是 0 型未定式, 0
解 原式 lim ecos2 x ( sin x)
x0
2x
e cos2 x lim
1
.
x0 2
2e
13
例4 设 F( x) x2
x
f (t)dt ,其中 f ( x) 是连续函数,
xa a
则 lim F(x)
.
x a
x 2
x
f (t)dt
证 limF( x) lim a
f [ ( x)] ( x) f [( x)]( x) .
(x)
由
f (t)dt
(x)
( x)
(x)
a f (t )dt a f (t)dt
即可得结论。
8
例1 求下列变限积分函数的导数.
f (x)
x
sint dt ,
f ( x) sin x ;
1
f ( x) 2 1 t 2 dt , f ( x) 1 x2 ; x
f ( x) sinx et2 dt , f ( x) esin2 x cos x ; 1
d x2 f (t )dt f ( x2 ) 2x .
dx a
d
x3
f (t)dt
f (x3)3x2
f (x2)2x .
dx x2
9
例2
设 f (x) 为连续函数, F(x)
ln x 1
x
( x a) f ( x) f (t)dt
证 F ( x)
a
(x a)2
x
只要证明 ( x a) f ( x) f (t)dt 0 即可. a
令 g( x) ( x a) f ( x)
x
f (t)dt ,
a
则 g( x) f ( x) ( x a) f ( x) f ( x)
原函数.
该定理告诉我们, 连续函数一定有原函数.
6
变限积分函数的求导:
d x f (t)dt f ( x) ,
dx a
d
b
f (t)dt
d
x f (t)dt f ( x) ,
dx x
dx b
设(x) 在[a, b]上可导,则
d
(x)
f (t)dt f [( x)]( x) .
dx a
证 设 Φ( x) x f (t)dt ,则 (x) f (t)dt Φ[( x)],
a
a
所以
d
(x)
f (t)dt Φ[ ( x)] ( x) f [( x)]( x) .
dx a
7
更一般地,设 ( x) , ( x) 在[a, b] 上可导,则
d (x)
f (t)dt
dx ( x)
§6.3 微积分基本定理
用定义求定积分实际上是行不通 的,下面介绍计算定积分的方法
原函数存在定理 牛顿-莱布尼茨公式
1
原函数存在定理
定理6.3 设函数f ( x)在[a, b]上连续, 则变上限积分
x
Φ( x) a f (t)dt
在[a, b]上可导, 且
Φ( x) d
x
f (t)dt f ( x), x [a, b]
x0 x
lim f ( ) x0
当x 0 时, x, 而 f ( x) 在[a, b] 上连续,
Φ( x) f ( x)
4
Φ( x) d
x
f (t)dt f ( x)
dx a
证 x (a, b) , Φ( x) f ( x) .
若x a , 取x 0, a x (a, b) ,
dx a
x
Φ( x) a f (t)dt
y y f (x)
Φ( x)
oa
x
bx 2
Φ( x) d
x
f (t)dt f ( x) .
dx a
证 x (a, b) , 取x,使得 x x (a, b) ,
Φ( x) lim Φ( x x) Φ( x)
x0
x
x x
x
lim a f (t)dt a f (t)dt
同上可证 Φ (a) f (a) ;
若x b , 取x 0, b x (a, b) ,
同上可证 Φ (b) f (b) . 证毕。
5
Φ( x) d
x
f (t)dt f ( x)
dx a
原函数存在定理 如果 f ( x) 在[a,b] 上连续,则变上限积分函数
x
Φ( x) f (t)dt 就是 f ( x) 在[a, b] 上的一个 a
11
例3 求下列极限.
x2 cos t 2 dt
(2) lim 0 x0 x sin x
分析:这是 0 型未定式, 0
等价无穷小
x2 cos t 2 dt
解 原式 lim 0 x0
x2
替换
2x cos lim
x4
limcos x4
1.
x0 2x
x0
12
例3 求下列极限.
1 et2 dt
(3) lim x0
f (t)dt ,
则
x
F( x)
f
(ln
x)
1 x
f
1 x
1 x 2
1 x
f (ln x)
1 x2
f
1 x
10
例3 求下列极限.
x (arctant)2 dt
(1) lim 0
x
1 x2
分析:这是 型未定式,应用洛必达法则.
解
原式
(arctan x )2
lim
x
x
2
4
.
1 x2
( x a) f ( x) 0 ,
15
令 g( x) ( x a) f ( x)
x
f (t)dt ,
a
则 g( x) ( x a) f ( x) 0 ,
所以 g(x) 单调不增,
而 g(a) 0 , 故当 x (a, b) 时, g(x) g(a) 0 .
16
例5 设 f ( x) 在 [a, b] 上连续,在(a, b) 内可导,且f ( x) 0 ,
x0
x
x
x x
x
lim a f (t)dt x f (t)dt a f (t)Байду номын сангаасt
x0
x
x x
lim x f (t)dt
x 0
x
3
y
x x
Φ( x) lim x f (t)dt
x 0
x
( x)
由积分中值定理得
o a x x x b x
Φ( x) lim f ( )x ( 在 x 与 x x 之间)
xa
xa x a
x
f (t)dt
a2 lim a
a2 lim f ( x)
xa x a
xa
a2 f (a) .
14
例5 设 f ( x) 在 [a, b] 上连续,在(a, b) 内可导,且f ( x) 0 ,
记 F ( x) 1 x f (t)dt .证明:在(a, b) 内F ( x) 0 .
记 F ( x) 1 x f (t)dt .证明:在(a, b) 内F ( x) 0 .
cos x
x2
分析:这是 0 型未定式, 0
解 原式 lim ecos2 x ( sin x)
x0
2x
e cos2 x lim
1
.
x0 2
2e
13
例4 设 F( x) x2
x
f (t)dt ,其中 f ( x) 是连续函数,
xa a
则 lim F(x)
.
x a
x 2
x
f (t)dt
证 limF( x) lim a
f [ ( x)] ( x) f [( x)]( x) .
(x)
由
f (t)dt
(x)
( x)
(x)
a f (t )dt a f (t)dt
即可得结论。
8
例1 求下列变限积分函数的导数.
f (x)
x
sint dt ,
f ( x) sin x ;
1
f ( x) 2 1 t 2 dt , f ( x) 1 x2 ; x
f ( x) sinx et2 dt , f ( x) esin2 x cos x ; 1
d x2 f (t )dt f ( x2 ) 2x .
dx a
d
x3
f (t)dt
f (x3)3x2
f (x2)2x .
dx x2
9
例2
设 f (x) 为连续函数, F(x)
ln x 1