高二上学期期中数学试卷及答案解析
江西省高二上学期期中考试数学试题(解析版)

一、单选题1.已知直线的图像如图所示,则角是( )sin cos :y x l θθ=+θA .第一象限角B .第二象限角C .第三象限角D .第四象限角【答案】D【分析】本题可根据直线的斜率和截距得出、,即可得出结果. sin 0θ<cos 0θ>【详解】结合图像易知,,, sin 0θ<cos 0θ>则角是第四象限角, θ故选:D.2.的展开式中的系数为( ) ()()8x y x y -+36x y A . B .C .D .2828-5656-【答案】B【分析】由二项式定理将展开,然后得出,即可求出的系数. 8()x y +8()()x y x y -+36x y 【详解】由二项式定理:8()()x y x y -+080171808888()(C C C )x y x y x y x y =-+++080171808080171808888888(C C C )(C C C )x x y x y x y y x y x y x y =+++-+++090181818081172809888888(C C C )(C C C )x y x y x y x y x y x y =+++-+++ 观察可知的系数为. 36x y 6523888887876C C C C 2821321⨯⨯⨯-=-=-=-⨯⨯⨯故选:B.3.已知条件:,条件:表示一个椭圆,则是的( ) p 0mn >q 221x y m n+=p q A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】B【分析】根据曲线方程,结合充分、必要性的定义判断题设条件间的关系.【详解】由,若,则表示一个圆,充分性不成立;0mn >0m n =>221x y m n +=而表示一个椭圆,则成立,必要性成立. 221x y m n+=0mn >所以是的必要不充分条件. p q 故选:B4.两平行平面分别经过坐标原点O 和点,且两平面的一个法向量,则两,αβ()1,2,3A ()1,0,1n =-平面间的距离是( )A B C D .【答案】A【分析】由空间向量求解【详解】∵两平行平面分别经过坐标原点O 和点,,αβ(1,2,3),(1,2,3)A OA =且两平面的一个法向量,(1,0,1)n =-∴两平面间的距离 ||||n OA d n ⋅=== 故选:A5.2022年遂宁主城区突发“920疫情”,23日凌晨2时,射洪组织五支“最美逆行医疗队”去支援遂宁主城区,将分派到遂宁船山区、遂宁经开区、遂宁高新区进行核酸采样服务,每支医疗队只能去一个区,每区至少有一支医疗队,若恰有两支医疗队者被分派到高新区,则不同的安排方法共有( ) A .30种 B .40种 C .50种 D .60种【答案】D【分析】先从5支医疗队中选取2支医疗队去高新区,再将剩下的3支医疗队分配到船山区与经开区,最后根据分步乘法原理求解即可.【详解】解:先从5支医疗队中选取2支医疗队去高新区,有种不同的选派方案,25C 10=再将剩下的3对医疗队分配到船山区与经开区,有种不同的选派方案,2232C A 6=所以,根据分步乘法原理,不同的安排方案有种.222532C C A 60=故选:D6.已知圆:,直线:,为上的动点,过点作圆的两条切线C 2220x y x +-=l 10x y ++=P l P C 、,切点分别、,当最小时,直线PC 的方程为( )PA PB A B ·PC ABA .B .C .D .+=0x y 10x y --=2210x y -+=2210x y ++=【答案】B【分析】根据圆的切线的有关知识,判断出最小时,直线与直线垂直,进而可得直·PC AB l PC 线的方程.PC 【详解】圆的标准方程为,圆心为,半径为.C ()2211x y -+=()1,0C =1r 依圆的知识可知,四点P ,A ,B ,C 四点共圆,且AB ⊥PC , 所以,而14422PAC PC AB S PA AC PA ⋅==⨯⨯⋅=△当直线时,最小,此时最小, PC l ⊥PA PC AB ⋅所以此时,即. :=1PC y x -10x y --=故选:B.7.某奥运村有,,三个运动员生活区,其中区住有人,区住有人,区住有人A B C A 30B 15C 10已知三个区在一条直线上,位置如图所示奥运村公交车拟在此间设一个停靠点,为使所有运动员..步行到停靠点路程总和最小,那么停靠点位置应在( )A .区B .区C .区D .,两区之间A B C A B 【答案】A【分析】分类讨论,分别研究停靠点为区、区、区和,两区之间时的总路程,即可得出A B C A B 答案.【详解】若停靠点为区时,所有运动员步行到停靠点的路程和为:米; A 15100103004500⨯+⨯=若停靠点为区时,所有运动员步行到停靠点的路程和为:米; B 30100102005000⨯+⨯=若停靠点为区时,所有运动员步行到停靠点的路程和为:米; C 303001520012000⨯+⨯=若停靠点为区和区之间时,设距离区为米,所有运动员步行到停靠点的路程和为:A B A x , 30151001010020054500x x x x +⨯-+⨯+-=+()()当取最小值,故停靠点为区. 0x =A 故选:A8.已知是双曲线上的三个点,经过原点,经过右焦点,若,,A B C 22221(0,0)x y a b a b -=>>AB O AC F 且,则该双曲线的离心率是( )BF AC ⊥2AF CF =A .B C D .5394【答案】B【分析】根据题意,连接,构造矩形;根据双曲线定义表示出各个边长,由直角','AF CF 'FAF B 三角形勾股定理求得 的关系,进而求出离心率.a c 、【详解】设左焦点为, ,连接F'AF m =','AF CF 则 , , , 2FC m ='2AF a m =+'22CF a m =+'2FF c =因为,且经过原点 BF AC ⊥AB O 所以四边形 为矩形'FAF B 在Rt △中, ,代入'AF C 222'+'AF AC F C =()()()2222+3=22a m m a m ++化简得 23a m =所以在Rt △中,,代入 'AF F 222'+'AF AF F F =()222222233a a a c ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭化简得 ,即 22179c a =e =所以选B【点睛】本题考查了双曲线的综合应用,根据条件理清各边的相互关系,属于中档题.二、多选题9.下列结论正确的是( )A .“”是“直线与直线互相垂直”的充要条件1a =-210a x y -+=20x ay --=B .已知,O 为坐标原点,点是圆外一点,直线的方程是,0ab ≠(,)P a b 222x y r +=m 2ax by r +=则与圆相交m C .已知直线和以,为端点的线段相交,则实数的取值范围为10kx y k ---=(3,1)M -(3,2)N k 1322k -≤≤D .直线的倾斜角的取值范围是sin 20x y α++=θπ3π0,,π44⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭ 【答案】BD【分析】由题意利用直线的倾斜角和斜率、直线的方程,直线与圆的位置关系,逐一判断各个选项是否正确,从而得出结论.【详解】解:对于A ,由直线与直线互相垂直,210a x y -+=20x ay --=,化为,解得或,21(1)()0a a ∴⨯+-⨯-=20a a +==0a 1- “”是“直线与直线互相垂直”的充分但不必要条件,故A 错误;∴1a =-210a x y -+=20x ay --=对于B ,因为点是圆外一点,所以,所以圆心到直线的距离(,)P a b 222x y r +=222a b r +>m,可得与圆相交,故B 正确;||d r =m 对于C ,已知直线和以,为端点的线段相交,则、两个点在直10kx y k ---=(3,1)M -(3,2)N M N 线的两侧或直线上,10kx y k ---=则有,解可得或,故C 错误; (311)(321)0k k k k -------≤12k ≤-32k ≥对于D ,设直线的倾斜角,则,, sin 20x y α++=θtan sin [1θα=-∈-1]故的取值范围是,故D 正确. θ3[0,[,)44πππ 故选:BD .10.已知的展开式中第3项与第5项的系数之比为,则下列结论成立的是( ) 2(n x 314A .B .展开式中的常数项为45 10n =C .含的项的系数为210D .展开式中的有理项有5项5x【答案】ABC【分析】根据二项式的展开式的通项公式,结合第3项与第5项的系数之比为()52211C r n rr r n T x-+=-,可得.再根据公式逐个选项判断即可. 31410n =【详解】二项式的展开式的通项为,由于第3项与第5项的()()5222221C 11C rr n r rrn r r r n nT xx x---+=-=-系数之比为,则,故,得. 31424C 3C 14n n=()()()()1312123141234n n n n n n -⨯=---⨯⨯⨯25500n n --=∴(n +5)(n -10)=0,解得n =10,故A 正确;则,令,解得, ()52021101C rr r r T x-+=-52002r-=8r =则展开式中的常数项为,故B 正确; 810C 45=令,解得,则含的项的系数为,故C 正确; 52052r -=6r =5x ()66101C 210-=令,则r 为偶数,此时,故6项有理项. 520Z 2r-∈0,2,4,6,8,10r =故选:ABC11.2022年2月5日晩,在北京冬奥会短道速滑混合团体接力决赛中,中国队率先冲过终点,为中国体育代表团拿到本届奥运会首枚金牌.赛后,武大靖,任子威,曲春雨,范可欣,张雨婷5名运动员从左往右排成一排合影留念,下列结论正确的是( ) A .武大靖与张雨婷相邻,共有48种排法 B .范可欣与曲春雨不相邻,共有72种排法 C .任子威在范可欣的右边,共有120种排法D .任子威不在最左边,武大靖不在最右边,共有78种排法 【答案】ABD【分析】利用分步乘法计数原理结合排列与排列数,逐项分析判断即可.【详解】解:A 项中,武大靖与张雨婷相邻,将武大靖与张雨婷排在一起有种排法, 22A 再将二人看成一个整体与其余三人全排列,有种排法,44A 由分步乘法计数原理得,共有(种)排法,故选项A 正确;2424A A 48=B 项中,范可欣与曲春雨不相邻,先将其余三人全排列,有种排法, 33A 再将范可欣与曲春雨插入其余三人形成的4个空位中,有种排法,24A由分步乘法计数原理得,共有(种)排法,故选项B 正确;3234A A =72C 项中,任子威在范可欣的右边,先从五个位置中选出三个位置排其余三人,有种排法, 35A 剩下两个位置排任子威、范可欣,只有1种排法,所以任子威在范可欣的右边,共有(种)排法,故选项C 错误;35A =60D 项中,武大靖,任子威,曲春雨,范可欣,张雨婷5人全排列,有种排法, 55A 任子威在最左边,有种排法,武大靖在最右边,有种排法, 44A 44A 任子威在最左边,且武大靖在最右边,有种排法,33A 所以任子威不在最左边,武大靖不在最右边,共有(种)排法,故选项D 正确. 543543A -2A +A =78故选:ABD.12.为庆祝党的二十大胜利召开,由南京市委党史办主办,各区委党史办等协办组织的以“喜迎二十大 永远跟党走 奋进新征程”为主题的庆祝中共南京地方组织成立周年知识问答活动正在进100行,某党支部为本次活动设置了一个冠军奖杯,奖杯由一个铜球和一个托盘组成,如图①,已知球的体积为,托盘由边长为的正三角形铜片沿各边中点的连线垂直向上折叠而成,如图②.则32π38下列结论正确的是( )A .经过三个顶点的球的截面圆的面积为 ,,ABC 43πB .异面直线与所成的角的余弦值为AD BE 916C .连接,构成一个八面体,则该八面体的体积为 ,,AB BC CA ABCDEF ABCDEF 18D .点 D 2【答案】ACD【分析】对A :经过三个顶点的球的截面圆即为的外接圆,运算求解;对B :建系,,,A B C MNG △利用空间向量处理异面直线夹角问题;对C :八面体由三个全等的四棱锥ABCDEF和直棱柱组合而成,结合相关体积公式运算求解;,,D ACGM E ABNM F BCGN ---ABC MNG -对D :点到球面上的点的最小距离为,结合球的性质运算求解.D OD R -【详解】如图1,取的中点分别为,连接 ,,DE EF DF ,,M NG ,,,,,AM BN CG MN NG GM 根据题意可得:均垂直于平面,可知 ,,AM BN CG DEF ABC MNG ≅△△∵的边长为2,设的外接圆半径为r ,则MNG △MNG △sin MN 2r MGN ==∠∴的外接圆面积为r =MNG △4ππ32r =∴经过三个顶点的球的截面圆的面积为,A 正确; ,,A B C 43π八面体由三个全等的四棱锥和直棱柱组合ABCDEF ,,D ACGM E ABNM F BCGN ---ABC MNG -而成直棱柱的底面边长为2,高ABC MNG -AM =12262ABC MNG V -=⨯⨯=设,则为的中点 EN MN H = H MN ∵平面,平面 AM ⊥DEF EH ⊂DEF ∴AM EH ⊥又∵为等边三角形且为的中点,则EMN A H MN MN EH ⊥,平面 AM MN M = ,AM MN ⊂ABNM ∴平面EH ⊥ABNM即四棱锥的高为E ABNM -EH =1243E ABNM V -=⨯=∴八面体的体积为,C 正确;ABCDEF 318E ABNM ABC MNG V V V --=+=设的中心分别为,球的球心为,由题意可得其半径 ,ABC MNG △△12,O O O =2R 则可知三点共线,连接 12,,O O O 1,O B OD则可得:212112O D O O O O O O O O OD ===+==点,D 正确;D 2-如图2,以G 为坐标原点建立空间直角坐标系则有:((()(),,2,0,0,0,A B D E -∴((,DA BE =-=- 又∵ 5cos ,8DA BE DA BE DA BE⋅==-∴异面直线与所成的角的余弦值为,B 错误;AD BE 58故选:ACD.【点睛】1.对于多面体体积问题,要理解几何体的结构特征,并灵活运用割补方法; 2.对于球相关问题,主要根据两个基本性质:①球的任何截面都是圆面;②球心和截面圆心的连线与截面垂直.三、填空题13.若,则______.2213C P x xx -+=x =【答案】5【分析】将排列数、组合数按照公式展开,即可解出x 的值.【详解】因为,, ()22313C 3C 2x x x x x --==21P (1)x x x +=+所以,由可得,3(x -1)=2(x +1)2213C P x x x -+=解得,x =5.故答案为:5.14.各数位数字之和等于8(数字可以重复) 的四位数个数为_____. 【答案】120【分析】四个数位数字分别为,则,应用插空法求四位数个数. 1234,,,a a a a 12348a a a a +++=【详解】设对应个位到千位上的数字,则,且, 1234,,,a a a a *4N a ∈N(1,2,3)i a i ∈=1234a a a a +++8=相当于将3个表示0的球与8个表示1的球排成一排,即10个空用3个隔板将其分开,故共种.310C 120=故答案为:12015.已知分别为双曲线的左、右顶点,点为双曲线上任意一点,12,A A 2222:1(0)x y C a b a b -=>>P C 记直线,直线的斜率分别为,若,则双曲线的离心率为__________. 1PA 2PA 12,k k 122k k ⋅=C【分析】设,应用斜率两点式得到,根据为双曲线上一点即可得双曲线参()00,P x y 22202y x a=-P C 数关系,进而求其离心率【详解】依题意,设,则,,又()()12,0,,0A a A a -()00,P x y 0012002y y k k x a x a ⋅=⋅=+-22202y x a∴=-,,故,即()2222220220000222211b x a x y x y b a b a a -⎛⎫-=⇒=-= ⎪⎝⎭222b a ∴=22213b e a =+=e =16.在棱长为1的正方体中,M 是棱的中点,点P 在侧面内,若1111ABCD A B C D -1AA 11ABB A ,则的面积的最小值是________.1D P CM ⊥PBC △【分析】建立空间直角坐标系,利用空间向量、三角形的面积公式、二次函数进行求解.【详解】如图,以点D 为空间直角坐标系的原点,分别以DA ,DC ,所在直线为x ,y ,z 轴, 1DD 建立空间直角坐标系,则点,所以, ()1,,,[01]P y z y z ∈、,()10,0,1D ()11,,1D P y z =-因为,所以,()10,1,0,1,0,2C M ⎛⎫ ⎪⎝⎭11,1,2CM =-⎛⎫ ⎪⎝⎭ 因为,所以,所以,1D P CM ⊥ ()11102y z -+-=21z y =-因为,所以, ()1,1,0B ()0,1,21BP y y =--,=因为,所以当时, 01y ≤≤35y =min BP =因为正方体中,平面平面,故, BC ⊥11,ABB A BP ⊂11ABB A BC BP ⊥所以()min 1=12PBC S ⨯A四、解答题17.已知的顶点. ABC A ()()()2,64,2,2,0A B C -,(1)求边的中垂线所在直线的方程; BC (2)求的面积. ABC A 【答案】(1); 340x y +-=(2)14.【分析】(1)求出直线的斜率,再由垂直关系得出直线边的中垂线的斜率,最后由点斜式BC BC 写出所求方程;(2)求出直线的方程,再求出点到直线的距离以及,最后由三角形面积公式计算即AB C AB AB 可.【详解】(1)直线的斜率为,直线边的中垂线的斜率为,BC 2014(2)3-=--BC 3-又的中点为,BC ()1,1边的中垂线所在直线的方程为:,即; BC ()131y x -=--340x y +-=(2)直线的方程为:,即, AB 626(2)24y x --=--2100x y +-=点到直线的距离 C AB d=故的面积为. ABC A 1142S AB d =⋅=18.已知展开式的二项式系数和为512,且()(2)n f x x =-.2012(2)(1)(1)(1)n n n x a a x a x a x -=+-+-+⋅⋅⋅+-(1)求的值; 123n a a a a +++⋅⋅⋅⋅⋅⋅+(2)求被除的余数. ()20f 17【答案】(1) 1(2) 1【分析】(1)根据题意,得到,求得,结合展开式,分别令和,求得2512n =9n =1x =2x =和,即可求解;01a =-012390a a a a a ++++⋅⋅⋅⋅⋅+=⋅(2)由,结合二项式的展开式,即可求解.999(20)(2021817)(1)f ==+=-【详解】(1)解:由展开式的二项式系数和为,可得,解得,(2)n x -5122512n =9n =则,9290129(2)(1)(1)(1)x a a x a x a x -=+-+-+⋅⋅⋅+-令,可得,1x =90(12)1a =-=-令,可得,2x =012399(22)0a a a a a ++++⋅⋅⋅⋅=-⋅+=⋅所以, 12390(1)1a a a a +++⋅⋅⋅⋅⋅=--+=⋅即.1231n a a a a +++⋅⋅⋅⋅⋅+=⋅(2)解:由题意,可得,999(20)(2021817)(1)f ==+=-又由,90918890081789999999(171)1717171717(1717)1C C C C C C C +=⋅+⋅++⋅+⋅=⋅⋅+⋅+++ 所以被除的余数为.()20f 17119.如图,在四棱锥中,已知四边形是梯形,P ABCD -ABCD ,是正三角形.,,22⊥===∥AB CD AD AB AB BC CD PBC △(1)求证:;BC PA ⊥(2)当四棱锥体积最大时,二面角的大小为,求的值. P ABCD -B PA C --θcos θ【答案】(1)证明见解析; (2). 15【分析】(1)取BC 的中点O ,连接AO ,可证明,由线面垂直的判定定理可证AO BC ⊥PO BC ⊥明平面PAO ,即得证;BC ⊥(2)分析可知当平面平面ABCD 时,四棱锥体积最大,建立空间直角坐标系,PBC ⊥P ABCD -由二面角的向量公式,计算即可.【详解】(1)证明:如图,取AB 的中点E ,连接CE ,A C .∵,, 2AB CD =AB CD ∥∴CD 与AE 平行且相等, ∴四边形AECD 是平行四边形,又,∴四边形AECD 是矩形,∴. AD AB ⊥CE AB ⊥∴,∴是等边三角形. =AC BC AB =ABC A 取BC 的中点O ,连接AO ,则. AO BC ⊥连接PO ,∵,∴, PB PC =PO BC ⊥∵,平面PAO ,=PO AO O ⋂PO AO ⊂,∴平面PAO ,∵PA 平面PAO ,∴; BC ⊥⊂BC PA ⊥(2)由(1)知,是等边三角形,∴, ABC A CE =∴梯形ABCD 的面积为定值, S =故当平面平面ABCD 时,四棱锥体积最大. PBC ⊥P ABCD -∵,平面平面ABCD ,平面 PO BC ⊥PBC ⋂BC =PO ⊂PBC ∴平面ABCD ,平面ABCD ,∴.PO ⊥,OA OB ⊂,PO OA PO OB ⊥⊥∵OP ,OA ,OB 两两互相垂直,∴以O 为坐标原点,OA ,OB ,OP 分别为x 轴、y 轴和z 轴的正方向,建立如图所示的空间直角坐标系,则. (0,1,0),(0,1,0),A B C P -∴,,=(0,1,PA PB -- =(0,1,CP --设平面PAB 的法向量为,则,取,则. ()111,,n x y z =1111=0==0PA n PB n y ⋅-⋅-⎧⎪⎨⎪⎩ 111x z ==n = 同理设平面PAC 的法向量为,则,取,则. (,,)m x y z ===0=0CP m y PA m ⋅--⋅-⎧⎪⎨⎪⎩ 1x z ===(1,m - 设平面PAB 与平面PAD 的夹角为,则,θ1cos =|cos<,>|=||=||||5m n m n m n ⋅θ即为所求二面角的余弦值.B PAC --20.如图,某海面上有、、三个小岛(面积大小忽略不计),岛在岛的北偏东方向O A B A O 45︒处,岛在岛的正东方向处.B O 20km(1)以为坐标原点,的正东方向为轴正方向,为单位长度,建立平面直角坐标系,写出O O x 1km A 、的坐标,并求、两岛之间的距离;B A B (2)已知在经过、、三个点的圆形区域内有未知暗礁,现有一船在岛的南偏西方向距O A B O 30°O 岛处,正沿着北偏东行驶,若不改变方向,试问该船有没有触礁的危险? 20km 60︒【答案】(1),, ()40,40A ()20,0B (2)该船有触礁的危险【分析】(1)结合图像,易得的坐标,再利用两点距离公式即可得解;,A B (2)先由待定系数法求得过、、三点的圆的方程,再求得该船航线所在直线的方程,利用O A B 点线距离公式可知该船航线与圆的位置关系,据此可解.【详解】(1)∵在的东北方向处,在的正东方向处, AO B O 20km ∴,, ()40,40A ()20,0B 由两点间的距离公式得;=(2)设过、、三点的圆的方程为,O A B 220x y Dx Ey F ++++=将、、代入上式得,解得,()0,0O ()40,40A ()20,0B 222=040+40+40+40+=020+20+=0F D E F D F ⎧⎪⎨⎪⎩=20=60=0D E F --⎧⎪⎨⎪⎩所以圆的方程为,即,故圆心为,半径2220600x y x y +--=()()2210301000x y -+-=()10,30r =设船起初所在的位置为点,则,且该船航线所在直线的斜率为C (10,C --, ()tan 6030tan 30︒-︒=︒=由点斜式得该船航线所在直线的方程:,l 200x -=所以圆心到:的距离为l 200x -=d+由于, 2(5700+=+21000700=>+即, 5d =+<所以该船有触礁的危险.21.已知椭圆的右焦点,离心率为,且点在椭圆上.2222:1(0)x y C a b a b +=>>F 1231,2M ⎛⎫ ⎪⎝⎭C (1)求椭圆的标准方程;C (2)过的直线不与轴重合与椭圆相交于、两点,不在直线上且F (x )C A B P AB ,是坐标原点,求面积的最大值.()2OP OA OB λλ=+-O PAB △【答案】(1)22143x y +=(2) 32【分析】(1)依题意得到方程组,解得,,即可求出椭圆方程;2a 2b (2)设直线的方程为,,,,联立直线与椭圆方程,消AB 1x my =+()11,A x y ()22,B x y ()00,P x y 元、列出韦达定理,即可表示出,再表示出点到直线的距离,根据面积公式及基本不等AB P AB 式计算可得.【详解】(1)解:由题意,又,解得,, 221=2914+=1c a a b⎧⎪⎪⎨⎪⎪⎩222c a b =-24a =23b =的方程为;C ∴22143x y +=(2)解:设直线的方程为,,,,AB 1x my =+()11,A x y ()22,B x y ()00,P x y 则,消元整理得, 22=+1+=143x my x y ⎧⎪⎨⎪⎩()2234690m y my ++-=所以,,122634my y m +=-+122934y y m =-+,()2212+13+4m m -由, ()2OP OA OB λλ=+-得,()()()()001212,2,2x y x x y y λλλλ=+-+-()()()()()0121212212122x x x my my my my λλλλλλ∴=+-=++-+=+-+, ()0122yy y λλ=+-到直线的距离P ∴ABh22112(+1)=×23+4PAB m S m ∴A 设,而在时递增,t =13y t t=+1t ≥当,即时,的最大值为.∴=1t 1=0m =PAB S A 3222.如图,已知抛物线的焦点F ,且经过点,.()2:20C y px p =>()()2,0A p m m >5AF =(1)求p 和m 的值;(2)点M ,N 在C 上,且.过点A 作,D 为垂足,证明:存在定点Q ,使得AM AN ⊥AD MN ⊥DQ 为定值.【答案】(1),; 2p =4m =(2)证明见解析.【分析】(1)由抛物线定义有求,由在抛物线上求m 即可. ||252pAF p =+=p A (2)令,,,联立抛物线得到一元二次方程,应用韦达定理,根据:MN x ky n =+11(,)M x y 22(,)N x y 及向量垂直的坐标表示列方程,求k 、n 数量关系,确定所过定点,再由AM AN ⊥MN B 易知在以为直径的圆上,即可证结论. AD MN ⊥D AB 【详解】(1)由抛物线定义知:,则, ||252pAF p =+=2p =又在抛物线上,则,可得. ()()4,0A m m >244m =⨯4m =(2)设,,由(1)知:,11(,)M x y 22(,)N x y (4,4)A 所以,,又,11(4,4)AM x y =-- 22(4,4)AN x y =--AM AN ⊥所以,121212121212(4)(4)(4)(4)4()4()320x x y y x x x x y y y y --+--=-++-++=令直线,联立,整理得,且,:MN x ky n =+2:4C y x =2440y ky n --=216160k n ∆=+>所以,,则,124y y k +=124y y n =-21212()242x x k y y n k n +=++=+,222121212()x x k y y kn y y n n =+++=综上,, 2216121632(48)(44)0n k n k n k n k ---+=--+-=当时,过定点;84n k =+:(4)8MN x k y =++()8,4B -当时,过定点,即共线,不合题意; 44n k =-:(4)4MN x k y =-+(4,4),,A M N 所以直线过定点,又,故在以为直径的圆上, MN ()8,4B -AD MN ⊥D AB而中点为,即为定值,得证.AB ()6,0Q 2AB DQ ==。
2024-2025学年高二上学期期中模拟考试数学试题含解析

2024-2025学年高二数学上学期期中模拟卷(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:沪教版2020必修第三册第十~十一章。
5.难度系数:0.72。
一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.不重合的两个平面最多有条公共直线【答案】1【解析】根据平面的位置关系可知,不重合两平面平行或相交,当相交时,有且只有一条公共直线.故答案为:12.已知球的表面积是16π,则该球的体积为.3.空间中一个角∠A的两边和另一个角∠B的两边分别平行,若∠A=,则∠B=;【答案】【解析】如图,若角∠A 的两边和角∠B 的两边分别平行,且方向相同,则∠A 与∠B 相等此时70B A ∠=∠=︒;②当角∠A 的两边和角∠B 的两边分别平行,且一边方向相同另一边方向相反,则∠A 与∠B 互补,此时180110B A ∠=︒-∠=︒.故答案为70︒或110︒.4.如图,正三棱柱的底面边长为2,高为1,则直线1B C 与底面ABC 所成的角的大小为(结果用反三角函数值表示).5.在空间中,给出下面四个命题,其中真命题为.(填序号)①过平面α外的两点,有且只有一个平面与平面α垂直;②若平面β内有不共线三点到平面α的距离都相等,则αβ∥;③若直线l 与平面α内的任意一条直线垂直,则l α⊥;④两条异面直线在同一平面内的射影一定是两条相交直线.【答案】③【解析】①过平面α外两点可确定一条直线,当这条直线垂直于平面α时,有无数个平面垂直于平面α,故①错误;②若三点在平面α同侧,则αβ∥;若三点在平面α两侧,则α与β相交,故②错误;③直线l 与平面α内的任意一条直线垂直,则l 垂直于平面α内两条相交直线,由线面垂直的判定定理可得l α⊥,故③正确;④两条异面直线在同一个平面内的射影有可能是两条相交直线,也可能是两条平行直线,还可能是一个点和一条直线,故④错误;故答案为:③6.正四棱锥P -ABCD 的所有棱长均相等,E 是PC 的中点,那么异面直线BE 与P A 所成角的余弦值为.连接AC 交BD 于O 点,连接OE ,则OE 因为⊥PO 面ABCD ,所以PO DB ⊥,又因为所以直在角三角形EOB 中,设PA a =,则故答案为:33.7.如图,有一圆锥形粮堆,其轴截面是边长为6m 的正ABC V ,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程是m .【答案】35【解析】解:由题意得:圆锥的底面周长是6π,则66180n ππ=,解得:180n ︒=可知圆锥侧面展开图的圆心角是180︒,如图所示:则圆锥的侧面展开图中:()3m AP =,6(m)AB =,90BAP ︒∠=所以在圆锥侧面展开图中:()223635m BP =+=故答案为:358.已知一球体刚好和圆台的上、下底面及侧面都相切,且圆台上底面的半径为2,下底面的半径为1,则该圆台的侧面积为.【答案】9π【解析】圆台的轴截面如下图示:截面中圆为内切球的最大圆,且2AF DF AG DH ====,1BE CE BG CH ====,所以3AB CD ==,而上下底面周长分别为4π、2π,故该圆台的侧面积为13(2π4π)9π2⨯⨯+=.故答案为:9π9.如图,已知三棱柱111ABC A B C -的体积为3,P ,Q ,R 分别为侧棱1AA ,1BB ,1CC 上的点,且1AP CR AA +=,则Q ACRP V -=.则111332Q ACRP V d S d -=⋅⋅=⋅⋅⋅设三棱柱111ABC A B C -的体积故答案为:1.10.已知大小为π6的二面角的一个面内有一点,它到二面角的棱的距离为6,则这个点到另一个面的距离为.11.正方形ABCD 中,E ,F 分别为线段AB ,BC 的中点,连接DE ,DF ,EF ,将ADE V ,CDF V ,BEF △分别沿DE ,DF ,EF 折起,使A ,B ,C 三点重合,得到三棱锥O DEF -,则该三棱锥外接球半径R 与内切球半径r 的比值为.【答案】26【解析】在正方形ABCD 中,,AD AE CD ⊥12.空间给定不共面的A,B,C,D四个点,其中任意两点间的距离都不相同,考虑具有如下性质的平面α:A,B,C,D中有三个点到的距离相同,另一个点到α的距离是前三个点到α的距离的2倍,这样的平面α的个数是___________个【答案】32【解析】首先取3个点相等,不相等的那个点由4种取法;然后分3分个点到平面α的距离相等,有以下两种可能性:(1)全同侧,这样的平面有2个;(2)不同侧,必然2个点在一侧,另一个点在一侧,1个点的取法有3种,并且平面过三角形两个点边上的中位线,考虑不相等的点与单侧点是否同侧有两种可能,每种情况下都唯一确定一个平面,故共有6个,⨯=个,所有这两种情况共有8个,综上满足条件的这样的平面共有4832故答案为:32二、选择题(本题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分;每题有且只有一个正确选项)13.下列几何体中,多面体是()A.B.C.D.【答案】B【解析】A选项中的几何体是球,是旋转体;B选项中的几何体是三棱柱,是多面体;C 选项中的几何体是圆柱,旋转体;D 选项中的几何体是圆锥,是旋转体.故选B.14.已知两个平面α、β,在下列条件下,可以判定平面α与平面β平行的是().A .α、β都垂直于一个平面γB .平面α内有无数条直线与平面β平行C .l 、m 是α内两条直线,且l ∥β,m ∥βD .l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β【答案】D【解析】对于A ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B 都与平面ABCD 垂直,但这两个平面不平行,所以A 错误,对于B ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,平面11AAC C 中所有平行于交线1AA 的直线都与平面11AA B B 平行,但这两个平面不平行,所以B 错误,对于C ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,,M N 分别为11,A B AB 的中点,则1,MN BB 在平面11AA B B 内,且都与平面11AAC C 平行,但这两个平面不平行,所以C 错误.对于D ,因为l 、m 是两条异面直线,所以将这两条直线平移到共面α时,一定在α内形成两条相交直线,由面面平行的判定定理可知,该结论正确.故选:D15.将3个1212⨯的正方形沿邻边的中点剪开分成两部分(如图1);将这6部分接于一个边长为六边形边上(如图2),若拼接后的图形是一个多面体的表面展开图,则该多面体的体积是()A .17282B .864C .576D .2【答案】B【解析】折成的多面体如图①所示,将其补形为正方体,如图②,所求多面体体积为正方体的一半,又依题易求得正方体的边长为12,故3112864,2V =⨯=故选:B.16.如图,在正方体1111ABCD A B C D -中,E 是棱BC 的中点,F 是侧面11BCC B 上的动点,且1A F ∥平面1AD E .设1A F 与平面11BCC B 所成的角为1,A F α与1AD 所成的角为β,那么下列结论正确的是()A .α的最小值为arctan2,β的最小值为arctan3B .α的最小值为arctan3,β的最大值为2πC .α的最小值大于arctan2,β的最小值大于arctan3D .α的最大值小于arctan3,β的最大值小于2π设正方体的棱长为2,因为MN GE ∥,且MN ⊄MN ∴∥平面1AEGD ;同理1A N ∥平面1AEGD ,且∴平面1A MN ∥平面AEGD ∵11A B ⊥面11BB C C ,所以又1AD MN ,所以1A F 与1AD 所成的角为111tan A B B Fα∴=;当F 为MN 中点时,此时当F 与M 或N 重合时,此时2tan 22α∴≤≤,arctan2对于β,当F 为MN 中点时,当F 与M 或N 重合时,β()221252A F ⎛⎫∴=-= ⎪ ⎪⎝⎭tan 3β∴=,tan 3β∴≥,arctan 3β≤≤又arctan3 1.4≈,arctan2故选:A.三、解答题(本大题共有5题,满分78分,第17-19题每题14分,第20、21题每题18分.)17.如图,长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为1DD 的中点.(1)求证:直线1BD //平面PAC ;(2)求异面直线1BD 与AP 所成角的大小.【解析】(1)设AC 和BD 交于点O ,则O 为BD 的中点,连接PO ,(1分)∵P 是1DD 的中点,∴1//PO BD ,(3分)又∵PO ⊂平面PAC ,1⊄BD 平面PAC ,∴直线1BD //平面PAC ;(6分)(2)由(1)知,1//PO BD ,∴APO ∠即为异面直线1BD 与AP 所成的角,(8分)∵PA PC =12AO AC ==且PO AO ⊥,∴1sin2AO APO AP ∠==.又(0,90]APO ∠∈︒︒,∴30APO ∠=︒故异面直线1BD 与AP 所成角的大小为30︒.(14分)18.如图,在圆柱中,底面直径AB 等于母线AD ,点E 在底面的圆周上,且AF D E ⊥,F 是垂足.(1)求证:AF DB ⊥;(2)若圆柱与三棱锥D ABE -的体积的比等于3π,求直线DE 与平面ABD 所成角的大小.【解析】(1)证明:根据圆柱性质,DA ⊥平面ABE ,因为EB ⊂平面ABE ,所以DA EB ⊥,又因为AB 是圆柱底面的直径,点E 在圆周上,所以AE EB ⊥,因为AE DA A ⋂=且,AE DA ⊂平面DAE ,所以EB ⊥平面DAE ,(2分)又因为AF ⊂平面DAE ,所以EB AF ⊥,因为AF D E ⊥,且EB DE E =I ,且,EB DE ⊂平面DEB ,所以AF ⊥平面DEB ,又因为DB ⊂平面DEB ,所以AF DB ⊥.(6分)(2)解:过点E 作EH AB ⊥,H 是垂足,连接DH ,根据圆柱性质,平面ABD ⊥平面ABE ,且平面ABD ⋂平面ABE AB =,且EH ⊂平面ABE ,所以EH ⊥平面ABD ,因为DH ⊂平面ABD ,所以DH 是ED 在平面ABD 上的射影,从而EDH ∠是DE 与平面ABD 所成的角,(8分)设圆柱的底面半径为R ,则2DA AB R ==,所以圆柱的体积为32πV R =,且21233D ABEABE R V AD S EH -=⋅=⋅ ,由:3πD ABE V V -=,可得EH R =,可知H 是圆柱底面的圆心,且AH R =,且DH =,在直角EDH 中,可得tan EH EDH DH ∠==EDH ∠=(14分)19.如图,将边长为2的正方形ABCD 沿对角线BD 折叠,使得平面ABD ⊥平面CBD ,AE ⊥平面ABD ,且2AE(1)求证:直线EC 与平面ABD 没有公共点;(2)求点C 到平面BED 的距离.【解析】(1)取BD 的中点F ,连接CF 、AF ,如图,依题意,在BCD △中,,BC CD BC CD =⊥,则CF BD ⊥,而平面ABD ⊥平面CBD ,平面ABD ⋂平面CBD BD =,CF ⊂平面CBD ,于是得CF ⊥平面ABD ,且2CF =因为AE ⊥平面ABD ,且2AE =//AE CF ,且AE CF =,从而得四边形AFCE 为平行四边形,//EC AF ,(4分)又AF ⊂平面ABD ,EC ⊂/平面ABD ,则//EC 平面ABD ,所以直线EC 与平面ABD 没有公共点;(6分)(2)因为CF ⊥平面ABD ,AF ⊂平面ABD ,所以CF AF ⊥,因为BD AF ⊥,BD CF F = ,,BD CF ⊂平面,CBD 所以AF ⊥平面,CBD 因为//,EC AF ,于是得EC ⊥平面CBD ,因为AE ⊥平面ABD ,,AB AD ⊂平面ABD ,所以,AE AB AE AD ⊥⊥,(8分)因为EC AF ==EB ED =,则等腰BED 底边BD 上的高2h ==,12BED S BD h =⋅= ,而2BCD S =,设点C 到平面BED 的距离为d ,由C BED E BCD V V --=得1133BED BCD S d S EC ⋅=⋅ ,即2=,解得1d =,所以点C 到平面BED 的距离为1(14分)20.如图所示,在四棱锥P ABCD -中,底面四边形ABCD 是菱形,底面,AC BD O PAC = △是边长为2的等边三角形,PB =PD ,AP =4AF(1)求证:PO ⊥底面ABCD (2)求直线CP 与OF 所成角的大小.(3)在线段PB 上是否存在点M ,使得//CM 平面BDF ?如果存在,求BMBP的值;如果不存在,请说明理由.【解析】(1)因为底面ABCD 是菱形,且AC BD O = ,所以O 为AC ,BD 中点,在PBD △中,PB =PD ,可得PO ⊥BD ,因为在PAC 中,PA =PC ,O 为AC ,BD 中点,所以PO ⊥AC ,(3分)又因为AC ⋂BD =O ,所以PO ⊥底面ABCD .(4分)(2)连接OF ,取AP 中点为E ,连接OE ,因为底面ABCD 是菱形,AC ⋂BD =O ,由O 为AC 中点,且E 为AP 中点,AP =4AF ,所以F 为AE 中点,所以CP //OE .,故∠EOF 为直线CP 与OF 所成的角,(8分)又由PAC 为等边三角形,且E 为中点,所以∠EOF =30o .(10分)(3)存在,13BM BP =,连接CE ,ME ,因为AP =4AF ,E 为AP 中点,所以13EF FP =,又因为13BM BP =,所以在PFB △中,EF BMFP BP =,即EM //BF ,(12分)因为EM ⊄平面BDF ,BF ⊂平面BDF ,所以EM //平面BDF ,由(2)知EC //OF ,因为EC ⊄平面BDF ,OF ⊂平面BDF ,所以EC //平面BDF ,因为EC ⋂EM =E ,所以平面EMC //平面BDF ,因为CM ⊂平面EMC ,所以CM //平面BDF .(18分)21.在棱长均为2的正三棱柱111ABC A B C -中,E 为11B C 的中点.过AE 的截面与棱111,BB AC 分别交于点F ,G.(1)若F 为1BB 的中点,试确定点G 的位置,并说明理由;(2)在(1)的条件下,求截面AGEF 与底面ABC 所成锐二面角的正切值;(3)设截面AFEG 的面积为0S ,AEG △面积为1S ,AEF △面积为2S ,当点F 在棱1BB 上变动时,求2012S S S 的取值范围.【解析】(1)在平面11BCC B 内延长1CC ,FE 相交于点P ,则P ∈平面AGEF ,又1P CC ∈⊂平面11ACC A ,则有平面AGEF 平面11ACC A AG =,P AG ∈,即A ,G ,P 三点共线.(2分)因为E 为11B C 的中点,F 为1BB 的中点,所以11112PC B F CC ==,所以113PC PC =,又因为1//GC AC ,所以1113GC PC AC PC ==,所以111112333GC AC A C ===,即点G 为棱11AC 上靠近点1C 的三等分点.(4分)(2)在平面11BCC B 内延长CB ,EF 相交于点Q ,连接AQ ,则平面AGEF 平面ABC AQ =,在平面11ACC A 内作GM AC ⊥于点M ,则GM ⊥平面ABC ,又AQ ⊂平面ABC ,所以G M AQ ⊥,在平面ABC 内作MN AQ ⊥于点N ,连接GN ,又,GM MN ⊂平面GMN ,GM MN M ⋂=,所以AQ ⊥平面GMN ,GN ⊂平面GMN ,所以AQ GN ⊥,所以GNM ∠为截面AGEF 与底面ABC 所成锐二面角的平面角.(6分)在AQC 中,作CH AQ ⊥于点H ,11BQ C E ==,2AC =,3CQ =,60AC B ∠= ,12222ABC S =⨯⨯⨯=△AQC S =由余弦定理2222cos 4967AQ AC CQ AC CQ ACQ =+-⋅⋅∠=+-=,则AQ122AQC S AQ CH ==⋅ ,可得3217CH =,所以237MN CH ==,又22G M AA ==,所以21tan 3GM GNM MN ∠==,故截面AGEF 与底面ABC (10分)(3)设1GC m =,则[]0,1m ∈,2PG mGA m=-.设PGE 的面积为S ,所以12S m S m=-,又因为21S S S =+,所以1222S m S -=,且1221,122S m S -⎡⎤=∈⎢⎥⎣⎦,故()22120121212212S S S S SS S S S S S +==++,令12S t S =,则1,12t ⎡⎤∈⎢⎥⎣⎦,(11分)设()112,12g t t t t ⎛⎫⎡⎤=++∈ ⎪⎢⎥⎣⎦⎝⎭,当12112t t ≤<≤时,()()()()121212121212111t t g t g t t t t t t t t t --=+--=-,120t t -<,120t t >,1210t t -<,则()()120g t g t ->,即()()12g t g t >,所以()12g t t t =++在1,12t ⎡⎤∈⎢⎥⎣⎦上单调递减,所以()()min 14g t g ==,()max 1922g t g ⎛⎫== ⎪,所以()94,2g t ⎡⎤∈⎢⎥,。
重庆市高二上学期期中数学试题(解析版)

一、单选题1.是两个单位向量,则下列四个结论中正确的是( ),a bA .B .C .D .a b = 1a b ⋅= //a b 22a b = 【答案】D【分析】由单位向量、共线向量、相等向量、向量数量积和模长定义依次判断各个选项即可. 【详解】对于A ,模长相等,但方向未必相同,A 错误;,a b对于B ,,B 错误; []cos ,cos ,1,1a b a b a b a b ⋅=⋅<>=<>∈- 对于C ,模长相等,但未必同向或反向,C 错误;,a b对于D ,,,D 正确.1a b == 221a b ∴== 故选:D.2.将直线l 沿x 轴正方向平移2个单位,再沿y 轴负方向平移3个单位,又回到了原来的位置,则的斜率是( ) l A .B .4C .1D .32-12【答案】A【分析】设直线l 上任意一点,再根据题意可得也在直线上,进而根据()00,P x y ()2002,3P x y +-两点间的斜率公式与直线的斜率相等列式求解即可.【详解】设直线l 上任意一点,将直线l 沿x 轴正方向平移2个单位,则P 点移动后为()00,P x y ,再沿y 轴负方向平移3个单位,则点移动后为. ()1002,P x y +1P()2002,3P x y +-∵都在直线l 上,∴直线l 的斜率.2,P P 00003322k y y x x --=-+-=故选:A .3.经过点,且倾斜角为的直线的斜截式方程为( ) ()2,3A π4A .B .C .D .1y x =+1y x =-=1y x --1y x =-+【答案】A【分析】根据倾斜角求出斜率,写出点斜式方程,化为斜截式可得答案. 【详解】斜率, πtan14k ==点斜式方程为, 32y x -=-斜截式方程为.1y x =+故选:A4.已知圆与圆相交于,两点,且直线的方程为,则1C 2C ()2,3A (),1B m 12C C 0x y n +-=m n +=( ) A .3 B .5C .7D .9【答案】A【分析】先推出直线是线段的垂直平分线,再根据垂直和平分列式可求出. 12C C AB ,m n 【详解】因为,, 11||||C A C B =22||||C A C B =所以直线是线段的垂直平分线,12C C AB 所以,解得,3112231022mm n -⎧=⎪⎪-⎨++⎪+-=⎪⎩03m n =⎧⎨=⎩所以. 3m n +=故选:A5.若函数在闭区间上有最大值为3,最小值为2,则实数m 的范围是()223x x x f =-+[]0,m ( ) A . B .C .D .(],2-∞[]0,2[]1,2[)1,+∞【答案】C【分析】根据二次函数的单调性,结合函数的最值进行求解即可. 【详解】,()()222312f x x x x =-+=-+当时,当时,函数单调递减,所以有 01m <≤[]0,x m ∈;()()()()2max min 03,2321f x f f x f m m m m ====-+=⇒=当时,,对称轴为,1m >()()()023,12f f f ===1x =因为函数在闭区间上有最大值为3,最小值为2,()223x x x f =-+[]0,m 所以有,12m <≤综上所述:实数m 的范围是, []1,2故选:C6.数学美的表现形式不同于自然美或艺术美那样直观,它蕴藏于特有的抽象概念,公式符号,推理论证,思维方法等之中,揭示了规律性,是一种科学的真实美.在平面直角坐标系中,曲线就是一条形状优美的曲线,求此曲线围成的图形的面积为( )22:22C x y x y +=+A . B . C . D .88π+84π+168π+816π+【答案】B【分析】分类讨论将曲线中的绝对值去掉可得四段关系式,从而作出曲线的图象,根据图像即可C 计算出其面积.【详解】由可得,22:22C x y x y +=+当时,,即,表示圆心为,半径0,0x y ≥≥2222x y x y +=+22(1)(1)2x y -+-=(1,1)r =圆;当时,,即,表示圆心为,半径0,0x y ≥<2222x y x y +=-22(1)(1)2x y -++=(1,1)-r =圆;当时,,即,表示圆心为,半径0,0x y <≥2222x y x y +=-+22(1)(1)2x y ++-=(1,1)-r =圆;当时,,即,表示圆心为,半径0,0x y <<2222x y x y +=--22(1)(1)2x y +++=(1,1)--r =圆;所以曲线的图象如下图所示:22:22C x y x y +=+因此曲线围成的图形的面积为;(222π84πS =+⨯=+故选:B7.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河”.诗中隐含着一个有趣的数学问题——“将军饮马”,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为,()2223x y ++≤若将军从点处出发,河岸线所在直线方程为,并假定将军只要到达军营所在区()4,0A -10x y +-=域即回到军营,则“将军饮马”的最短总路程为( )A .B .C .D .【答案】A【分析】计算出点在直线的对称点的坐标,计算出点到圆的圆心A 10x y +-=B B ()2223x y ++=的距离,利用圆的几何性质可求得“将军饮马”的最短总路程. 【详解】设点关于直线的对称点为,A 10x y +-=(),B m n线段的中点在直线,即,即,① AB 4,22m n -⎛⎫⎪⎝⎭10x y +-=41022m n -+-=60m n +-=直线的斜率为,则,② 10x y +-=1-14AB nk m ==+联立①②可得,,即点,1m =5n =()1,5B圆的圆心为,半径为,()2223x y ++=()0,2C -r =设将军在河边的饮水处为点,则,设线段交圆于点, M AM BM =BC C P则AM MP BM MP BC r +=+≥-==因此,“将军饮马”的最短总路程为. BC r -=故选:A.8.在一个半圆中有两个互切的内切半圆,由三个半圆弧围成“曲线三角形”,作两个内切半圆的公切线把“曲线三角形”分隔成两块,且被分隔的这两块中的内切圆是同样大小的,如图,若,则阴影部分与最大半圆的面积比为( )2AC CB =A .B .C .D .108120814989【答案】B【分析】设,则,,建立直角坐标系,根据已知条件求出各点坐标,由圆2BC r =4AC r =6AB r =O 与圆内切,解得,由圆O 与圆内切,解得,分别求出阴影部分与最大半圆的3O 23a r =4O 23b r =面积,即可求出答案.【详解】设,则,,以C 为坐标原点,2BC r =4AC r =6AB r =建立如图所示的坐标系,则C (0,0),,,. ()12,0O r -(),0O r -()2,0O r 设,,则()3,O a t -()4,O b v ()()22222r a r a t +--=(圆,外切与勾股定理结合),得. 1O 3O t =(3,O a -由圆O 与圆,解得. 3O 3r a =-23a r =同理(圆,外切与勾股定理结合), ()()222r b r bv +--=2O 4O 得O 与圆,v =4O 3r b =-解得.设阴影部分的面积为,最大半圆的面积为, 23b r =1S 2S , ()()222221111210ππ3π2π2π22239r rS r r r ⎛⎫=⋅-⋅--⋅=⎪⎝⎭所以.2210π209981π2r S S r ==12故选:B.二、多选题9.下列结论中正确的有( )A .直线倾斜角的范围是π0,2⎛⎫⎪⎝⎭B .若两条相交直线所成的角为,其方向向量的夹角为,则或 αθαθ=παθ=-C .若两条直线相互垂直,则其斜率之积为 1-D .每条直线有且只有一个倾斜角与之相对应 【答案】BD【分析】根据直线的倾斜角、直线的夹角、方向向量的夹角、直线垂直等知识确定正确答案. 【详解】直线倾斜角的取值范围是,A 选项错误.[)0,πB 选项,根据直线的夹角和方向向量的夹角的知识可知,或,B 选项正确. αθ=παθ=-C 选项,两条直线相互垂直,可能一条斜率为,另一条斜率不存在,所以C 选项错误. 0D 选项,每条直线有且只有一个倾斜角与之相对应,这个结论是正确的,D 选项正确. 故选:BD10.已知圆上至多有一点到直线的距离为2,则实数可能的22260x y x y a +--+=3450x y ++=a 取值为( ) A .5 B .6C .7D .10【答案】BC【解析】确定圆心不过已知直线,且求得圆心到已知直线的距离为,根据圆4d =上至多有一点到直线的距离为2,得到圆的半径22260x y x y a +--+=3450x y ++=,由此求出的范围后可判断各选项. 2r ≤a 【详解】圆标准方程是, 22(1)(3)10x y a -+-=-圆心为,半径为), (1,3)C r =10a <圆心到已知直线的距离为,4d 圆上至多有一点到直线的距离为2, 22260x y x y a +--+=3450x y ++=则有圆的半径 2r =≤解得.只有B 、C 满足. 610a ≤<故选:BC .【点睛】方法点睛:本题考查考查直线与圆的关系,解题方法如下: (1)先求得圆心到直线的距离;(2)根据题意,确定出圆的半径的取值范围; (3)解不等式求得结果.11.已知是定义在R 上的奇函数,其图象关于点对称,当时,()f x ()2,0[]0,2x ∈,若方程的所有根的和为6,则实数k 可能的取值是( )()f x =()()20f x k x --=A B .C D . 【答案】AB【分析】根据函数的奇偶性和对称性推出周期,求出在一个的解析式,将方程()f x ()f x [2,0)-的所有根的和为6转化为函数的图象与直线有且仅有个交()()20f x k x --=()y f x =(2)y k x =-3点,作出函数的图象,利用直线与圆的位置关系列式,求出的范围,从而可得答案. k 【详解】因为为奇函数,所以,()f x ()()f x f x -=-因为的图象关于点对称,所以,即, ()f x (2,0)(4)()0f x f x -+=()(4)f x f x =--又,(4)[(4)]f x f x -=---(4)f x =--所以,所以的周期为,()[(4)](4)f x f x f x =---=-()f x 4当时,由,得,其图象是圆心为,半径[0,2]x ∈()y f x ==22(1)1x y -+=(0)y ≤(1,0)为的半圆,1当时, [2,0)x ∈-()()[y f x f x ==--=-=所以,其图象是圆心为,半径为的半圆, 22(1)1(0)x y y ++=≥(1,0)-1因为方程的所有根的和为6,()()20f x k x --=所以函数与直线的交点的横坐标之和为, ()y f x =(2)y k x =-6因为点是它们的一个交点,所以其它交点的横坐标之和为,(2,0)4而函数的图象与直线都关于点对称,它们的关于点对称的两个交点的()y f x =(2)y k x =-(2,0)(2,0)横坐标之和为,所以函数的图象与直线有且仅有个交点, 4()y f x =(2)y k x =-3作出两个函数的图象,如图:当时,只需直线与圆,解得 0k >(2)y k x =-22(7)1x y -+=1>k >当时,只需直线与圆,解得 0k <(2)y k x =-22(5)1x y -+=1=k =所以的取值范围是. k ⎧⎪⎨⎪⎩⎫⋃+∞⎪⎪⎭故选:AB12.如图,经过坐标原点且互相垂直的两条直线和与圆相交于O AC BD 2242200x y x y +-+-=四点,为弦的中点,则下列说法正确的是( ),,,A C B D M ABA .线段长度的最大值为 BO 10B .弦长度的最小值为 AC C .点的轨迹是一个圆;MD .四边形面积的取值范围为. ABCD 45⎡⎤⎣⎦【答案】BCD【分析】根据方程写出已知圆的圆心和半径,由长度表示圆上点到原点的距离即可判断A ;由BO 圆的性质判断B ;若分别是的中点,圆心到直线和的距离,,,M H G F ,,,AB BC CD AD ()2,1-AC BD且,易证为矩形且其中心对角线长度恒定,即可确定的轨迹判12,d d ⎡∈⎣22125d d +=MHGF M 断C ;根据得到四边形面积关于的表达式,结合二次函数性质求范12ABCD S AC BD =ABCD 12,d d 围判断D.【详解】由题设圆的方程为, 22(2)(1)25x y -++=设圆心为,则,半径,E ()2,1E -=5r由三角形两边之和大于第三边可知,且 EB EO BO +≥5,EB EO ==所以当长度最大时圆心与共线且在它们中间,此时错误;BO ,B O 5A BO r =+=由圆的性质知当即圆心与直线距离最大时长度的最小, OE AC ⊥AC AC此时圆心与直线,故正确; AC 2B AC ==若分别是的中点,则且,,,M H G F ,,,AB BC CD AD MF HG BD ∥∥且,,2BD MF HG MH FG AC ==∥∥2AC MH FG ==又,易知:为矩形,而,AC BD ⊥MHGF 22222||||||4BD AC FH MF MH +=+=若圆心到直线的距离且, ()2,1-,AC BD 12,d d ⎡∈⎣22125d d +=所以,则,故222212||||2255044BD AC d d +++=⨯=22||454BD AC +=FH =所以在以交点为圆心的圆上,C 正确;M FH =,HF MG由上分析:,而, AC =12ABCD S AC BD =所以,ABCD S ==令,则,[]222150,5t d d ==-∈ABCDS ==当,即; 52t =12d d ==()max 45ABCD S =当或5,即时,0=t 120,d d =120d d ==()min ABCD S =所以,D 正确; 45ABCD S ⎡⎤∈⎣⎦故选:BCD【点睛】难点在于CD 选项,选项C :证明分别是的中点所形成的四边,,,M H G F ,,,AB BC CD AD 形为矩形且对角线长度及中心恒定,判断轨迹形状;选项D :利用得到四边形面AC BD ⊥ABCD 积关于的表达式,结合二次函数性质求范围.12,d d三、填空题13.已知向量,满足:,,,则__________.a b1a = 4b = a b -=r r += a b【分析】将两边平方求出,再根据可求a b -=r r 52a b ⋅= ||a b +==出结果.【详解】由,得,得,a b -=r r ()212a b-=22||2||12a a b b -⋅+=得,得,121612a b -⋅+=52a b ⋅=||a b +== ==14.已知函数,则________.2,0()(2),0x x f x f x x ⎧<=⎨-≥⎩()2log 3f =【答案】34【解析】根据分段函数,和,利用 转化为2,0()(2),0x x f x f x x ⎧<=⎨-≥⎩2log 30>()()2f x f x =-求解.()()2223log 3log 32log 4f f f ⎛⎫=-= ⎪⎝⎭【详解】因为,,2,0()(2),0x x f x f x x ⎧<=⎨-≥⎩2log 30>所以,()()2223log 3log 32log 4f f f ⎛⎫=-= ⎪⎝⎭又,所以. 223log log 104<=()23log 42233log 3log 244f f ⎛⎫=== ⎪⎝⎭故答案为:. 34【点睛】本题主要考查分段函数的求值,还考查了转化问题求解的能力,属于基础题. 15.若是圆上任意一点,则的取值范围是______.(),P x y 22:1O x y +=3483412x y x y -++-+(用区间表示) 【答案】[]10,30【分析】将所给表达式化为,求出圆心到直线的距离,确12348341255()55x y x y d d ⎛-+-+⎫+=+⎪⎝⎭定圆上的点到两条直线距离的范围,进而求出.12105()30d d ≤+≤【详解】令3483412x y x y ω=-++-+, ()1234834125555x y x y d d ⎛⎫-+-+=+=+ ⎪⎝⎭其中、分别表示圆:上任意一点到1d 2d O 221x y +=(),P x y 直线:和:距离;1l 3480x y -+=2l 34120x y -+=因为圆心到直线:和:距离O 1l 3480x y -+=2l 34120x y -+=分别为、, 185h ==2125h ==所以且, 1881155d -≤≤+212121155d -≤≤+即且, 131355d ≤≤271755d ≤≤所以,12105()30d d ≤+≤即的取值范围是.3483412x y x y -++-+[]10,30故答案为:.[]10,3016.如图,在平面直角坐标系中,过外一点P 引它的两条切线,切点分别为M ,N ,若xOy T e,则称P 为的环绕点.若的半径为1,圆心为,以60180MPN ≤∠<T e T e ()0,t ()0m m ⎛⎫ ⎪ ⎪⎭>⎝为半径的所有圆构成图形H ,若在图形H 上存在的环绕点,则t 的取值范围为T e __________.【答案】24t -<≤【分析】根据环绕点的定义求出环绕点构成的图形,再求出图形H .按照、、分类讨0t >0=t 0t <论,结合图象,根据直线与圆的位置关系列式可求出结果.【详解】连,因为,所以, ,,TM TN TP 60180MPN ≤∠< 1ππ,262TPM TPN MPN ⎡⎫∠=∠=∠∈⎪⎢⎣⎭所以,又,所以, ||π1sin sin ||62TM TPM TP ∠=≥=||1TM =1||2TP <≤所以圆的环绕点构成的图形是圆心为,半径分别为和的圆所围成的扇环(包括大圆上的T T 12点,不包括小圆上的点.以为半径的圆与轴相切,设切点为, ()0E m m ⎛⎫ ⎪ ⎪⎝>⎭x A因为圆心在射线上,所以以()0E m m ⎛⎫ ⎪ ⎪⎝>⎭(0)y x =>()0E m m ⎛⎫ ⎪ ⎪⎝>⎭为半径的圆与直线相切,设切点为,y =B所以以为半径的所有圆构成图形为的内部(包括射线()0E m m ⎛⎫ ⎪ ⎪⎝>⎭AOB ∠,不包括原点),,OA OB O 如图:当时,由图可知,若在图形H 上存在的环绕点,只需圆心到直线的距离小于等0t >T e T y =于半径,解得; 22≤04t <≤当时,由图可知,在图形H 上恒存在的环绕点;0=t T e 当时,由图可知,若在图形H 上存在的环绕点,只需圆心到轴的距离小于半径,即0t <T e T x 2,则.2t -<2t >-综上所述:的取值范围为.t 24t -<≤故答案为:.24t -<≤【点睛】关键点点睛:根据环绕点的定义求出环绕点构成的图形,推出动圆形成的图形是本题解H题的关键.四、解答题17.已知两直线,.1:60l x my ++=()2:2320l m x y m -++=(1)若,不重合,且垂直于同一条直线,求m 的值.1l 2l (2)从①直线l 过坐标原点,②直线l 在y 轴上的截距为2,③直线l 与坐标轴形成的三角形的面积为1这三个条件中选择一个补充在下面问题中,并作答.若,直线l 与垂直,且1m =2l __________,求直线l 的方程.【答案】(1)1-(2)答案见解析【分析】(1)先推出,再根据两直线平行的条件列式可求出结果;12l l //(2)先根据两直线垂直求出直线的斜率,若选①,根据点斜式可得结果;若选②,根据斜截式l 可得结果;若选③,设直线的斜截式,得到直线在轴上的截距,然后根据面积列式可求出结l ,x y 果.【详解】(1)若,不重合,且垂直于同一条直线,则,1l 2l 12//l l 则由,得,得或m =-1,12210A B A B -=()320m m --=3m =当m =3时,两直线重合,不合题意,当m =-1时,符合题意,所以.1m =-(2)若,直线的斜率为, 1m =2l 13由直线l 与垂直,可得直线l 的斜率为.2l 3-若选①,直线l 过坐标原点,故直线l 方程为,即;3y x =-30x y +=若选②,直线l 在y 轴上的截距为2,则直线l 的方程为,即;32y x =-+320x y +-=若选③,设直线l 方程为,则直线l 在x ,y 轴上截距分别为,b , 3y x b =-+13b 由直线l 与坐标轴形成的三角形的面积为1,可得,解得, 211123b ⨯=b =即直线l 方程为,即.3y x =-30x y +=18.已知函数的部分图象如图所示. ()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭(1)求函数的解析式;()f x (2)试判断函数在区间上的单调性. ()f x 2π0,3x ⎡⎤∈⎢⎥⎣⎦【答案】(1) ()π2sin 26f x x ⎛⎫=- ⎪⎝⎭(2)在上递增,在上递减 ()f x π0,3⎡⎤⎢⎥⎣⎦π2π,33⎡⎤⎢⎥⎣⎦【分析】(1)由图形可直接得出A ,利用公式即可得出,再把代入2||T πω=ω(,2)3π即可求得;()()2sin 2f x x ϕ=+ϕ(2)令,结合,即可求解. πππ2π22π262k x k -+≤-≤+2π0,3x ⎡⎤∈⎢⎥⎣⎦【详解】(1)由题意可知,,2A =,得,解得. 39π412T =πT =2ω=,即,,, π2π2sin 233f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭2ππ2π32k ϕ+=+k ∈Z π2ϕ<所以,故. π6ϕ=-()π2sin 26f x x ⎛⎫=- ⎪⎝⎭(2)令,解得,; πππ2π22π262k x k -+≤-≤+ππππ63k x k -+≤≤+k ∈Z 结合,得出在上递增,在上递减. 2π0,3x ⎡⎤∈⎢⎥⎣⎦()f x π0,3⎡⎤⎢⎥⎣⎦π2π,33⎡⎤⎢⎥⎣⎦19.如图,一艘海警船在O 处发现了位于北偏东,距离为6海里的海面上A 处有两艘走私船,60︒于是派遣巡逻艇追缉走私船,已知巡逻艇航速是走私船航速的2倍,且它们都是沿直线航行,但走私船可能向任意方向逃窜.(1)求走私船所有可能被截获的点P 在什么曲线上;(2)开始追缉时发现两艘走私船向相反方向逃窜,速度为20海里/小时,其中一艘的航向为东偏南,于是同时派遣了两艘巡逻艇分别追缉两艘走私船,两艘走私船被截获的地点分别为M ,N ,30︒求M ,N 之间的距离.【答案】(1)点P 在圆心为,的圆上;()44r =(2)【分析】(1)根据巡逻艇航速是走私船航速的2倍,结合两点间距离公式进行求解即可;(2)根据点到直线距离公式,结合勾股定理进行求解即可.【详解】(1)∵巡逻艇航速是走私船航速的2倍, ∴,2OP AP =设,(),P x y ()A=化简得:,(()22416x y -+-=即点P 在圆心为,的圆上;()44r=(2)令直线的斜率为k ,,且直线过点, AM k =AM ()A 可求得直线的方程为,AM 3y x -=-,60y +-=P 在圆心,的圆上, ()44r =圆心到直线的距离为 AM d =∴,∴.MN ==MN =20.如图,已知长方形中,为的中点.将沿折ABCD AB =AD =M DC ADM △AM 起,使得平面平面.ADM ⊥ABCM (1)求证:;AD BM ⊥(2)若点是线段上的一动点,问点在何位置时,二面角E DB E E AM D --【答案】(1)(见解析2)见解析 【详解】试题分析:(1)先利用平面几何知识得到线线垂直,再利用面面垂直的性质得到线面垂直,进而得到线线垂直;(2)建立空间直角坐标系,利用向量共线得到有关点的坐标,再利用空间向量进行求解.试题解析:(1)证明:长方形中,,为的中点, ABCD AB =AD =M DC ,.2AM BM ∴==BM AM ∴⊥平面平面,平面平面,平面 ADM ⊥ABCM ADM ⋂ABCM AM =BM ⊂ABCM 平面BM ∴⊥ADM 平面ADMAD ⊂ .AD BM ∴⊥(2)建立如图所示的直角坐标系设,则平面的一个法向量,DE DB λ= AMD ()0,1,0n = ,, ME MD DB λ=+=()1,2,1λλλ--()2,0,0AM =-设平面的一个法向量,则AME (),,m x y z = ()20{210x y z λλ=+-=取,得,,所以, 1y =0x =1y =21z λλ=-20,1,1m λλ⎛⎫= ⎪-⎝⎭因为, .得或 cos ,m n 〈〉= m n m n ⋅= 13λ=1λ=-经检验得满足题意,所以为的三等分点. 13λ=E BD 21.已知圆.22:68160C x y x y +--+=(1)直线l 在x 轴和y 轴上的截距相等且与圆C 相切,求l 的方程;(2)已知圆心在原点的圆O 与圆C 外切,过点作直线,与圆O 交于异于点P 的点A ,()2,0P PA PB B ,若,则直线是否恒过定点?若过定点,则求出该定点,若不过,说明理由;2PA PB k k ⋅=-AB (其中,分别为直线,的斜率).PA k PB k PA PB【答案】(1)或或7240x y -=70x y +--=70x y +-+=(2)过定点, 2,03⎛⎫ ⎪⎝⎭【分析】(1)①若直线l 过原点,设直线l 的方程为,根据圆心到直线的距离等于半径列式y kx =求出;若直线l 不过原点,设出直线方程的截距式,根据圆心到直线的距离等于半径列式可求出k 直线方程;(2)根据两圆外切求出圆的方程,设直线,代入圆的方程,求出的坐标,将O ():2PA y k x =-A 的坐标中的换成得的坐标,求出直线的斜率,得直线的方程,根据方程可得直线A k 2k-B AB AB 所过定点.【详解】(1)圆化为标准形式为,22:68160C x y x y +--+=()()22349x y -+-=∴圆C 的圆心为,半径为3,()3,4因为直线l 在x 轴和y 轴上的截距相等,①若直线l 过原点,则设直线l 的方程为,即,y kx =0kx y -=因为直线l 与圆C 相切,所以,即,解得, 3d r =247k =724k =故直线l 的方程为.7240x y -=②若直线l 不过原点,切线l 在x 轴和y 轴上的截距相等,则假设直线l 的方程为,即, 1x y a a+=0x y a +-=因为直线l 与圆C 相切,∴,3d r =∴7a -=7a =+7a =-∴直线l 的方程为或,70x y +--=70x y +-+=综上所述直线l 的方程为或或.7240x y -=70x y +--=70x y +-+=(2)∵圆心在原点的圆O 与圆C 外切,设圆的半径为,O r 则,故圆O 的半径,圆O 的方程为,53OC r ==+2r =224x y +=设点,,(,)A A A x y (,)B B B x y 设直线,():2PA y k x =-联立直线和圆方程得,消去得, 22(2)4y k x x y =-⎧⎨+=⎩y ()222214440k x k x k +-+-=由韦达定理有,解得,则, 2241A P k x x k +=+22221A k x k -=+241A k y k -=+∵, ,∴, 2PA PB k k ⋅=-PA k k =2PB k k=-将中的k 换成化简可得, 22221A k x k -=+2k -22284B k x k -+=+将中的k 换成化简可得, 241A k y k -=+2k -284B k y k =+所以, 2222224814222814A B AB A B k k y y k k k k k x x k k ---++==--+--++232k k =-直线,化简得, 22224322:121k k k AB y x k k k ⎛⎫--⎛⎫-=- ⎪ ⎪+-+⎝⎭⎝⎭23223k y x k ⎛⎫=- ⎪-⎝⎭所以直线过定点. AB 2,03⎛⎫ ⎪⎝⎭22.已知,,为的三个顶点,圆Q 为的内切圆,点P 在圆()2,2A --()2,6B -()4,2C -ABC A ABC A Q 上运动.(1)求圆Q 的标准方程;(2)求以,,为直径的圆的面积之和的最大值、最小值;PA PB PC (3)若,,求的最大值. ()1,0M -3,02N ⎛⎫ ⎪⎝⎭sin MPN ∠【答案】(1)224x y +=(2)最大值为,最小值为22π18π(3)1011【分析】(1)先判断出为直角三角形,利用面积关系求出内切圆的半径,结合图形求出圆心ABC A 坐标,然后可得圆Q 的标准方程;(2)设,利用两点间的距离公式和圆的面积公式将圆的面积之和表示为的函数,根据(),P x y y 可求出结果; 22y -≤≤(3)根据对称性,只研究P 点在x 轴上方,即的情况,此时先求出的最大值,然0y ≥tan MPN ∠后根据同角公式可出的最大值.sin MPN ∠【详解】(1)因为,,,所以为直角三角形,如图: 8AB =6AC =10BC =ABC A设的内切圆的半径为,ABC A r 由得, 1||||2ABC S AB AC =⋅!1(||||||)2r AB AC BC =++||||||||||AB AC r AB AC BC ⋅=++8628610⨯==++由图可知,圆心为,所以圆.()0,0Q 22:4Q x y +=(2)设,,(),P x y 224x y +=,()()2222222448PA x y x y x y =+++=++++4412x y =++,()()222222641240PB x y x y x y =++-=++-+41244x y =-+, ()()22222428420PC x y x y x y =-++=+-++8424x y =-++222||||||πππ222PA PB PC S ⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ()222π4PA PB PC =++()π44124124484244x y x y x y =+++-+-++, ()π4804y =-+因为,所以,22y -≤≤18π22πS ≤≤所以以,,为直径的圆的面积之和的最大值、最小值分别为,. PA PB PC 22π18π(3)设,则,(),P x y 224x y +=根据对称性,只研究P 点在x 轴上方,即的情况,0y≥当垂直x 轴时,,PN (P-tanMPN ∠===当垂直x 轴时,,PM (P -tan MPN ∠==当和都不垂直轴时,,, PN PM x 32PN yk x =-1PM y k x =+()tan tan πMPN PNM PMN ∠=-∠-∠()tan PNM PMN =-∠+∠ tan tan 1tan tan PNM PMN PNM PMN∠+∠=--∠⋅∠ 1PN PM PN PMk k k k -+=-+⋅ 31211312PN PM PN PM y y x x k k y y k k x x -+--==++⨯+-22521322y x y x =+--5213422y x =--, ()5555y y x x ==---因为为点与的斜率, 5y x -(,)P x y ()5,0E 如图:由图可知,当直线与圆相切时,取得最小值, PE Q 5y x -设直线:,即, PE (5)y k x =-(0)k <50kx y k --=(0)k <,结合,得2=0k<k ==所以, min 5y x⎛⎫= ⎪-⎝⎭()max tan MPN ∠,>>()max tan MPN∠=由于,所以当取最大值时,取最大值,取最大值, 090MPN ≤∠< tan MPN ∠MPN ∠sin MPN ∠所以. ()max 10sin 11MPN ∠====。
山东省 2023~2024学年第一学期期中高二数学试题[含答案]
![山东省 2023~2024学年第一学期期中高二数学试题[含答案]](https://img.taocdn.com/s3/m/4758bd323d1ec5da50e2524de518964bcf84d2e6.png)
42
2 y
22
4
,化
为 (x 2)2 ( y 1)2 1,故选 A.
考点:1、圆的标准方程;2、“逆代法”求轨迹方程.
【方法点晴】本题主要考查圆的标准方程、“逆代法”求轨迹方程,属于难题.求轨迹方程的常见方法有:①直
接法,设出动点的坐标
x,
y
,根据题意列出关于
x,
y
的等式即可;②定义法,根据题意动点符合已知曲
y 1 mx 2m R
5. 在平面直角坐标系中,动圆
与直线
相切,则面积最
大的圆的标准方程为( )
x 12 y 12 4
A.
x 12 y 12 5
B.
x 12 y 12 6
C. 【答案】B
x 12 y 12 8
D.
【解析】
【分析】据题意分析可知直线经过定点 P ;圆的圆心到直线距离的最大时,圆的半径最大,即可得到面积
当直线 x ay 1 0 与直线 ax y 1 0 相互垂直时, a 1 不一定成立,所以“ a 1 ”是“直线
x ay 1 0 与直线 ax y 1 0 相互垂直”的非必要条件.
所以“ a 1 ”是“直线 x ay 1 0 与直线 ax y 1 0 相互垂直”的充分非必要条件.
2023~2024 学年第一学期期中高二数学试题
(选择性必修一检测) 2023.11
说明:本试卷满分 150 分,分为第 I 卷(选择题)和第 II 卷(非选择题)两部分,第 I 卷为 第 1 页至第 3 页,第 II 卷为第 3 页至第 4 页.试题答案请用 2B 铅笔或 0.5mm 签字笔填涂到 答题卡规定位置上,书写在试题上的答案无效.考试时间 120 分钟.
浙江省杭州2023-2024学年高二上学期期中数学试题含解析

杭州2023学年第一学期高二年级期中数学试卷(答案在最后)第Ⅰ卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.“2m =”是“直线1l:()310m x my -++=与直线2l :()120mx m y +--=互相垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据两直线垂直求出参数的值,再根据充分条件、必要条件的定义判断即可.【详解】若直线1l :()310m x my -++=与直线2l :()120mx m y +--=互相垂直,则()()310m m m m -+-=,解得0m =或2m =,所以由“2m =”推得出“直线1l :()310m x my -++=与直线2l :()120mx m y +--=互相垂直”,即充分性成立;由“直线1l :()310m x my -++=与直线2l :()120mx m y +--=互相垂直”推不出“2m =”,即必要性不成立,所以“2m =”是“直线1l :()310m x my -++=与直线2l :()120mx m y +--=互相垂直”的充分不必要条件.故选:A2.已知事件,A B 相互独立,()0.5P A =,()0.4P B =,则()P A B +=()A.0.88 B.0.9C.0.7D.0.72【答案】C 【解析】【分析】根据事件,A B 相互独立得到()()()0.2P AB P A P B ==,结合()()()()P A B P A P B P AB +=+-求出答案.【详解】因为事件,A B 相互独立,故()()()0.50.40.2P AB P A P B ==⨯=,又()0.5P A =,()0.4P B =,所以()()()()0.50.40.20.7P A B P A P B P AB +=+-=+-=.故选:C 3.过点),且与椭圆2212516y x +=有相同焦点的椭圆的标准方程为()A.221189x y += B.221189y x += C.221123x y += D.221123y x +=【答案】D 【解析】【分析】设所求椭圆方程为22221y xa b +=()0a b >>,依题意可得22229421a b a b⎧-=⎪⎨+=⎪⎩,解得2a 、2b ,即可求出椭圆方程.【详解】椭圆2212516y x +=的焦点为()0,3或()0,3-,设所求椭圆方程为22221y x a b+=()0a b >>,则22229421a b a b⎧-=⎪⎨+=⎪⎩,解得22123a b ⎧=⎨=⎩,所以椭圆方程为221123y x +=.故选:D4.已知()()()()0,0,2,1,0,1,1,1,0,0,0,0A B C O -,则点O 到平面ABC 的距离是()A.11B.11C.5D.5【答案】B 【解析】【分析】利用空间向量计算点面距离即可.【详解】由题意可知()()()1,0,3,1,1,2,0,0,2AB AC AO =-=-=-,设面ABC 的一个法向量为(),,n x y z = ,则030200n AB x z x y z n AC ⎧⋅=-=⎧⎪⇒⎨⎨+-=⋅=⎩⎪⎩ ,取13,1z x y =⇒==-,即()3,1,1n =-,所以点O 到平面ABC 的距离是11AO n d n ⋅=== .故选:B5.点(),P x y 在圆222x y +=上运动,则3x y -+的取值范围()A.[]0,1 B.[]0,4 C.[]1,5 D.[]1,4【答案】C 【解析】(),P x y 到直线30x y -+=的距离d ,求出圆心()0,0O 到直线30x y -+=的距离1d ,从而求出d 的取值范围,即可求出3x y -+的取值范围.【详解】圆222x y +=的圆心为()0,0O ,半径r =因为点(),P x y 在圆222xy +=上运动,又3x y-+=(),P x y 到直线30x y -+=的距离d ,所以3x y -+=,又圆心()0,0O 到直线30x y-+=的距离1322d ==,所以11d rd d r -≤≤+,即22d ≤≤,所以[]31,5x y -+=∈.故选:C6.如图,在边长为3的正方体1111ABCD A B C D -中,3BC EC =,点P 在底面正方形ABCD 上移动(包含边界),且满足11B P D E ⊥,则线段1B P 的长度的最大值为()A.B.C. D.【答案】B 【解析】【分析】建立合适的空间直角坐标系,求出点P 的轨迹结合函数求最值即可.【详解】依据题意可以建立如图所示的空间直角坐标系,则()()()110,0,3,1,3,0,3,3,3D E B ,设()[](),,0,0,3P x y x y ∈,所以()()113,3,3,1,3,3B P x y D E =---=-,即1133033B P D E x y x y ⋅=+-=⇒=-,所以[]03330,1y y ≤-≤⇒∈,而1B P =,由二次函数的单调性可知22391061810181010t y y y ⎛⎫=-+=-+- ⎪⎝⎭,当1y =时,max 22t =,则1max B P =.故选:B7.已知A ,B 是圆()()()22:330C x m y m -+-=>上两点,且AB =.若存在R a ∈,使得直线1:410l ax y a -++=与2:50l x ay a +-=的交点P 恰为AB 的中点,则实数m 的取值范围为()A.(0,1⎤-⎦B.(0,2⎤⎦C.(0,1⎤+⎦D.(3⎤+⎦【答案】A 【解析】【分析】根据直线与圆相交的弦长可得AB 中点M 的轨迹为()()2231x m y -+-=,又根据直线1l ,2l 的方程可知12l l ⊥,交点P 的轨迹方程为()()22238x y ++-=,若P 恰为AB 的中点,即圆M 与圆P 有公共点,根据圆与圆的位置关系可得实数m 的取值范围.【详解】圆()()()22:330C x m y m -+-=>,半径为r =,设AB 中点为M ,且直线AB 与圆的相交弦长为AB =即1MC =,所以点M 的轨迹方程为()()()22310x m y m -+-=>,又直线1:410l ax y a -++=过定点()4,1Q -,直线2:50l x ay a +-=过定点()0,5S ,且12l l ⊥,则点P 是两垂线的交点,所以P 在以QS 为直径的圆上,则圆心()2,3-,半径12QS =,所以点P 的轨迹方程为()()22238x y ++-=,由于直线1l 的斜率存在,所以点P 的轨迹要除去点()4,5-,若点P 恰为AB 中点可知圆P 与圆M 有公共点,即11-≤,0m >,即121m -≤+≤+,解得31m -≤≤-,即01m <≤,故选:A.8.已知动点,P Q 分别在正四面体ABCD 的内切球与外接球的球面上,且PQ x AB y AC z AD =++,则2x y z ++的最大值为()A.1+6B.263C.12+D.83【答案】B 【解析】【分析】计算出正四面体ABCD 的内切球与外接球的半径,求出()2,x y z AT AT ++⋅范围,即可得出2x y z ++的最大值.【详解】由题意,连接,AD EF ,设交点为M ,则点M 是AD 中点设正方体边长为2,由几何知识得,点A 到面BCM 距离即为AM ,设内切球半径为1r ,外接球半径为2r ,三棱锥外接球半径222222232r ++==,而由正三棱锥内切球半径公式,13323r ==,取任意一点P ,使得()22x y z AT xAB y AC z AD xAB y AC z AM ++⋅=++=++,则点T 在面BCM 上,∴()123432333x y z AT PQ r r ++⋅=≤+=+=,点A 到面BCM 距离为=d AM ,则22AT d AM ≥=== ∴()43263232x y z AT x y z AT++⋅++=≤,故选:B.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.某学校随机抽取100名学生数学周测成绩的频率分布直方图如图所示,据此估计该校本次数学周测的总体情况(同一组中的数据用该组区间的中点值为代表),下列说法正确的是()A.众数为60或70B.45%分位数为70C.平均数为73D.中位数为75【答案】BC 【解析】【分析】利用众数的概念直接可判断A ,再根据平均数,中位数及百分位数公式可判断BCD.【详解】A 选项:由频率分布直方图可知众数为6070652+=,A 选项错误;B 选项:由频率分布直方图可得0.005100.04100.45⨯+⨯=,所以45%分位数为70,B 选项正确;C 选项:由频率分布直方图可知平均数为550.00510650.0410750.0310850.0210950.0051073⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯=,C 选项正确;D 选项:由频率分布直方图可得0.005100.04100.450.5⨯+⨯=<,0.005100.04100.03100.750.5⨯+⨯+⨯=>,所以中位数[)70,80a ∈,所以()0.005100.0410700.030.5a ⨯+⨯+-⨯=,解得71.67a ≈,D 选项错误;故选:BC.10.已知点()0,1P 和直线:210l x y ++=,下列说法不正确的是()A.经过点P 的直线都可以用方程1y kx =+表示B.直线l 在y 轴上的截距等于1C.点P 关于直线l 的对称点坐标为81,55⎛⎫- ⎪⎝⎭D.直线l 关于点P 对称的直线方程为230x y ++=【答案】ABD 【解析】【分析】当过点P 的直线斜率不存在时,方程为0x =,可判断A 选项,令0x =可判断B 选项,设点P 关于直线l 的对称点为()11,x y ,根据对称的概念列方程,可判断C 选项,设l 上一点()00,x y ,其对称点为(),x y ,根据对称及点()00,x y 在直线l 上,可得直线方程,即可判断D 选项.【详解】A 选项:当过点P 的直线斜率不存在时,方程为0x =,A 选项错误;B 选项:令0x =,得10y +=,即1y =-,所以截距为1-,B 选项错误;C 选项:设点P 关于直线l 的对称点为()11,x y ,所以()111101*********x y y x ++⎧⨯++=⎪⎪⎨-⎪⨯-=--⎪⎩,解得118515x y ⎧=-⎪⎪⎨⎪=⎪⎩,所以点P 关于直线l 的对称点坐标为81,55⎛⎫- ⎪⎝⎭,C 选项正确;设l 上一点()00,x y ,其对称点为(),x y ,则000212x xy y +⎧=⎪⎪⎨+⎪=⎪⎩,即002x x y y =-⎧⎨=-⎩,又点()00,x y 在直线l 上,则()()2210x y ⨯-+-+=,即230x y +-=,D 选项错误;故选:ABD.11.如图,棱长为2的正方体1111ABCD A B C D -中,E 、F 分别为棱111,A D AA 的中点,G 为面对角线1B C 上一个动点,则()A.三棱锥1A EFG -的体积为定值B.点E 到直线1B CC.线段1B C 上存在点G ,使得FG BD⊥D.线段1B C 上不存在点G ,使平面//EFG 平面1BDC 【答案】ACD【解析】【分析】利用等体积法可判定A ,建立合适的空间直角坐标系利用空间向量计算点线距离,线线与面面位置关系可判定B 、C 、D .【详解】由正方体的结构特征可知1//B C 平面AEF ,故点G 到平面AEF 距离2h AB ==不变,所以11113G A EF A EFG A EF V V S h --==⨯⨯ ,又1122222A EF S =⨯⨯ 是定值,故A正确;如图所示,建立空间直角坐标系,则()()()()111,0,2,0,2,0,2,2,2,0,2,2E C B C ,()()2,0,1,2,2,0F B 所以()()11,2,2,2,0,2EC B C =--=--,故点E 到直线1B C的距离2d ==,故B 错误;设()1101B G B C λλ=<< ,则()()()110,2,12,0,22,2,12FG FB B C λλλλλ=+=+--=--,()2,2,0DB = ,所以4401DB FG λλ⋅=-+=⇒=,即G C 、重合,故C 正确;易知()10,2,2DC = ,设平面1BDC 的一个法向量为(),,n x y z =,则102202200n DB x y y z n DC ⎧⋅=+=⎧⎪⇒⎨⎨+=⋅=⎩⎪⎩ ,取11y x z =-⇒==,即()1,1,1n =- 而()1,0,1EF =- ,则10,2212004n EF n FG λλλ⋅=⋅=--+-=⇒=-<,故不存在G 使得n FG ⊥,故D 正确.故选:ACD12.已知12(,0),(,0)F c F c -分别为椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,下列说法正确的是()A.若点P 为椭圆上一点,则21||||PF PF -的最大值是2cB.若点T 的坐标为1(,0)2a ,P 是椭圆上一动点,则线段PT 长度的最小值为12aC.过F 2作垂直于x 轴的直线,交椭圆于A ,B 两点,则22c AF a a=-D.若椭圆上恰有6个不同的点P ,使得12PF F △为等腰三角形,则椭圆E 的离心率的取值范围是111,,1322⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭【答案】ACD 【解析】【分析】A ,结合三角形不等式即可;B ,设出(),P m n ,[],m a a ∈-,则22221m na b+=,表达出22342222221244c a a PT m a b a c c ⎛⎫=-++- ⎪⎝⎭,分3202a a c <<与322a a c≥两种情况,得到不同情况下的线段PT 长度的最小值,B 错误;;C ,x c =代入即可求;D ,选项,先得到上下顶点能够使得12PF F △为等腰三角形,再数形结合得到1F 为圆心,12F F 为半径作圆,只能交椭圆与不同于上下顶点的12,P P 两点,列出不等式组22a c ca c -<⎧⎨≠⎩,求出答案;【详解】对A ,1122||||||PF PF F F -≤,当P 在左顶点时等号成立,则最大值是2c ,A 正确;对B ,设(),P m n ,[],m a a ∈-,则22221m na b+=,22222222222222111244b m c PT m a n m am a b m am a b a a ⎛⎫=-+=-++-=-++ ⎪⎝⎭,2234222221244c a a m a b a c c⎛⎫=-++- ⎪⎝⎭,若b c <,此时222a c <,3202a a c <<,此时当322a m c =时,2PT 取得最小值,最小值为4222144a a b c+-,线段PT ;若b c ≥,此时222a c ≥,322a a c≥,此时当m a =时,2PT 取得最小值,最小值为214a ,线段PT 长度的最小值为12a ,综上:B 错误;对C ,当x c =时,22221c ya b+=,解得2b y a =±,即22222||b a c c AF a a a a-===-,C 正确;对D ,如图,椭圆左右顶点为,A B ,上下顶点为,C D ,显然上下顶点能够使得12PF F △为等腰三角形,要想椭圆上恰有6个不同的点P ,使得12PF F △为等腰三角形,以1F 为圆心,12F F 为半径作圆,只能交椭圆与不同于上下顶点的12,P P 两点,则要满足11F A FQ <,且111FC F P ≠,即22a c c a c-<⎧⎨≠⎩,解得:13c a >,且12c a ≠,故椭圆E 的离心率的取值范围是111,,1322⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭,D 正确;故选:ACD第Ⅱ卷(非选择题)三、填空题:本题共4小题,每小题5分,共20分.13.在两坐标轴上的截距相等,且与圆22(3)(4)2x y -+-=相切的直线有________条.【答案】4【解析】【分析】分横纵截距为零和横纵截距不为零两种情况讨论即可.【详解】圆()()22342x y -+-=的圆心坐标为()3,4,当横纵截距为零时,直线方程为()0y kx k =≠,=,整理得2724140k k -+=,因为22447141840∆=-⨯⨯=>,所以方程2724140k k -+=有两个解,故当横纵截距为零时存在两条直线与圆相切;当横纵截距不为零时,设直线方程为()0x y a a +=≠,=5a =或9,所以横纵截距不为零时存在两条直线与圆相切,综上可得,存在4条截距相等的直线与圆相切.故答案为:4.14.已知矩形ABCD,1,AB BC ==,沿对角线AC 将ABC 折起,若BD =则二面角B AC D --的余弦值为________.【答案】13【解析】【分析】利用空间向量的数量积与模长计算夹角即可.【详解】如图所示,过B D 、分别作,BE AC DF AC ⊥⊥,垂足分别为E F 、,由矩形ABCD 中,1,AB BC ==,可知12,=60,,122AC BAC BE DF AE CF EF =∠⇒===== ,设二面角B AC D --的平面角为α,则,EB FD α=,2222222BD BE EF FD BD BE EF FD BE EF EF FD BE FD=++⇒=+++⋅+⋅+⋅ ()33312=++1+2cos πcos 4443αα⨯⨯-⇒=.故答案为:1315.已知椭圆2222:1(0)x y C a b a b+=>>的左顶点为A ,上顶点为,B O 为坐标原点,椭圆上的点()(),,,M M N N M x y N x y 分别在第一、二象限内,若OAN 与OBM 的面积相等,且2224M N x x b +=,则C的离心率为__________.【答案】2【解析】【分析】根据题意,由两个三角形面积相等可得N M ay bx =,将点N 的坐标代入椭圆方程,结合条件化简即可得到,a b 关系,再根据离心率公式即可得到结果.【详解】因为OAN 与OBM 的面积相等,且()(),,,M M N N M x y N x y ,则1122N M ay bx =,即N M ay bx =,所以2222N M a y b x =,将(),N N N x y 坐标代入2222:1(0)x y C a b a b +=>>,可得22221N N x y a b+=,化简可得222222N N b x a y a b +=,即222222N M b x b x a b +=,所以()22222NM bxx a b +=,且2224MN x x b +=,所以22224b b a b ⋅=,即224a b =,则离心率为2e ===,故答案为:216.某同学回忆一次大型考试中的一道填空题,题目要求判断一条给定直线与给定圆的位置关系,该同学表示,题中所给直线与圆的方程形式分别为:l y kx b =+,222:C x y r +=,但他忘记了方程中的三个参数的具体值,只记得{},,1,2,3,4k b r ∈,并且他填写的结果为直线与圆相交.若数组(,,)k b r 的每一种赋值的可能性都相等,则该同学该题答对的概率为________.【答案】78##0.875【解析】【分析】利用直线与圆的位置关系结合古典概型分类讨论计算即可.【详解】易知数组(,,)k b r 有3464=种结果,若要直线与圆相交,需圆心()0,0C 到直线l 的距离2221b d r k r =<⇒<+,显然b r ≤时,22211b k r≤<+恒成立,若b r >,①当2,1b r ==,此时1k =不符题意;②当3,1b r ==,此时1,2k =不符题意,当3,2b r ==,此时1k =不符题意;③当4,1b r ==,此时1,2,3k =不符题意,当4,2b r ==,此时1k =不符题意,当4,3b r ==,k 取何值均成立;综上,共有8种情况不符题意,故答对的概率为871648P =-=.故答案为:78四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知, , a b c 是空间中的三个单位向量,且a b ⊥ ,,,60a c b c == .若2OM a b c =+-,OA a b c =++ ,2OB a b c =++ .(1)求MB;(2)求MB 和OA夹角的余弦值.【答案】(1;(2)15【解析】【分析】利用空间向量的数量积公式计算即可.【小问1详解】由已知可得2MB OB OM a b c =-=-++,所以MB =;【小问2详解】由OA a b c OA =++⇒=,所以MB 和OA夹角的余弦值为222cos ,15MB OA MB OA MB OA⋅==⋅ .18.为调查高一、高二学生心理健康情况,某学校采用分层随机抽样方法从高一、高二学生中分别抽取了60人、40人参加心理健康测试(满分10分).经初步统计,参加测试的高一学生成绩i x ()1,2,3,,60i =⋅⋅⋅的平均分8x =,方差22x s =,高二学生成绩i y (i =1,2,…,40)的统计表如下:成绩y 456789频数12915103(1)计算参加测试的高二学生成绩的平均分y 和方差2y s ;(2)估计该学校高一、高二全体学生的平均分z 和方差2z s .【答案】18.7,1.2;19.7.6,1.92.【解析】【分析】(1)利用统计表计算平均数与方差即可;(2)根据分层抽样的平均数与方差公式计算即可.【小问1详解】由表可知41526971581093712915103y ⨯+⨯+⨯+⨯+⨯+⨯==+++++,()()()()()()222222214725796715771087397 1.240y s ⨯-+⨯-+⨯-+⨯-+⨯-+⨯-==;【小问2详解】由已知及(1)可知6040877.6100100z =⨯+⨯=,()()222226040 1.92100100z x y s s x z s y z ⎡⎤⎡⎤=⨯+-+⨯+-=⎣⎦⎣⎦.19.在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为12,收到0的概率为12;发送1时,收到0的概率为13,收到1的概率为23.(1)重复发送信号1三次,计算至少收到两次1的概率;(2)依次发送1,1,0,判断以下两个事件:①事件A :至少收到一个正确信号;②事件B :至少收到两个0,是否互相独立,并给出证明.【答案】19.2027;20.事件A 与事件B 不互相独立,证明见解析.【解析】【分析】(1)利用事件的相互独立求“至少收到两次1”的概率;(2)利用事件的相互独立性计算()P A ,()P B ,()P AB ,利用独立事件的概率公式验证.【小问1详解】重复发送信号1三次,“至少收到两次1”的可能情况为:(1,1,1),(1,0,1),(1,1,0),(0,1,1),因为信号的传输相互独立,故“至少收到两次1”的概率为:2222122211222033333333333327⨯⨯+⨯⨯+⨯⨯+⨯⨯=.【小问2详解】事件A 与事件B 不互相独立,证明如下:若依次发送1,1,0,则三次都没收到正确信号的概率为111133218⨯⨯=,故至少收到一个正确信号的概率为()11711818P A =-=;若依次发送1,1,0,“至少收到两个0”的可能情况为:(0,0,0),(0,0,1),(0,1,0),(1,0,0),根据事件的相互独立性,故()11111112121161332332332332183P B =⨯⨯+⨯⨯+⨯⨯+⨯⨯==,若依次发送1,1,0,“至少收到两个0且至少收到一个正确信号”的可能情况为:(0,0,0),(0,1,0),(1,0,0),根据事件的相互独立性,故()111121211533233233218P AB =⨯⨯+⨯⨯+⨯⨯=,因为()()()P A P B P AB ≠,所以事件A 与事件B 不互相独立.20.已知圆22:46120C x y x y +---=.(1)求过点()75,且与圆C 相切的直线方程;(2)求经过直线70x y +-=与圆C 的交点,且面积最小的圆的方程.【答案】(1)21202470x y +-=或7x =(2)23π【解析】【分析】(1)由已知可得点()75,在圆外,即有两条切线,当切线斜率存在时,设出切线方程,根据点到直线距离公式可得斜率与方程,当切线斜率不存在时,可判断直线与圆相切;(2)由已知可设圆的方程为()22461270x y x y x y λ+---++-=,可得圆的半径1r =,可知当2λ=-时,1r ,此时面积最小为23π.【小问1详解】由22:46120C x y x y +---=得()()22:2325C x y -+-=,圆心()2,3C ,半径=5r ,又()75,到圆心的距离为5=>,所以点()75,在圆外,所以过点()75,的切线共有两条,当切线斜率存在时,设切线方程为()57y k x -=-,即750kx y k --+=,所以圆心C到直线的距离5d =,解得2120k =-,所以直线方程为()215720y x -=--,即21202470x y +-=,当直线斜率不存在时,直线方程为7x =,与圆C 相切,综上所述,切线方程为21202470x y +-=或7x =.【小问2详解】已知可设圆的方程为()22461270x y x y x y λ+---++-=,即()()22461270x y x y λλλ++-+---=,则圆的半径1r =可知当2λ=-时,1r ,此时面积最小为21π23πS r ==.21.如图,三棱台111ABC A B C -中,AB AC ==,112B C BC ==1AA =,点A 在平面111AB C 上的射影在111B A C ∠的平分线上.(1)求证:111AA B C ⊥;(2)若A 到平面111A B C 的距离为4,求直线AC 与平面11AA B B 所成角的正弦值.【答案】(1)证明见解析;(2)35【解析】【分析】(1)利用线面垂直证线线垂直即可;(2)利用棱台的特征补全棱锥,结合等体积法求点面距离,计算即可.【小问1详解】如图所示,补全棱台,延长三条侧棱交于O 点,得到棱锥111O A B C -,由题意可知、、A B C 分别是三条侧棱111OA OB OC 、、的中点,取11B C 的中点D ,连接1A D ,设A 在底面111A B C 的投影为M ,连接AM ,根据题意可知AM ⊥底面111A B C ,且M 在1A D 上,因为11B C ⊂面111A B C ,所以11AM B C ⊥又1111AB AC A B A C =⇒=,所以111A D B C ⊥,而11,A D AM M A D AM ⋂=⊂、平面1AA D ,所以11B C ⊥面1AA D ,因为1AA ⊂面1AA D ,所以111B C AA ⊥;【小问2详解】过O 作ON ⊥底面111A B C ,结合(1)可知N 在1A D 上,且4,8AM ON ==,在111A B C △上,()2211111112225,2225322A B A C B C A D ⎛⎫===⇒=-= ⎪ ⎪⎝⎭,结合题意可知:22111122,2422A M A A AM A N A M DM DN =-===⇒==,则22221166,217OD DN ON OB B D OD =+==+=在11OA B中,22211111111112cos 2A O B O A B OA AA A OB A O B O +-==⇒∠==⋅所以1111sin OA B AOB S ∠=⇒= 设1C 到平面11AA B B 的距离为h ,11A C 与平面11AA B B 的夹角为θ,所以111111111111133O A B C A B C C OA B OA B V ON S V h S --=⋅==⋅ ,解之得:h =,所以11sin 35h A C θ==,因为11//A C AC ,所以直线AC 与平面11AA B B所成角的正弦值为35.22.设圆222150x y x ++-=的圆心为A ,直线l 过点(1,0)B 且与x 轴不重合,l 交圆A 于,C D 两点,过B 作AD 的平行线交AC 于点E.(1)写出点E 的轨迹方程;(2)设点E 的轨迹为曲线1C ,过A 且与l 平行的直线与曲线1C 交于,P Q 两点,求AD PQ ⋅的取值范围.【答案】(1)221(0)43x y y +=≠(2))⎡⎣【解析】【分析】(1)求得圆A 的圆心和半径,运用直线平行的性质和等腰三角形的性质,可得EB ED =,再由圆的定义和椭圆的定义,可得E 的轨迹为以A ,B 为焦点的椭圆,求得a ,b ,c ,即可得到所求轨迹方程;(2)联立直线与圆,以及直线与椭圆方程,可得跟与系数的关系,结合向量的坐标运算,即可根据数量积的坐标运算得AD PQ ⋅= .【小问1详解】圆A 的标准方程为22(1)16x y ++=,故半径4r =因为||||4AD AC r ===,//EB AC ,故EBC ADC ACD ∠=∠=∠,所以||||EB ED =,故||||||||||EA EB EA ED AD +=+=,因此||||4EA EB +=,由题设得(1,0)A -,(1,0)B ,||2||||AB EA EB =<+,由椭圆定义可得点E 的轨迹方程为:221(0)43x y y +=≠.【小问2详解】设直线CD 的方程为1x ty =+,则直线PQ 的方程为1x ty =-,联立直线CD 与圆的方程2212150x ty x y x =+⎧⎨++-=⎩,消元得()2214120t y ty ++-=,则()2221648164480t t t ∆=++=+>则()2242121t t x t t -±-±==++,联立直线PQ 与圆的方程221143x ty x y =-⎧⎪⎨+=⎪⎩,消元得()2234690t y ty +--=,由于点A 在椭圆内,故该方程一定有两个不相等的实数根,不妨设()()3344,,,P x y Q x y ,则34342269,3434t y y y y t t -+==++,()()()()2222234343422221216944343434t t y y y y y y t t t +-⎛⎫-=+-=-= ⎪++⎝⎭+,()()43434311x x ty ty t y y -=---=-()()43434343,,PQ x x y y ty ty y y =--=-- ,()1,D D AD x y =+ ()()()()()()()()24343434343122D D D D D D AD PQ x ty ty y y y ty ty ty y y y t y y t y y ⋅=+-+-=+-+-=++- ,()22222432121D D t t y y t t t t -±++=+=±+所以2432D D AD PQ t y y t y y ⋅=++-== 令234,4t s s +=≥,则AD PQ ⋅== 令11,04x xs =<≤,则AD PQ ⋅= 由于函数27114y x x =-+的对称轴为1114x =,故27114y x x =-+在10,4x ⎛⎤∈ ⎥⎝⎦单调递减,故当14x =时,27114y x x =-+取最小值2716,故2277114,416y x x ⎡⎫=-+∈⎪⎢⎣⎭,所以)AD PQ ⎡⋅=⎣ 【点睛】圆锥曲线中取值范围问题的五种求解策略:(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围;(2)利用已知参数的范围,求新的参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围;(4)利用已知的不等关系建立不等式,从而求出参数的取值范围;(5)利用求函数值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.。
2023-2024学年天津市耀华中学高二上学期期中数学试卷+答案解析(附后)

2023-2024学年天津市耀华中学高二上学期期中数学试卷一、单选题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则的值为( )A. B.C.D.2.若直线与圆有公共点,则( )A. B.C.D.3.圆和圆的公切线的条数为( )A. 1B. 2C. 3D. 44.已知直线过点,且被圆截得的弦长是8,则该直线的方程为( )A. B.或C.D.或5.若两条直线与互相垂直,则a 的值等于( )A. 3B. 3或5C. 3或或2D.6.作直线l 与圆相切且在两轴上的截距相等,这样的直线l 有( )A. 4条B. 3条C. 2条D. 1条7.已知椭圆以及椭圆内一点,则以P 为中点的弦所在直线的斜率为( )A. B. C. 2D.8.过椭圆的一个焦点F 作弦AB ,若,,则的数值为( )A. B.C. D. 与弦AB 斜率有关9.椭圆的两焦点为,,以为边作正三角形,若椭圆恰好平分正三角形的另两条边,则椭圆的离心率为( )A.B.C.D.10.设椭圆的方程为,斜率为k的直线不经过原点O,且与椭圆相交于A,B两点,M为线段AB 的中点.下列说法正确的个数( )①直线AB与OM垂直②若点M的坐标为,则直线方程为③若直线方程为,则点M的坐标为④若直线方程为,则A. 4B. 3C. 2D. 1二、填空题:本题共5小题,每小题4分,共20分。
11.直线与曲线有两个公共点,则b的取值范围是__________.12.若圆上恰有相异两点到直线的距离等于1,则r的取值范围是__________13.已知P是直线上的动点,PA,PB是圆的切线,A,B为切点,C为圆心,那么四边形PACB面积的最小值是__________14.已知椭圆的离心率为,短轴长为2,点P为椭圆上任意一点,则的最小值是__________.15.已知椭圆C:的左焦点为F,经过原点的直线与C交于A,B两点,总有,则椭圆C离心率的取值范围为__________.三、解答题:本题共3小题,共40分。
无锡市辅仁高级中学2023-2024学年高二上学期期中考试数学试卷(解析版)

【解析】
【分析】根据圆的方程求出圆心与半径 r ,利用两点间的距离公式求得 PC , 从而切线长为 PC 2 r2 ,计
算求解即可.
【详解】圆 C : x2 y2 2x 0,即 x 12 y2 1,圆心 C 1, 0, 半径 r 1,
PC 112 0 22 2 2,
切线长为 PC 2 r2 8 1 7.
=
22-
0= 1
2 ,故 D, A,C 三点共线,如图所示,
第 5 页/共 22 页
当 PC 与圆相切时, PCA为锐角且最大, tan PCA最大, PCA即 PCD ,
由 DC
2
1 2
2
2 12
35 2
,此时
PC
DC 2 DP 2
29 , 2
DP 则 tan PCA PC
2 4 29 29 29 .
a b , c 不共面,则能构成基底;
D 中, c
abc
ab
rrr ,所以 a b , a b c , c 共面,不能构成基底.
故选:ABD
第 6 页/共 22 页
10. (多选)已知双曲线 C1 :
x2 a2
y2 b2
1(a
0,b
0) 的离心率为 2.若抛物线 C2:x2=2py(p>0)的焦点到双曲线
故选:D.
7. 已知椭圆 x2 y2 1 ( a b 0 )的面积为 πab ,求满足 x2 2 y2 2 2x2 y2 1 0的点 a2 b2
P x, y 所构成的平面图形的面积为( )
A. 3 2 π 2
【答案】C 【解析】
B. 2π
C. 2π 2
D. 2π
【分析】由题意点
安徽省蚌埠市2023-2024学年高二上学期期中数学试题含解析

蚌埠2023-2024学年第一学期期中检测试卷高二数学(答案在最后)一、单选题(本大题共8小题,共40.0分.在每小题列出的选项中,选出符合题目的一项)1.若直线l 的一个方向向量为(-,求直线的倾斜角()A.π3B.π6C.2π3D.5π6【答案】C 【解析】【分析】求出直线斜率,进而求出直线倾斜角即得.【详解】直线l 的一个方向向量为(-,则直线l 斜率为,所以直线l 的倾斜角为2π3.故选:C2.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,已知PA a = ,PB b = ,PC c = ,12PE PD = ,则BE = ()A.131222a b c -+B.111222a b c-+C.131222a b c ++D.113222a b c -+【答案】A 【解析】【分析】利用空间向量加法法则直接求解.【详解】连接BD ,如图,则()()()1111122222BE BP BD PB BA BC PB PA PB PC PB =+=-++=-+-+-()11131131222222222PB PA PB PC PA PB PC a b c=-+-+=-+=-+故选:A .3.已知点A 与点(1,2)B 关于直线30x y ++=对称,则点A 的坐标为A.(3,4) B.(4,5)C.(4,3)-- D.(5,4)--【答案】D 【解析】【分析】根据对称列式求解.【详解】设(),A x y ,则123052224(1)11x y x y y x ++⎧++=⎪=-⎧⎪∴⎨⎨-=-⎩⎪⋅-=-⎪-⎩,选D.【点睛】本题考查关于直线对称点问题,考查基本分析求解能力,属基础题.4.在一平面直角坐标系中,已知()1,6A -,()2,6B -,现沿x 轴将坐标平面折成60°的二面角,则折叠后A ,B 两点间的距离为()A.27 B.41C.17 D.35【答案】D 【解析】【分析】平面直角坐标系中已知()1,6A -,()2,6B -,现沿x 轴将坐标平面折成60°的二面角后,通过向量的数量积转化求解距离即可.【详解】解:平面直角坐标系中已知()1,6A -,()2,6B -,沿x 轴将坐标平面折成60°的二面角后,作AC ⊥x 轴,交x 轴于C 点,作BD ⊥x 轴,交x 轴于D 点,则6,3,6,AC CD DB === ,AC CD CD DB ⊥⊥ ,,AC DB的夹角为120°∴AB AC CD DB =++ ,222222212+2+2=6+3+6266452AB AC CD DB AC CD CD DB AC DB =+++⋅⋅⋅-⨯⨯⨯= 35AB ∴=,即折叠后A ,B 两点间的距离为35.故选:D .【点睛】本题考查与二面角有关的立体几何综合题,解题时要认真审题,注意数形结合思想的合理运用.5.如果实数x ,y 满足()2222x y -+=,则yx的范围是()A.()1,1- B.[]1,1- C.()(),11,-∞-⋃+∞ D.(][),11,-∞-⋃+∞【答案】B 【解析】【分析】设yk x =,求y x的范围救等价于求同时经过原点和圆上的点(),x y 的直线中斜率的范围,结合图象,易得取值范围.【详解】解:设yk x=,则y kx =表示经过原点的直线,k 为直线的斜率.如果实数x ,y 满足22(2)2x y -+=和yk x=,即直线y kx =同时经过原点和圆上的点(),x y .其中圆心()2,0C ,半径2r =从图中可知,斜率取最大值时对应的直线斜率为正且刚好与圆相切,设此时切点为E则直线的斜率就是其倾斜角EOC ∠的正切值,易得2OC =,CE r ==可由勾股定理求得OE ==,于是可得到tan 1CEk EOC OE =∠==为y x的最大值;同理,yx的最小值为-1.则yx的范围是[]1,1-.故选:B.6.抛物线214x y =的焦点到双曲线22221(0,0)x y a b a b -=>>的渐近线的距离是2,则该双曲线的离心率为()A.B.C.2D.233【答案】A 【解析】【分析】先求得抛物线的焦点,根据点到直线的距离公式列方程,求得22b a =,由此求得双曲线的离心率.【详解】抛物线214x y =即24y x =的焦点坐标为()1,0,双曲线22221(0,0)x y a b a b-=>>的渐近线方程为b y x a =±,即0bx ay ±=,所以点()1,0到直线0bx ay ±=的距离为22=,则22b a =,则双曲线的离心率为c e a =====故选:A7.直线()2200ax by a b a b +--=+≠与圆2220x y +-=的位置关系为()A.相离 B.相切C.相交或相切D.相交【答案】C 【解析】【分析】利用几何法,判断圆心到直线的距离与半径的关系,判断直线与圆的位置关系即可.【详解】由已知得,圆2220x y +-=的圆心为(0,0),所以圆心到直线()2200ax by a b a b +--=+≠.因为222ab a b ≤+,所以()()2222a b a b+≤+≤,所以直线与圆相交或相切;故选:C .8.在正方体1111ABCD A B C D -中,点P 在1AC 上运动(包括端点),则BP 与1AD 所成角的取值范围是()A.ππ,43⎡⎤⎢⎥⎣⎦ B.π0,2⎡⎤⎢⎥⎣⎦C.ππ,62⎡⎤⎢⎥⎣⎦D.ππ,63⎡⎤⎢⎥⎣⎦【答案】B 【解析】【分析】建立空间直角坐标系,设1AB =,则,01λ≤≤,利用1c s o BC BP =,,即可得出答案.【详解】设BP 与1AD 所成角为θ,如图所示,不妨设1AB =,则()0,0,0B ,()0,1,0A ,()10,1,1A ,()11,0,1C ,()111,0,1AD BC == ,()1,0,0BC = ,()11,1,1AC =-.设1AP AC λ= ,则()1,1,BP BA AC λλλλ=+=-,01λ≤≤.所以111c ·o s BC BPBC BP BC BP==⋅,当0λ=时,10cos BC BP = ,,此时BP 与1AD 所成角为π2,当0λ≠时,1c os BC BP =,,此时10cos 1BC BP <≤,,当且仅当1λ=时等号成立,因为cos y x =在π02x ⎡⎤∈⎢⎥⎣⎦,上单调递减,所以1π0,2BC BP ⎡⎫∈⎪⎢⎣⎭ ,,综上,π0,2θ⎡⎤∈⎢⎥⎣⎦.故选:B .二、多选题(本大题共4小题,共20.0分.在每小题有多项符合题目要求)9.下列说法正确的有()A.若直线y kx b =+经过第一、二、四象限,则()k b ,在第二象限B.直线32y ax a =-+过定点()32,C.过点()21-,斜率为的点斜式方程为)12y x +=-D.斜率为2-,在y 轴截距为3的直线方程为23y x =-±.【答案】ABC 【解析】【分析】由直线y kx b =+过一、二、四象限,得到斜率0k <,截距0b >,可判定A 正确;由把直线方程化简为()()320a x y -+-+=,得到点()32,都满足方程,可判定B 正确;由点斜式方程,可判定C 正确;由斜截式直线方程可判定D 错误.【详解】对于A 中,由直线y kx b =+过一、二、四象限,所以直线的斜率0k <,截距0b >,故点()k b ,在第二象限,所以A 正确;对于B 中,由直线方程32y ax a =-+,整理得()()320a x y -+-+=,所以无论a 取何值点()32,都满足方程,所以B 正确;对于C 中,由点斜式方程,可知过点()21-,斜率为的点斜式方程为)12y x +=-,所以C 正确;由斜截式直线方程得到斜率为2-,在y 轴上的截距为3的直线方程为23y x =-+,所以D 错误.故选:ABC .【点睛】本题主要考查了直线的方程的形式,以及直线方程的应用,其中解答中熟记直线的点斜式的概念及形式,以及直线的斜率与截距的概念是解答的关键,着重考查推理与运算能力,属于基础题.10.关于空间向量,以下说法正确的是()A.若直线l 的方向向量为()1,0,3e = ,平面α的法向量为22,0,3n ⎛⎫=- ⎪⎝⎭ ,则直线l α∥B.已知{},,a b c 为空间的一个基底,若m a c =+,则{},,a b m 也是空间的基底C.若对空间中任意一点O ,有111632OP OA OB OC =++,则P ,A ,B ,C 四点共面D.两个非零向量与任何一个向量都不能构成空间的一个基底,则这两个向量共线【答案】BCD 【解析】【分析】计算得到e n ⊥,l α∥或l ⊂α,A 错误,若,,a b a c +r r r r 共面,则,,a b c 共面,不成立,故B 正确,化简得到23PA PB PC =--,C 正确,若这两个向量不共线,则存在向量与其构成空间的一个基底,故D 正确,得到答案.【详解】()22,0,22031,0,3e n ⎛⎫=-=-+= ⎪⎝⎭⋅⋅ ,故e n ⊥ ,故l α∥或l ⊂α,A 错误;若,,a b a c +r r r r共面,设()()b a a c a c λμλμμ=++=++ ,则,,a b c 共面,不成立,故{},,a b m 也是空间的基底,B 正确;111632OP OA OB OC =++ ,则()()()111632OA OP OB OP OC OP -+-+- 1110632PA PB PC =++=,即23PA PB PC =--,故P ,A ,B ,C 四点共面,C 正确;若这两个向量不共线,则存在向量与其构成空间的一个基底,故D 正确.故选:BCD.11.已知平面α的法向量为()1,2,2n =-- ,点()2,21,2A x x +为α内一点,若点()0,1,2P 到平面α的距离为4,则x 的值为()A.2 B.1C.3- D.6-【答案】AD【解析】【分析】利用向量法可知,点P 到平面α的距离公式为||||AP n d n →→→⋅=,代入相关数值,通过解方程即可求解.【详解】解:由向量法可知,点P 到平面α的距离公式为||||AP n d n →→→⋅=,又 ()()22,(,20,2,0)122,1,x x AP x x →+--==-,()1,2,2n =--24AP n x x →→∴⋅=+,||3n ==由点()0,1,2P 到平面α的距离为4,有2443x x+=解得2x =或6x =-故选:AD【点睛】本题考查的是点面距离的计算问题,核心是会利用向量法中点到平面的距离公式,考查运算求解能力,属于基础题.12.已知双曲线C 经过点6,12⎛⎫ ⎪ ⎪⎝⎭,且与椭圆22Γ:12x y +=有公共的焦点12,F F ,点M 为椭圆Γ的上顶点,点P 为C 上一动点,则()A.双曲线CB.sin 3MOP ∠>C.当P 为C 与Γ的交点时,121cos 3F PF ∠= D.||PM 的最小值为1【答案】ACD 【解析】【分析】根据题意中的点求出双曲线方程,结合离心率的定义即可判断A ;根据双曲线的渐近线,结合图形即可判断B ;根据椭圆与双曲线的定义,结合余弦定理计算即可判断C ;由两点距离公式,结合二次函数的性质即可判断D.【详解】A :由题意,12(1,0),(1,0)F F -,设双曲线的标准方程为222221,11x y a a a-=<-,将点,1)2代入得212a =,所以双曲线方程为2211122x y -=,得其离心率为22c e a ===,故A 正确;B :由A 选项的分析知,双曲线的渐近线方程为y x =±,如图,π4MON ∠=,所以π3π44MOP <∠<,得sin 12MOP <∠≤,故B 错误;C :当P为双曲线和椭圆在第一象限的交点时,由椭圆和双曲线的定义知,1212PF PF PF PF +=-=12,22PF PF ==,又122F F =,在12F PF △中,由余弦定理得222121212121cos 23PF PF F F F PF PF PF +-∠==⋅,故C 正确;D :设00(,)P x y ,则22001,(0,1)2x y M -=,所以PM ==,当012y =时,min1PM =,故D 正确.故选:ACD.三、填空题(本大题共4小题,共20.0分)13.若空间向量(,2,2)a x =和(1,1,1)b = 的夹角为锐角,则x 的取值范围是________【答案】4x >-且2x ≠【解析】【分析】结合向量夹角公式、向量共线列不等式来求得x 的取值范围.【详解】依题意04211a b a bx x ⎧⋅=>⎪⋅⎪⇒>-⎨⎪≠⎪⎩ 且2x ≠.故答案为:4x >-且2x ≠14.已知0a >,0b >,直线1l :()110a x y -+-=,2l :210x by ++=,且12l l ⊥,则21a b+的最小值为__________.【答案】8【解析】【分析】根据两条直线的一般式方程及垂直关系,求出a ,b 满足的条件,再由基本不等式求出最小值即可.【详解】因为12l l ⊥,所以()11120a b -⨯+⨯=,即21a b +=,因为0a >,0b >,所以()2121422248b a a b a b a b a b ⎛⎫+=++=+++≥+ ⎪⎝⎭,当且仅当4b a a b =,即12a =,14b =时等号成立,所以21a b+的最小值为8.故答案为:8.15.直线30x y ++=分别与x 轴,y 轴交于,A B 两点,点P 在圆()2232x y -+=上,则ABP 面积的取值范围______.【答案】[]6,12【解析】【分析】由题意求得所以()30A -,,()0,3B -,从而求得AB =,再根据直线与圆的位置关系可求得点P 到直线30x y ++=距离h ⎡∈⎣,再结合面积公式即可求解.【详解】因为直线30x y ++=分别与x 轴,y 轴交于A ,B 两点,所以()30A -,,()0,3B -,因此AB =.因为圆()2232x y -+=的圆心为()3,0,半径r =,设圆心()3,0到直线30x y ++=的距离为d ,则3033222d ++==>,因此直线30x y ++=与圆()2232x y -+=相离.又因为点P 在圆()2232x y -+=上,所以点P 到直线30x y ++=距离h 的最小值为32222d r -=-=,最大值为32242d r +=+=,即22,42h ⎡⎤∈⎣⎦,又因为ABP 面积为13222AB h h ⨯⨯=,所以ABC 面积的取值范围为[]6,12.故答案为:[]6,1216.瑞士数学家欧拉(LeonhardEuler )1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知ABC 的顶点()4,0-A ,()0,4B ,其欧拉线方程为20x y -+=,则顶点C 的坐标可以是_________【答案】()2,0或()0,2-【解析】【分析】设(,)C x y ,依题意可确定ABC ∆的外心为(0,2)M ,可得出,x y 一个关系式,求出ABC ∆重心坐标,代入欧拉直线方程,又可得出,x y 另一个关系式,解方程组,即可得出结论.【详解】设(,),C x y AB 的垂直平分线为y x =-,ABC 的外心为欧拉线方程为20x y -+=与直线y x =-的交点为(1,1)M -,∴22||||10,(1)(1)10MC MA x y ==++-=①由()4,0-A ,()0,4B ,ABC 重心为44(,)33x y -+,代入欧拉线方程20x y -+=,得20x y --=②由①②可得2,0x y ==或0,2x y ==-.故答案为:()2,0或()0,2-.【点睛】本题以数学文化为背景,考查圆的性质和三角形的外心与重心,考查逻辑思维能力和计算能力,属于较难题.四、解答题(本大题共6小题,共70.0分.解答应写出文字说明,证明过程或演算步骤)17.已知圆M 的圆心为()2,3,且经过点()5,1C -.(1)求圆M 的标准方程;(2)已知直线:34160l x y -+=与圆M 相交于,A B 两点,求AB .【答案】(1)()()222325x y -+-=(2)AB =【解析】【分析】(1)根据条件求出圆M 的半径,再结合圆心坐标求出标准方程即可;(2)求出圆心M 到直线l 的距离,再由垂径定理求出||AB .【小问1详解】因为圆M 的圆心为(2,3),且经过点(5,1)C -,所以圆M 的半径5r MC ===,所以圆M 的标准方程为()()222325x y -+-=.【小问2详解】由(1)知,圆M 的圆心为()2,3,半径=5r ,所以圆心M 到直线l 的距离2d =,所以由垂径定理,得AB ===.18.已知ABC 的顶点()3,2A ,边AB 上的中线所在直线方程为380x y -+=,边AC 上的高所在直线方程为290x y --=.(1)求顶点,B C 的坐标;(2)求ABC 的面积.【答案】(1)B 的坐标为()8,7,C 的坐标为()1,3(2)152【解析】【分析】(1)设(),B a b ,(),C m n ,由题意列方程求解即可得出答案.(2)先求出AB 和直线AB 所在的方程,再由点到直线的距离公式求出边AB 上的高,即可求出ABC 的面积.【小问1详解】设(),B a b ,因为边AB 上的中线所在直线方程为380x y -+=,边AC 上的高所在直线方程为290x y --=,所以2903238022a b a b --=⎧⎪⎨++-⨯+=⎪⎩,解得87a b =⎧⎨=⎩,即B 的坐标为()8,7.设(),C m n ,因为边AB 上的中线所在直线方程为380x y -+=,边AC 上的高所在直线方程为290x y --=,所以3802132m n n m -+=⎧⎪-⎨=-⎪-⎩,解得13m n =⎧⎨=⎩,即C 的坐标为()1,3.【小问2详解】因为()()3,2,8,7A B,所以AB ==因为边AB 所在直线的方程为237283y x --=--,即10x y --=,所以点()1,3C 到边AB的距离为2=,即边AB上的高为2,故ABC的面积为115222⨯=.19.已知直三棱柱111ABC A B C -,侧面11AA C C 是正方形,点F 在线段1AC 上,且13AF =,点E 为1BB 的中点,1AA =,1AB BC ==.(1)求异面直线CE 与BF 所成的角;(2)求平面CEF 与平面11ACC A 夹角的余弦值.【答案】(1)90(2)21【解析】【分析】(1)利用直棱柱的结构特征,结合线面垂直的性质,建立空间直角坐标系,利用直线与直线所成角的向量求法,计算得结论;(2)分别求出两个平面的法向量,利用平面与平面所成角的向量求法,即可得到结果.【小问1详解】因为侧面11AA C C 是正方形,1AA =,1AB BC ==,所以BA BC ⊥,因为三棱柱111ABC A B C -直三棱柱,所以1BB ⊥面ABC ,而BC ,BA ⊂平面ABC ,因此1BB BC ⊥,1BB BA ⊥,所以BC ,BA ,1BB 两两垂直.以B 为坐标原点,BC ,BA ,1BB 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,如下图:因此()100C ,,,()000,,B ,()010A ,,,(1102C ,,而点E 为1BB 的中点,所以2002E ⎛⎫ ⎪ ⎪⎝⎭,,,因为F 在线段1AC 上,所以设()()1,201AF AC λλλλλ==-≤≤ ,因此(),12BF BA AF λλλ=+=- ,因为13AF = ()()222123λλλ+-+=解得16λ=,因此152,,666BF ⎛⎫= ⎪ ⎪⎝⎭ ,即152,,666F ⎛⎫ ⎪ ⎪⎝⎭,因为21,0,2CE ⎛⎫=- ⎪ ⎪⎝⎭,所以11066CE BF ⋅=-+= ,因此异面直线CE 与BF 所成的角为90 .【小问2详解】设平面CEF 的法向量为()1n x y z = ,,,而552,,666CF ⎛⎫=- ⎪ ⎪⎝⎭,因此由1100n CE n CF ⎧⋅=⎪⎨⋅=⎪⎩ 得2025520666x z x y z ⎧-+=⎪⎪⎨⎪-++=⎪⎩,取2z =得1x =,35y =,所以13125n ⎛= ⎝ ,,是平面CEF 的一个法向量,设平面11ACC A 的法向量为()2222n x y z = ,,,()110AC =- ,,,(112AC =- ,,,因此由22100n AC n AC ⎧⋅=⎪⎨⋅=⎪⎩ 得020x y x y z -=⎧⎪⎨-+=⎪⎩,取1x =得1y =,0z =,所以()2110n = ,,是平面11ACC A 的一个法向量.设平面CEF 与平面11ACC A 夹角为θ,则02πθ≤≤,因此121212cos cos ,n n n n n n θ⋅==31521+==,所以平面CEF 与平面11ACC A 夹角的余弦值为24221.20.已知双曲线C的焦点坐标为()1F,)2F ,实轴长为4,(1)求双曲线C 的标准方程;(2)若双曲线C 上存在一点P 使得12PF PF ⊥,求12PF F △的面积.【答案】(1)2214x y -=;(2)1.【解析】【分析】(1)由题可知,c a 的值即可求出双曲线C 的标准方程;(2)由双曲线的定义及面积公式即可求出.【详解】(1)设双曲线方程为22221(0,0)x y a b a b-=>>,由条件知c =,24a =,∴2,1a b ==,∴双曲线C 的方程为2214x y -=.(2)由双曲线的定义可知,124PF PF -=±.∵12PF PF ⊥,∴22212420PF PF c +==,即21212()220PF PF PF PF ⨯-+=∴122PF PF ⋅=,∴12PF F △的面积12112122S PF PF =⋅=⨯=.21.在四棱锥P ABCD -中,底面ABCD 为直角梯形,//AD BC ,AB BC ⊥,侧面PAB ⊥底面ABCD ,2PA PB AD ===,4BC =.(1)若PB 的中点为E ,求证://AE 平面PCD ;(2)若PB 与底面ABCD 所成的角为60︒,求PC 与平面PBD 的所成角的余弦值.【答案】(1)证明见解析(2)80535【解析】【分析】(1)取PC 的中点F ,连接,EF DF .先证明四边形ADFE 是平行四边形,即可得出//DF AE ,然后即可证明线面平行;(2)先证明PO ⊥平面ABCD ,即可得出60PBA ∠=︒.然后建立空间直角坐标系,得出点以及向量的坐标,求出平面PBD 的法向量,根据向量求得PC 与平面PBD 的所成角的正弦值,进而求得余弦值.【小问1详解】如图1,取PC 的中点F ,连接,EF DF ,,E F 分别为,PB PC 的中点,∴//EF BC ,且122EF BC ==.//AD BC 且2AD =,//EF AD ∴且2EF AD ==,∴四边形ADFE 是平行四边形,//DF AE ∴.AE ⊄ 平面PCD ,DF ⊂平面PCD ,∴//AE 平面PCD .【小问2详解】若O 是AB 中点,取CD 中点为G ,连结OG .,O G 分别是,AB CD 的中点,∴//OG BC .AB BC ⊥,∴OG AB ⊥.由底面ABCD 为直角梯形且//AD BC ,2PA PB AD ===,4BC =.PA PB =,∴PO AB ⊥.由侧面PAB ⊥底面ABCD ,平面PAB ⋂平面ABCD AB =,PO ⊂面PAB ,∴PO ⊥平面ABCD ,P ∴在平面ABCD 的投影在直线AB 上.又PB 与底面ABCD 所成的角为60︒,PB ∴与底面ABCD 所成角的平面角60PBA ∠=︒,∴PAB 为等边三角形,2AB PA ==.以O 为原点,分别以,,OB OG OP 所在的直线为,,x y z 轴,如图2建空间直角坐标系,则()1,0,0B ,()1,4,0C ,()1,2,0D -,(3P ,则(3BP =- ,(1,2,3PD =- ,(1,4,3PC = .设平面PBD 的法向量(),,n x y z =r,则00n BP n PD ⎧⋅=⎪⎨⋅=⎪⎩,即020x x y ⎧-+=⎪⎨-+-=⎪⎩,取x =,得)n = ,∴cos ,35n PC n PC n PC ⋅==r uu u r r uu u r r uu u r .设PC 与平面PBD 的所成角为θ,则sin cos ,35n PC θ== . π0,2θ⎡⎤∈⎢⎥⎣⎦,∴cos 0θ≥∴cos 35θ==,PC ∴与平面PBD的夹角的余弦值为35.22.已知抛物线C :()220y px p =>的焦点为F ,斜率为1的直线l 经过F ,且与抛物线C 交于A ,B 两点,8AB =.(1)求抛物线C 的方程;(2)过抛物线C 上一点(),2P a -作两条互相垂直的直线与抛物线C 相交于MN 两点(异于点P ),证明:直线MN 恒过定点,并求出该定点坐标.【答案】(1)24y x=(2)证明见解析【解析】【分析】(1)根据条件,得到直线l 方程为2p y x =-,设1122(,),(,)A x y B x y ,联立抛物线方程,根据抛物线的弦长求得p ,即得答案;(2)求得a 的值,设直线MN 的方程为x my n =+,联立抛物线方程,得根与系数的关系,利用PM PN ⊥,得到32(1)n m -=-或32(1)n m -=--,代入直线方程,分离参数,求得定点坐标,证明结论.【小问1详解】设1122(,),(,)A x y B x y ,由题意知(,0)2p F ,则直线l 方程为2p y x =-,代入()220y px p =>,得22304p x px -+=,280p ∆=>,∴123x x p +=,由抛物线定义,知1||2p AF x =+,2||2p BF x =+,∴12348AB AF BF x x p p p p =+=++=+==,∴2p =,∴抛物线的方程为24y x =.【小问2详解】证明: (),2P a -在抛物线24y x =上,∴242),1(a a =∴=-,由题意,直线MN 的斜率不为0,设直线MN 的方程为x my n =+,设3344(,),(,)M x y N x y ,由24y x x my n⎧=⎨=+⎩,得2440y my n --=,则216160m n '∆=+>,且34344,4y y m y y n +==-,又23434)242(x x m y y n m n +=++=+,22234344334()()()x x my n my n m y y mn y y n n =++=+++=,由题意,可知PM PN ⊥,PM PN ∴⊥,故3434(1)(1)(2)(2)0PM PN x x y y +⋅=+--+= ,故()3434343412()40x x x x y y y y -++++++=,整理得2246850n m n m --++=,即22(3)4)(1n m -=-,∴32(1)n m -=-或32(1)n m -=--,即21n m =+或25n m =-+.若21n m =+,则21(2)1x my n my m m y =+=++=++,此时直线MN 过定点(1,2)-,不合题意;若25n m =-+,则()2525x my n my m m y =+=-+=-+,此时直线MN 过定点(5,2),符合题意,综上,直线MN 过异于P 点的定点(5,2).【点睛】方法点睛:直线和抛物线的位置关系中,证明直线过定点问题,一般是设出直线方程,利用根与系数的关系化简,求得参数之间的关系式,再对直线分离参数,求得定点坐标,进而证明直线过定点.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二年级上学期期中数学试卷一、选择题(本题共12道小题,每小题5分,共60分)1.在等差数列{a n}中,a1+a5=8,a4=7,则a5=()A.11 B.10 C.7 D.32.满足条件a=6,b=5,B=120°的△ABC的个数是()A.零个B.一个C.两个D.无数个3.已知a,b,c∈R,且a>b,则一定成立的是()A.a2>b2B.C.ac2>bc2D.4.下列函数中,最小值为2的函数是()A.y=x+B.y=sinθ+(0<θ<)C.y=sinθ+(0<θ<π)D.5.△ABC中,若=,则该三角形一定是()A.等腰三角形但不是直角三角形B.直角三角形但不是等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形6.不等式ax2+5x﹣2>0的解集是{x|<x<2},则关于x的不等式ax2﹣5x+a2﹣1>0的解集为()A.(﹣∞,﹣)∪(1,+∞)B.(﹣,1)C.(﹣∞﹣3)∪(,+∞)D.(﹣3,)7.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于()A.m B.m C.m D.m 8.数列的前n项和为S n,且满足a1=1,a n=a n+n,(n≥2),则S n等于()﹣1A. B. C. D.9.已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.10.已知S n是等差数列{a n}的前n项和,公差为d,且S2015>S2016>S2014,下列五个命题:①d>0 ②S4029>0 ③S4030<0 ④数列{S n}中的最大项为S4029,其中正确命题的个数是()A.1 B.2 C.3 D.411.在△ABC中,三个内角A,B,C所对的边为a,b,c,若S△ABC=2,a+b=6,=2cosC,则c=()A.2B.4 C.2D.312.把数列{2n+1}依次按一项、二项、三项、四项循环分为(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27,),(29,31,33),(35,37,39,41),…,在第100个括号内各数之和为()A.1992 B.1990 C.1873 D.1891二、填空题(本题共4道小题,每小题5分,共20分)13.(文科做)命题“若a,b都是偶数,则a+b是偶数”的否命题是.14.两等差数列{a n}和{b n},前n项和分别为S n,T n,且,则等于.15.方程x2﹣2kx﹣3k=0一根大于1,一根小于﹣1,则实数k的取值范围.16.设M是,定义f(M)=(m,n,p),其中m、n、p分别是△MBC,△MCA,△MAB的面积,的最小值是.三、解答题17.等比数列{a n}的前n项和为S n,已知S1,S3,S2成等差数列,求{a n}的公比q.18.变量x,y满足(1)设z=,求z的最小值;(2)设z=x2+y2+6x﹣4y+13,求z的取值范围.19.已知△ABC的外接圆的半径为,内角A、B、C的对边分别为a、b、c,向量,,且.(I)求角C;(II)求△ABC的面积S的最大值,并判断此时△ABC的形状.20.已知函数y=的定义域为R.(1)求a的取值范围.(2)若函数的最小值为,解关于x的不等式x2﹣x﹣a2﹣a<0.21.已知关于x的不等式x2﹣(a2+3a+2)x+3a(a2+2)<0(a∈R).(Ⅰ)解该不等式;(Ⅱ)定义区间(m,n)的长度为d=n﹣m,若a∈[0,4],求该不等式解集表示的区间长度的最大值.22.已知等比数列{a n}的前n项和为S n=2•3n+k(k∈R,n∈N*)(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足a n=4,T n为数列{b n}的前n项和,试比较3﹣16T n与4(n+1)b n的大小,并证明你的结论.+12016-2017学年江西省宜春市万载县株潭中学高二(上)期中数学试卷参考答案与试题解析一、选择题(本题共12道小题,每小题5分,共60分)1.在等差数列{a n}中,a1+a5=8,a4=7,则a5=()A.11 B.10 C.7 D.3【考点】8F:等差数列的性质.【分析】利用等差数列的通项公式即可得出.【解答】解:设等差数列{a n}的公差为d,∵a1+a5=8,a4=7,∴2a1+4d=8,a1+3d=7,解得a1=﹣2,d=3.则a5=﹣2+4×3=10.故选:B.2.满足条件a=6,b=5,B=120°的△ABC的个数是()A.零个B.一个C.两个D.无数个【考点】HP:正弦定理.【分析】由余弦定理可得:52=62+c2﹣12ccos120°,化简解出即可判断出结论.【解答】解:由余弦定理可得:52=62+c2﹣12ccos120°,化为:c2+6c+11=0,△=62﹣44=﹣8<0,因此方程无解.∴满足条件a=6,b=5,B=120°的△ABC的个数是0.故选;A.3.已知a,b,c∈R,且a>b,则一定成立的是()A.a2>b2B.C.ac2>bc2D.【考点】R3:不等式的基本性质.【分析】A、当a=﹣1,b=﹣2,显然不成立;B、∵由于ab符号不确定,故与的大小不能确定;C、当c=0时,则ac2=bc2,;D、由c2+1≥1可判断.【解答】解:对于A、当a=﹣1,b=﹣2,显然不成立,故A项不一定成立;对于B、∵由于ab符号不确定,故与的大小不能确定,故B项不一定成立;对于C、当c=0时,则ac2=bc2,故C不一定成立;对于D、由c2+1≥1,故D项一定成立;故选:D4.下列函数中,最小值为2的函数是()A.y=x+B.y=sinθ+(0<θ<)C.y=sinθ+(0<θ<π)D.【考点】7F:基本不等式.【分析】A.x<0时,y<0.B.0<θ<,可得1>sinθ>0,利用基本不等式的性质即可判断出结论.C.0<θ<π,可得1≥sinθ>0利用基本不等式的性质即可判断出结论.D.利用基本不等式的性质即可判断出结论..【解答】解:A.x<0时,y<0.B.∵0<θ<,可得1>sinθ>0,∴y=sinθ+=2,最小值不可能为2.C..∵0<θ<π,可得1≥sinθ>0,∴y=sinθ+≥=2,当且仅当sinθ=1时取等号,最小值为2.D. +>=2,最小值不可能为2.故选:C.5.△ABC中,若=,则该三角形一定是()A.等腰三角形但不是直角三角形B.直角三角形但不是等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形【考点】HP:正弦定理.【分析】已知等式变形后,利用正弦定理化简,再利用二倍角的正弦函数公式化简,即可确定出三角形形状.【解答】解:由已知等式变形得:acosA=bcosB,利用正弦定理化简得:sinAcosA=sinBcosB,即sin2A=sin2B.∴2A=2B或2A+2B=180°,∴A=B或A+B=90°,则△ABC为等腰三角形或直角三角形.故选:D.6.不等式ax2+5x﹣2>0的解集是{x|<x<2},则关于x的不等式ax2﹣5x+a2﹣1>0的解集为()A.(﹣∞,﹣)∪(1,+∞)B.(﹣,1)C.(﹣∞﹣3)∪(,+∞)D.(﹣3,)【考点】74:一元二次不等式的解法.【分析】由不等式的解集与方程的关系,可知,2是相应方程的两个根,利用韦达定理求出a的值,再代入不等式ax2﹣5x+a2﹣1>0易解出其解集.【解答】解:由已知条件可知a<0,且,2是方程ax2+5x﹣2=0的两个根,由根与系数的关系得:×2=﹣解得a=﹣2所以ax2﹣5x+a2﹣1>0化为2x2+5x﹣3<0,化为:(2x﹣1)(x+3)<0解得﹣3<x<,所以不等式解集为:(﹣3,)故选:D.7.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60m,则河流的宽度BC等于()A.m B.m C.m D.m 【考点】HU:解三角形的实际应用.【分析】由题意画出图形,由两角差的正切求出15°的正切值,然后通过求解两个直角三角形得到DC和DB的长度,作差后可得答案.【解答】解:如图,∠DAB=15°,∵tan15°=tan(45°﹣30°)==2﹣.在Rt△ADB中,又AD=60,∴DB=AD•tan15°=60×(2﹣)=120﹣60.在Rt△ADC中,∠DAC=60°,AD=60,∴DC=AD•tan60°=60.∴BC=DC﹣DB=60﹣=120(﹣1)(m).∴河流的宽度BC等于120(﹣1)m.故选:B.8.数列的前n项和为S n,且满足a1=1,a n=a n﹣1+n,(n≥2),则S n等于()A. B. C. D.【考点】8E:数列的求和.【分析】由a n=a n﹣1+n(n≥2)得a n﹣a n﹣1=n,利用累加法求出a n,代入化简后,由等差数列的前n项和公式求出则数列的前n项和为S n.【解答】解:由题意得,a n=a n﹣1+n(n≥2),则a n﹣a n﹣1=n,所以a2﹣a1=2,a3﹣a2=3,…,a n﹣a n﹣1=n,以上(n﹣1)个式子相加得,a n﹣a1=2+3+…+n,又a1=1,则a n=1+2+3+…+n=,所以=,则数列的前n项和为S n= [2+3+…+(n+1)]==,故选:B.9.已知a>0,实数x,y满足:,若z=2x+y的最小值为1,则a=()A.2 B.1 C.D.【考点】7C:简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移即先确定z的最优解,然后确定a的值即可.【解答】解:作出不等式对应的平面区域,(阴影部分)由z=2x+y,得y=﹣2x+z,平移直线y=﹣2x+z,由图象可知当直线y=﹣2x+z经过点C时,直线y=﹣2x+z 的截距最小,此时z最小.即2x+y=1,由,解得,即C(1,﹣1),∵点C也在直线y=a(x﹣3)上,∴﹣1=﹣2a,解得a=.故选:C.10.已知S n是等差数列{a n}的前n项和,公差为d,且S2015>S2016>S2014,下列五个命题:①d>0 ②S4029>0 ③S4030<0 ④数列{S n}中的最大项为S4029,其中正确命题的个数是()A.1 B.2 C.3 D.4【考点】85:等差数列的前n项和.【分析】推导出等差数列的前2015项和最大,a1>0,d<0,且前2015项为正数,从第2016项开始为负数,由S2016>S2014,得S2016﹣S2014=a2016+a2015>0,由此求出S4029>0,S4030>0.【解答】解:∵S n是等差数列{a n}的前n项和,公差为d,且S2015>S2016>S2014,∴等差数列的前2015项和最大,∴a1>0,d<0,且前2015项为正数,从第2016项开始为负数,故①和④错误;再由S2016>S2014,得S2016﹣S2014=a2016+a2015>0,S4029=(a1+a4029)=×2a2015>0,故②正确;S4030==2015(a2015+a2016)>0,故③错误.故选:A.11.在△ABC中,三个内角A,B,C所对的边为a,b,c,若S△ABC=2,a+b=6,=2cosC,则c=()A.2B.4 C.2D.3【考点】HP:正弦定理;HR:余弦定理.【分析】运用正弦定理和两角和的正弦公式和诱导公式,化简可得角C,再由面积公式和余弦定理,计算即可得到c的值.【解答】解:===1,即有2cosC=1,可得C=60°,=2,则absinC=2,若S△ABC即为ab=8,又a+b=6,由c2=a2+b2﹣2abcosC=(a+b)2﹣2ab﹣ab=(a+b)2﹣3ab=62﹣3×8=12,解得c=2.故选C.12.把数列{2n+1}依次按一项、二项、三项、四项循环分为(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27,),(29,31,33),(35,37,39,41),…,在第100个括号内各数之和为()A.1992 B.1990 C.1873 D.1891【考点】F1:归纳推理.【分析】由a n=2n+可得数列{a n}依次按1项、2项、3项、4项循环地分为(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27,),(29,31,33),(35,37,39,41),…,每一次循环记为一组.由于每一个循环含有4个括号,故第100个括号内各数之和是第25组中第4个括号内各数之和.由分组规律知,由各组第4个括号中所有第1个数,所有第2个数、所有第3个数、所有第4个所有第4个数分别组成都是等差数列,公差均为20.故各组第4个括号中各数之和构成等差数列,且公差为80.代入可求【解答】解:由已知可知:原数列按1、2、3、4项循环分组,每组中有4个括号,每组中共有10项,因此第100个括号应在第25组第4个括号,该括号内四项分别为a247、a248、a249、a250,因此在第100个括号内各数之和=a247+a248+a249+a250=495+497+499+501=1992,故选A.二、填空题(本题共4道小题,每小题5分,共20分)13.(文科做)命题“若a,b都是偶数,则a+b是偶数”的否命题是若a,b不都是偶数,则a+b不是偶数.【考点】21:四种命题.【分析】欲写出它的否命题,须同时对条件和结论同时进行否定即可.【解答】解:条件和结论同时进行否定,则否命题为:若a,b不都是偶数,则a+b不是偶数.故答案为:若a,b不都是偶数,则a+b不是偶数.14.两等差数列{a n}和{b n},前n项和分别为S n,T n,且,则等于.【考点】8F:等差数列的性质.【分析】利用==,即可得出结论.【解答】解:====.故答案为:.15.方程x2﹣2kx﹣3k=0一根大于1,一根小于﹣1,则实数k的取值范围(1,+∞).【考点】7H:一元二次方程的根的分布与系数的关系.【分析】设(x)=x2﹣2kx﹣3k,令f(1)<0且f(﹣1)<0即可解出k的范围.【解答】解:设f(x)=x2﹣2kx﹣3k,由题意可知,即,解得k>1.故答案为:(1,+∞).16.设M是,定义f(M)=(m,n,p),其中m、n、p分别是△MBC,△MCA,△MAB的面积,的最小值是18.【考点】HP:正弦定理;7F:基本不等式;9R:平面向量数量积的运算.【分析】由平面向量的数量积运算法则及∠ABC的度数,求出的值,再由sinA的值,利用三角形的面积公式求出三角形ABC的面积为1,即△MBC,△MCA,△MAB的面积之和为1,根据题中定义的,得出x+y=,利用此关系式对所求式子进行变形后,利用基本不等式即可求出所求式子的最小值.【解答】解:由,得,所以,∴x+y=,则,当且仅当时,的最小值为18.故答案为:18三、解答题17.等比数列{a n}的前n项和为S n,已知S1,S3,S2成等差数列,求{a n}的公比q.【考点】89:等比数列的前n项和;84:等差数列的通项公式.【分析】由题意可得2(a1+a1•q+)=a1+(a1+a1•q),再根据a1≠0,q≠0,从而求出公比q的值.【解答】解依题意有2S3=S1+S2,即2(a1+a1•q+)=a1+(a1+a1•q),由于a1≠0,∴2q2+q=0,又q≠0,∴q=﹣.18.变量x,y满足(1)设z=,求z的最小值;(2)设z=x2+y2+6x﹣4y+13,求z的取值范围.【考点】7C:简单线性规划.【分析】(1)先画出满足条件的平面区域,求出A,B,C的坐标,根据z=的几何意义,从而求出z的最小值;(2)z=(x+3)2+(y﹣2)2的几何意义是可行域上的点到点(﹣3,2)的距离的平方,结合图形求出即可.【解答】解由约束条件作出(x,y)的可行域,如图阴影部分所示:由,解得A(1,),由,解得C(1,1),由,可得B(5,2),(1)∵z==,∴z的值即是可行域中的点与原点O连线的斜率,观察图形可知z min=k OB=;(2)z=x2+y2+6x﹣4y+13=(x+3)2+(y﹣2)2的几何意义是可行域上的点到点(﹣3,2)的距离的平方,结合图形可知,可行域上的点到(﹣3,2)的距离中,d min=4,d max=8.故z的取值范围是[16,64].19.已知△ABC的外接圆的半径为,内角A、B、C的对边分别为a、b、c,向量,,且.(I)求角C;(II)求△ABC的面积S的最大值,并判断此时△ABC的形状.【考点】HT:三角形中的几何计算;9R:平面向量数量积的运算.【分析】(I)根据建立等式关系,利用正余弦定理即可求角C;(II)根据△ABC的面积S=absinC,利用余弦定理和基本不等式求最大,即可判断此时△ABC的形状.【解答】解:向量,,且.(I)∵,∴sin2A﹣sin2C=(a﹣b)sinB.由正弦定理可得:sinA=,sinB=,sinC=,∴a2﹣c2=(a﹣b)b.由余弦定理:cosC=.∵0<C<π,∴C=.(II)△ABC的面积S=absinC,∵C=,R=,∴c=2RsinC=.由余弦定理:得a2+b2=6+ab.∵a2+b2≥2ab,(当且仅当a=b是取等)∴ab≤6.故得△ABC的面积S=absinC=.∵C=,a=b.此时△ABC为等边三角形.20.已知函数y=的定义域为R.(1)求a的取值范围.(2)若函数的最小值为,解关于x的不等式x2﹣x﹣a2﹣a<0.【考点】74:一元二次不等式的解法;33:函数的定义域及其求法.【分析】(1)由函数y=的定义域是R,得出ax2+2ax+1≥0恒成立,求出a的取值范围;(2)由题意得ax2+2ax+1的最小值是,求出a的值,代入不等式x2﹣x﹣a2﹣a <0,求解集即可.【解答】解:(1)函数y=的定义域为R,∴ax2+2ax+1≥0恒成立,当a=0时,1>0恒成立,满足题意;当a≠0时,须,即,解得0<a≤1;综上,a的取值范围是{a|0≤a≤1};(2)∵函数y的最小值为,∴≥,a∈[0,1];∴ax2+2ax+1≥;当a=0时,不满足条件;当1≥a>0时,ax2+2ax+1的最小值是=,∴a=;∴不等式x2﹣x﹣a2﹣a<0可化为x2﹣x﹣<0,解得﹣<x<;∴不等式的解集是{x|﹣<x<}.21.已知关于x的不等式x2﹣(a2+3a+2)x+3a(a2+2)<0(a∈R).(Ⅰ)解该不等式;(Ⅱ)定义区间(m,n)的长度为d=n﹣m,若a∈[0,4],求该不等式解集表示的区间长度的最大值.【考点】74:一元二次不等式的解法.【分析】(Ⅰ)原不等式化为[x﹣(a2+2)](x﹣3a)<0,根据1<a<2,a=1或a=2分类讨论,能求出原不等式的解集.(Ⅱ)当a≠1且a≠2时,,a∈[0,4],由此能求出该不等式解集表示的区间长度的最大值.【解答】解:(Ⅰ)原不等式可化为[x﹣(a2+2)](x﹣3a)<0,…当a2+2<3a,即1<a<2时,原不等式的解为a2+2<x<3a;…当a2+2=3a,即a=1或a=2时,原不等式的解集为∅;…当a2+2>3a,即a<1或a>2时,原不等式的解为3a<x<a2+2.…综上所述,当1<a<2时,原不等式的解为a2+2<x<3a,当a=1或a=2时,原不等式的解集为∅,当a<1或a>2时,原不等式的解为3a<x<a2+2.(Ⅱ)当a=1或a=2时,该不等式解集表示的区间长度不可能最大.…当a≠1且a≠2时,,a∈[0,4].…设t=a2+2﹣3a,a∈[0,4],则当a=0时,t=2,当时,,当a=4时,t=6,…∴当a=4时,d max=6.…22.已知等比数列{a n}的前n项和为S n=2•3n+k(k∈R,n∈N*)(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列{b n}满足a n=4,T n为数列{b n}的前n项和,试比较3﹣16T n与4(n+1)b n的大小,并证明你的结论.+1【考点】89:等比数列的前n项和;8K:数列与不等式的综合.=4×3n﹣1由{a n}是等比数【分析】(I)利用递推关系可得,n≥2 时,a n=S n﹣S n﹣1列可得a1=S1=6+k=4从而苛求得k=﹣2,代入可求通项公式(II)结合(I)可求得,根据通项公式的特点求和时可利用错位相减可求T n,要比较3﹣16T n与4(n+1)b n+1的大小,可通过作差法可得,4(n+1)b n+1﹣(3﹣16T n)=通过讨论n的范围判断两式的大小【解答】解:(Ⅰ)由S n=2﹣3n+k可得n≥2 时,a n=S n﹣S n﹣1=4×3n﹣1∵{a n}是等比数列∴a1=S1=6+k=4∴k=﹣2,a n=4×3n﹣1(Ⅱ)由和a n=4×3n﹣1得T n=b1+b2+…+b n=两式相减可得,=4(n+1)b n+1﹣(3﹣16T n)=而n(n+1)﹣3(2n+1)=n2﹣5n﹣3当或<0时,有n(n+1)>3(2n+1)所以当n>5时有3﹣16T n<4(n+1)b n+1那么同理可得:当时有n(n+1)<3(2n+1),所以当1≤n≤5时有3﹣16T n>4(n+1)b n+1综上:当n>5时有3﹣16T n<4(n+1)b n+1;当1≤n≤5时有3﹣16T n>4(n+1)b n+1高二上学期期中数学试卷一. 填空题(本大题共10题,每题4分,共40分)1. 2lim 21nnn →∞=+ ; 2. 过点(1,0)且与直线02=+y x 垂直的方程 ; 3. 已知(4,5)a =-,(2,4)b =-,则|2|a b -= ;4. 若||1a =,||2b =,且a b +与a 垂直,则向量a 与b 的夹角大小为 ;5. 已知直线l 的一个法向量(1,3)n =-,则此直线的倾斜角的大小为 ;6. 已知直线1:6(1)80l x t y +--=,直线2:(4)(6)160l t x t y +++-=,若1l 与2l 平行, 则=t ;7. 设无穷数列{}n a 的公比q ,若134lim(...)n n a a a a →∞=+++,则q = ;8. 设等边三角形ABC 的边长为6,若3BC BE =,AD DC =,则BD AE ⋅= ; 9. 已知△ABC 满足||3AB =,||4AC =,O 是△ABC 的外心,12AO AB AC λλ-=+()R λ∈,则△ABC 的面积是 ;10. 定义函数(){{}}f x x x =⋅,其中{}x 表示不小于x 的最小整数,如{1.4}2=,{2.3}-=2-;当(0,]x n ∈*()n N ∈时,函数)(x f 的值域为n A ,记集合n A 中元素的个数n a ,则12111lim(...)n na a a →∞+++= ;二. 选择题(本大题共4题,每题4分,共16分)11. 在边长为1的正六边形123456A A A A A A 中,1335A AA A ⋅的值为( ) A.32B. 32- C. D.12. 已知12120151()20152n n n n a n --<⎧⎪=⎨-≥⎪⎩,n S 是数列{}n a 的前n 项和( )A. lim n n a →∞和lim n n S →∞都存在 B. lim n n a →∞和lim n n S →∞都不存在C. lim n n a →∞存在,lim n n S →∞不存在 D. lim n n a →∞不存在,lim n n S →∞存在13. 设(2,3)a =,(4,7)b =-,则a 在b 上的投影为( )A. B. C. D. 14. 设θ是两个非零向量,a b 的夹角,已知对任意实数t ,||b ta -的最小值为2,则( )A . 若θ确定,则||a 唯一确定 B. 若θ确定,则||b 唯一确定C. 若||a 确定,则θ唯一确定D. 若θ确定,则||a 唯一确定三. 解答题(本大题共4题,共10+10+12+12=44分)15. 在平面直角坐标系中,已知(2,3)A ,(4,1)B -,(2,0)P ,求:(1)AP BP ⋅的值;(2)APB ∠的大小;16. 已知两点(2,1)A ,(,4)B m ,求:(1)直线AB 的斜率和直线AB 的方程;(2)已知[22m ∈-+,求直线AB 的倾斜角α的范围;17. 数列{}n a 满足11a =,27a =,令1n n n b a a +=⋅,{}n b 是公比为q (0)q >的等比数列, 设212n n n c a a -=+;(1)求证:18n n c q -=⋅*()n N ∈;(2)设{}n c 的前n 项和为n S ,求1limn nS →∞的值;18. 定义12,,...,n x x x 的“侧平均数”为12...nn x x x +++*()n N ∈; (1)若数列{}n a 的前n 项和的“侧平均数”为124n +,求{}n a 的通项公式; (2)设数列{}n b 满足:当n 为奇数时,1n b =,当n 为偶数时,2n b =;若n T 为{}n b 前n 项的侧平均数,求lim n n T →∞; (3)设函数2()4f x x x =-+,对(1)中的数列{}n a ,是否存在实数λ,使得当x λ≤时, ()1n a f x n ≤+对任意*n N ∈恒成立?若存在,求出最大的实数λ;若不存在,说明理由;四. 附加题(本大题共2题,共10+10=20分)19. 对于一组向量123,,,...,n a a a a *()n N ∈,令123...n n S a a a a =++++,如果存在p a({1,2,3...,})p n ∈,使得||||p n p a S a ≥-,那么称p a 是该向量组的“h 向量”; (1)设(,)n a n n x =+*()n N ∈,若3a 是向量组123,,a a a 的“h 向量”;(2)若11((),(1))3n n n a -=-*()n N ∈,向量组123,,,...,n a a a a *()n N ∈是否存在“h 向量”? 给出你的结论并说明理由;20. 等差数列{}n x 的前n 项和为n S ,等比数列{}n b 的前n 项和为n T ;已知35x =,39S =,221b a =+,lim 16n n T →∞=; (1)求数列{}n x 的通项n x ;(2)设12lg lg ...lg n n M b b b =+++,求n M 的最大值及此时n 的值;(3)数列方程2sin cos 1n n n n x x x S ++=是否有解,说明理由;上海实验学校高二上学期期中数学试卷参考答案1. 1;2. 210x y --=;3. ;4. 23π;5. 6π; 6. 5-;7. 12; 8. 18-;9.10. 2;11. B ; 12. A ; 13. C ; 14. B ;15.(1)3-;(2)π-; 16.(1)当2m =,k 不存在,直线方程2x =;当2m ≠,32k m =-,31(2)2y x m -=--; (2)2[,]63ππ;17.(1)略;(2)1,(0,1)1lim 80,[1,)n n q q S q →∞-⎧∈⎪=⎨⎪∈+∞⎩; 18.(1)42n a n =+;(2)23;(3)1λ=; 19.(1)[2,0]-;(2)1a 是“h 向量”;20.(1)21n x n =-;(2)3n =或4n =时,max ()6lg 2n M =;(3)无解;。