结构化学基础习题答案_周公度_第版

合集下载

结构化学基础习题答案_周公度_第4版

结构化学基础习题答案_周公度_第4版

【1.15】已知在一维势箱中粒子的归一化波函数为()n n x x l πϕ=1,2,3n =⋅⋅⋅ 式中l 是势箱的长度,x 是粒子的坐标)x l <,求粒子的能量,以及坐标、动量的平均值。

解:(1)将能量算符直接作用于波函数,所得常数即为粒子的能量:222n222h d n πx h d n πx ˆH ψ(x )-)-)8πm d x l 8πm d x l ==(sin )n n n x l l l πππ=⨯-22222222()88n h n n x n h x m l l ml ππψπ=-⨯= 即:2228n h E ml =(2)由于ˆˆx ()(),x n n x c x ψψ≠无本征值,只能求粒子坐标的平均值:()()x l x n sin l x l x n sin l x x ˆx x l *ln l*n d 22d x 000⎰⎰⎰⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==ππψψ()x l x n cos x l dx l x n sin x l l l d 22122002⎰⎰⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=ππ2000122sin sin d 222l l l x l n x l n x x x l n l n l ππππ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎣⎦⎰ 2l =(3)由于()()ˆˆp,p x n n x x c x ψψ≠无本征值。

按下式计算p x的平均值:()()1*ˆd x n x n p x px x ψψ=⎰0d 2n x ih d n x x l dx l πππ⎛=- ⎝⎰20sin cos d 0l nih n x n x x l l l ππ=-=⎰【1.20】若在下一离子中运动的π电子可用一维势箱近似表示其运动特征:估计这一势箱的长度 1.3l nm =,根据能级公式222/8n E n h ml =估算π电子跃迁时所吸收的光的波长,并与实验值510.0nm 比较。

结构化学基础第五版周公度答案

结构化学基础第五版周公度答案

结构化学基础第五版周公度答案【1.3】金属钾的临阈频率为5.464×10-14s -1,如用它作为光电极的阴极当用波长为300nm 的紫外光照射该电池时,发射光电子的最大速度是多少?解:2012hv hv mv =+()1201812341419312 2.998102 6.62610 5.46410300109.10910h v v m m s J s s m kgυ------⎡⎤=⎢⎥⎣⎦⎡⎤⎛⎫⨯⨯⨯-⨯⎢⎥⎪⨯⎝⎭⎢⎥=⎢⎥⨯⎢⎥⎣⎦134141231512 6.62610 4.529109.109108.1210J s s kg m s ----⎡⎤⨯⨯⨯⨯=⎢⎥⨯⎣⎦=⨯【1.4】计算下列粒子的德布罗意波的波长:(a ) 质量为10-10kg ,运动速度为0.01m ·s -1的尘埃;(b ) 动能为0.1eV 的中子;(c ) 动能为300eV 的自由电子。

解:根据关系式: (1)34221016.62610J s 6.62610m 10kg 0.01m s h mv λ----⨯⋅===⨯⨯⋅34-11 (2) 9.40310mh p λ-==⨯34(3) 7.0810mh p λ-==⨯【1.7】子弹(质量0.01kg ,速度1000m ·s -1),尘埃(质量10-9kg ,速度10m ·s -1)、作布郎运动的花粉(质量10-13kg ,速度1m ·s -1)、原子中电子(速度1000 m ·s -1)等,其速度的不确定度均为原速度的10%,判断在确定这些质点位置时,不确定度关系是否有实际意义?解:按测不准关系,诸粒子的坐标的不确定度分别为: 子弹:343416.2610 6.63100.01100010%h J s x mm v kg m s ---⨯⋅∆===⨯⋅∆⨯⨯⋅尘埃:3425916.62610 6.6310101010%h J sx m m v kg m s ----⨯⋅∆===⨯⋅∆⨯⨯⋅ 花粉:34201316.62610 6.631010110%h J sx m m v kg m s ----⨯⋅∆===⨯⋅∆⨯⨯⋅ 电子:3463116.626107.27109.10910100010%h J sx m m v kg m s ----⨯⋅∆===⨯⋅∆⨯⨯⨯⋅ 【 1.9】用不确定度关系说明光学光栅(周期约610m -)观察不到电子衍射(用100000V 电压加速电子)。

结构化学基础第五版周公度答案

结构化学基础第五版周公度答案

结构化学基础第五版周公度答案目录01.量子力学基础知识 ...................................................................................................................... 1 02 原子的结构和性质 ................................................................................................................. 13 04分子的对称性 ............................................................................................................................ 48 05 多原子分子中的化学键 ........................................................................................................... 61 06配位化合物的结构和性质 ........................................................................................................ 91 07晶体的点阵结构和晶体的性质 .............................................................................................. 103 08金属的结构和性质 .................................................................................................................. 119 09离子化合物的结构化学 .......................................................................................................... 135 10次级键及超分子结构化学 (153)01.量子力学基础知识【1.1】将锂在火焰上燃烧,放出红光,波长λ=670.8nm ,这是Li 原子由电子组态 (1s)2(2p)1→(1s)2(2s)1跃迁时产生的,试计算该红光的频率、波数以及以k J ·mol -1为单位的能量。

结构化学基础习题答案周公度第版

结构化学基础习题答案周公度第版

01.量子力学基础知识【1.1】将锂在火焰上燃烧,放出红光,波长λ=670.8nm,这是Li原子由电子组态(1s)2(2p)1→(1s)2(2s)1跃迁时产生的,试计算该红光的频率、波数以及以k J·mol-1为单位的能量。

解:811412.99810m s4.46910s670.8mcνλ--⨯⋅===⨯【1.3】金属钾的临阈频率为5.464×10-14s-1,如用它作为光电极的阴极当用波长为300nm的紫外光照射该电池时,发射光电子的最大速度是多少?解:212hv hv mv =+【1.4】计算下列粒子的德布罗意波的波长:(a)质量为10-10kg,运动速度为0.01m·s-1的尘埃;(b)动能为0.1eV的中子;(c)动能为300eV的自由电子。

解:根据关系式:(1)34221016.62610J s6.62610m10kg0.01m shmvλ----⨯⋅===⨯⨯⋅【1.6】对一个运动速度cυ(光速)的自由粒子,有人进行了如下推导:结果得出12m mυυ=的结论。

上述推导错在何处?请说明理由。

解:微观粒子具有波性和粒性,两者的对立统一和相互制约可由下列关系式表达:式中,等号左边的物理量体现了粒性,等号右边的物理量体现了波性,而联系波性和粒性的纽带是Planck 常数。

根据上述两式及早为人们所熟知的力学公式:知①,②,④和⑤四步都是正确的。

微粒波的波长λ服从下式:式中,u是微粒的传播速度,它不等于微粒的运动速度υ,但③中用了/u vλ=,显然是错的。

在④中,E hv=无疑是正确的,这里的E是微粒的总能量。

若计及E中的势能,则⑤也不正确。

【1.7】子弹(质量0.01kg,速度1000m·s-1),尘埃(质量10-9kg,速度10m·s-1)、作布郎运动的花粉(质量10-13kg,速度1m·s-1)、原子中电子(速度1000 m·s-1)等,其速度的不确定度均为原速度的10%,判断在确定这些质点位置时,不确定度关系是否有实际意义?解:按测不准关系,诸粒子的坐标的不确定度分别为:子弹:343416.26106.63100.01100010%h J sx m m v kg m s---⨯⋅∆===⨯⋅∆⨯⨯⋅尘埃:3425916.626106.6310101010%h J sx m m v kg m s----⨯⋅∆===⨯⋅∆⨯⨯⋅花粉:34201316.62610 6.631010110%h J s x m m v kg m s ----⨯⋅∆===⨯⋅∆⨯⨯⋅电子:3463116.626107.27109.10910100010%h J s x m m v kg m s ----⨯⋅∆===⨯⋅∆⨯⨯⨯⋅【1.8】电视机显象管中运动的电子,假定加速电压为1000V ,电子运动速度的不确定度υ∆为υ的10%,判断电子的波性对荧光屏上成像有无影响?解:在给定加速电压下,由不确定度关系所决定的电子坐标的不确定度为:34102/10%3.8810h x m m eV m mυ--==⨯==⨯这坐标不确定度对于电视机(即使目前世界上最小尺寸最小的袖珍电视机)荧光屏的大小来说,完全可以忽略。

结构化学基础第五版周公度答案

结构化学基础第五版周公度答案

结构化学基础第五版周公度答案目录01.量子力学基础知识 ...................................................................................................................... 1 02 原子的结构和性质 ................................................................................................................. 13 04分子的对称性 ............................................................................................................................ 48 05 多原子分子中的化学键 ........................................................................................................... 61 06配位化合物的结构和性质 ........................................................................................................ 91 07晶体的点阵结构和晶体的性质 .............................................................................................. 103 08金属的结构和性质 .................................................................................................................. 119 09离子化合物的结构化学 .......................................................................................................... 135 10次级键及超分子结构化学 (153)01.量子力学基础知识【1.1】将锂在火焰上燃烧,放出红光,波长λ=670.8nm ,这是Li 原子由电子组态 (1s)2(2p)1→(1s)2(2s)1跃迁时产生的,试计算该红光的频率、波数以及以k J ·mol -1为单位的能量。

结构化学基础第五版周公度答案

结构化学基础第五版周公度答案

结构化学基础第五版周公度答案【1.3】金属钾的临阈频率为5.464×10-14s -1,如用它作为光电极的阴极当用波长为300nm 的紫外光照射该电池时,发射光电子的最大速度是多少?解:2012hv hv mv =+()1201812341419312 2.998102 6.62610 5.46410300109.10910h v v m m s J s s m kgυ------⎡⎤=⎢⎥⎣⎦⎡⎤⎛⎫⨯⨯⨯-⨯⎢⎥⎪⨯⎝⎭⎢⎥=⎢⎥⨯⎢⎥⎣⎦134141231512 6.62610 4.529109.109108.1210J s s kg m s ----⎡⎤⨯⨯⨯⨯=⎢⎥⨯⎣⎦=⨯【1.4】计算下列粒子的德布罗意波的波长:(a ) 质量为10-10kg ,运动速度为0.01m ·s-1的尘埃;(b ) 动能为0.1eV 的中子;(c ) 动能为300eV 的自由电子。

解:根据关系式: (1)34221016.62610J s 6.62610m 10kg 0.01m s h mv λ----⨯⋅===⨯⨯⋅34-11(2) 9.40310mh p λ-==⨯34(3) 7.0810mh p λ-==⨯【1.7】子弹(质量0.01kg ,速度1000m ·s -1),尘埃(质量10-9kg ,速度10m ·s -1)、作布郎运动的花粉(质量10-13kg ,速度1m ·s -1)、原子中电子(速度1000 m ·s -1)等,其速度的不确定度均为原速度的10%,判断在确定这些质点位置时,不确定度关系是否有实际意义?解:按测不准关系,诸粒子的坐标的不确定度分别为: 子弹:343416.2610 6.63100.01100010%h J s x mm v kg m s ---⨯⋅∆===⨯⋅∆⨯⨯⋅尘埃:3425916.62610 6.6310101010%h J sx m m v kg m s ----⨯⋅∆===⨯⋅∆⨯⨯⋅ 花粉:34201316.62610 6.631010110%h J sx m m v kg m s ----⨯⋅∆===⨯⋅∆⨯⨯⋅ 电子:3463116.626107.27109.10910100010%h J sx m m v kg m s ----⨯⋅∆===⨯⋅∆⨯⨯⨯⋅ 【1.9】用不确定度关系说明光学光栅(周期约610m -)观察不到电子衍射(用100000V 电压加速电子)。

结构化学第四章习题(周公度)

结构化学第四章习题(周公度)

结构化学第四章习题(周公度)第四章分子的对称性1、HCN 和CS 2都是线性分子。

写出该分子的对称元素解:HCN 分子构型为线性不对称构型,具有的对称元素有:C ∞,n σV ;CS 2分子为线性对称性分子构型,具有对称元素有:C ∞,nC 2, n σV ,σh 2、写出H 3CCl 分子的对称元素解:H 3CCl 的对称元素有:C 3,3σV3、写出三重映轴S 3和三重反轴I 3的全部对称操作解:S 31=C 3σ; S 32=C 32 ; S 33=σ; S 34= C 3 ; S 35 = C 32σ I 31= C 3i ; I 32=C 32 ; I 33= i ; I 34= C 3 ; I 35 = C 32i4、写出四重映轴S 4和四重反轴I 4的全部对称操作解:S 41=C 4σ; S 42=C 2 ; S 43=C 43σ; S 44= E I 41= C 4i ; I 42=C 2 ; I 43=C 43 i ; I 44= E5、写出σxz 和通过原点并与x 轴重合的C 2轴的对称操作C 21的表示矩阵解:σxz 和C 2轴所在位置如图所示(基函数为坐标)σxz (x ,y ,z)’=(x ,-y ,z) σxz 的变换矩阵为-100010001C 21(x ,y ,z)’=(x ,-y ,-z) C 21的变换矩阵为--1000100016、用对称操作的表示矩阵证明(1) C 2(z) σxy = i(2) C 2(x)C 2(y) =C 2(z) (3) σyz σxz =C 2(z)解:C 2(x),C 2(y),C 2(z),σxy ,σyz ,σxz ,i对称操作的变换矩阵分别为--100010001,??--100010001,??--100010001,??-100010001,-100010001-100010001,---100010001(1) C 2(z) σxy = i--100010001????? ??-100010001=???---100010001(2) C 2(x)C 2(y) =C 2(z)--100010001????? ??--100010001=????--100010001 (3) σyz σxz =C 2(z)-100010001????? ??-100010001=???--1000100017、写出ClCH=CHCl(反式)分子的全部对称操作及其乘法表解:反式1,2-二氯乙烯的结构为:具有的对称元素为C 2, I ; σh ,σh 即为分子平面,i 位于C-C 键中心C 2与σh 垂直。

结构化学基础第五版周公度答案

结构化学基础第五版周公度答案

结构化学基础第五版周公度答案目录01.量子力学基础知识 ...................................................................................................................... 1 02 原子的结构和性质 ................................................................................................................. 13 04分子的对称性 ............................................................................................................................ 48 05 多原子分子中的化学键 ........................................................................................................... 61 06配位化合物的结构和性质 ........................................................................................................ 91 07晶体的点阵结构和晶体的性质 .............................................................................................. 103 08金属的结构和性质 .................................................................................................................. 119 09离子化合物的结构化学 .......................................................................................................... 135 10次级键及超分子结构化学 (153)01.量子力学基础知识【1.1】将锂在火焰上燃烧,放出红光,波长λ=670.8nm ,这是Li 原子由电子组态 (1s)2(2p)1→(1s)2(2s)1跃迁时产生的,试计算该红光的频率、波数以及以k J ·mol -1为单位的能量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【1.3】金属钾的临阈频率为5.464×10-14s -1,如用它作为光电极的阴极当用波长为300nm 的紫外光照射该电池时,发射光电子的最大速度是多少?解:2012hv hv mv =+()1201812341419312 2.998102 6.62610 5.46410300109.10910h v v m m s J s s m kg υ------⎡⎤=⎢⎥⎣⎦⎡⎤⎛⎫⨯⨯⨯-⨯⎢⎥ ⎪⨯⎝⎭⎢⎥=⎢⎥⨯⎢⎥⎣⎦134141231512 6.62610 4.529109.109108.1210J s s kg m s ----⎡⎤⨯⨯⨯⨯=⎢⎥⨯⎣⎦=⨯【1.4】计算下列粒子的德布罗意波的波长: (a )质量为10-10kg ,运动速度为0.01m·s -1的尘埃;(b )动能为0.1eV 的中子; (c )动能为300eV 的自由电子。

解:根据关系式: (1)34221016.62610J s6.62610m 10kg 0.01m s h mv λ----⨯⋅===⨯⨯⋅34-11 (2) 9.40310mh p λ-==⨯ 34(3) 7.0810mh p λ-==⨯【1.7】子弹(质量0.01kg ,速度1000m ·s -1),尘埃(质量10-9kg ,速度10m ·s -1)、作布郎运动的花粉(质量10-13kg ,速度1m ·s -1)、原子中电子(速度1000 m ·s -1)等,其速度的不确定度均为原速度的10%,判断在确定这些质点位置时,不确定度关系是否有实际意义?解:按测不准关系,诸粒子的坐标的不确定度分别为: 子弹:343416.2610 6.63100.01100010%h J sx mm v kg m s ---⨯⋅∆===⨯⋅∆⨯⨯⋅尘埃:3425916.62610 6.6310101010%h J sx m m v kg m s ----⨯⋅∆===⨯⋅∆⨯⨯⋅花粉:34201316.62610 6.631010110%h J sx mm v kg m s ----⨯⋅∆===⨯⋅∆⨯⨯⋅电子:3463116.626107.27109.10910100010%h J s x m m v kg m s ----⨯⋅∆===⨯⋅∆⨯⨯⨯⋅ 【1.9】用不确定度关系说明光学光栅(周期约610m -)观察不到电子衍射(用100000V 电压加速电子)。

解:解法一:根据不确定度关系,电子位置的不确定度为:9911 1.22610/1.22610100001.22610x h h x m p h Vmm λ---===⨯=⨯=⨯ 这不确定度约为光学光栅周期的10-5倍,即在此加速电压条件下电子波的波长约为光学光栅周期的10-5倍,用光学光栅观察不到电子衍射。

解法二:若电子位置的不确定度为10-6m ,则由不确定关系决定的动量不确定度为:3462816.62610106.62610x h J s p x mJ s m ----⨯∆==∆=⨯ 在104V 的加速电压下,电子的动量为:5.40210x x p m J s m υ==⨯由Δp x 和p x 估算出现第一衍射极小值的偏离角为:2812315arcsin arcsin 6.62610arcsin 5.40210arcsin100x x o p p J s m J s m θθ-----∆==⎛⎫⨯ ⎪⨯⎝⎭≈ 这说明电子通过光栅狭缝后沿直线前进,落到同一个点上。

因此,用光学光栅观察不到电子衍射。

【1.11】2axxe ϕ-=是算符22224d a x dx ⎛⎫- ⎪⎝⎭的本征函数,求其本征值。

解:应用量子力学基本假设Ⅱ(算符)和Ⅲ(本征函数,本征值和本征方程)得:22222222244ax d d a x a x xe dx dx ψ-⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭ ()2222224ax ax d xe a x xe dx --=- ()22222222232323242444ax ax ax ax ax ax ax d e ax e a x e dxaxe axe a x e a x e -------=--=--+-266axaxe a ψ-=-=-因此,本征值为6a -。

【1.13】im eφ和cos m φ对算符did φ是否为本征函数?若是,求出本征值。

解:im im d ie ie d φφφ=,im im me φ=-所以,im e φ是算符d i d φ的本征函数,本征值为m -。

而()cos sin sin cos dim i m m im m c m d φφφφφ=-=-≠所以cos m φ不是算符d id φ的本征函数。

【1.14】证明在一维势箱中运动的粒子的各个波函数互相正交。

证:在长度为l 的一维势箱中运动的粒子的波函数为:()n x ψ01x <<n =1,2,3,……令n 和n ’表示不同的量子数,积分:()()()()()()()()()()()()()()0002sin 2sin sin sin sin 222sinsin sin sin ln n l llxn xx x d dx l ln x n xdxl l ln n n n x x l l l n n nn l l n n n n x x l l n n n n n n n n n n n n πψψτππππππππππππππ==⎡⎤-+⎢⎥⎢⎥=-⎢⎥-+⨯⨯⎢⎥⎣⎦⎡⎤-+⎢⎥⎢⎥=-⎢⎥-+⎢⎥⎣⎦-+=--+⎰⎰n 和n 皆为正整数,因而()n n -和()n n +皆为正整数,所以积分:()()0lnn x x d ψψτ=⎰根据定义,()n x ψ和()n x ψ互相正交。

【1.15】已知在一维势箱中粒子的归一化波函数为()n n xx l πϕ 1,2,3n =⋅⋅⋅ 式中l 是势箱的长度,x 是粒子的坐标()0x l <<,求粒子的能量,以及坐标、动量的平均值。

解:(1)将能量算符直接作用于波函数,所得常数即为粒子的能量:n n πx ˆH ψ(x )cos )l = =)x = 即:228n E ml =(2)由于ˆˆx()(),x n n x c x ψψ≠无本征值,只能求粒子坐标的平均值:()()x l x n sin l x l x n sin l x x ˆx x l *l n l *n d 22d x 000⎰⎰⎰⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛==ππψψ()x l x n cos x ldx l x n sin x l l ld 22122002⎰⎰⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=ππ2000122sin sin d 222l l l x l n x l n x x x l n l n l ππππ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎣⎦⎰ 2l =(3)由于()()ˆˆp,p x n n x x c x ψψ≠无本征值。

按下式计算p x 的平均值:()()1*0ˆd x n x n p x px x ψψ=⎰d 2n x ih d n x x l dx l πππ⎛=- ⎝⎰20sin cos d 0l n x n x x l l l ππ=-=⎰【1.19】若在下一离子中运动的π电子可用一维势箱近似表示其运动特征: 估计这一势箱的长度1.3l nm =,根据能级公式222/8n E n h ml =估算π电子跃迁时所吸收的光的波长,并与实验值510.0nm 比较。

H 3N C C CC CC CNCH 33HH H H 3解:该离子共有10个π电子,当离子处于基态时,这些电子填充在能级最低的前5个π型分子轨道上。

离子受到光的照射,π电子将从低能级跃迁到高能级,跃迁所需要的最低能量即第5和第6两个分子轨道的的能级差。

此能级差对应于棘手光谱的最大波长。

应用一维势箱粒子的能级表达式即可求出该波长:22222652226511888hch h h E E E ml ml ml λ∆==-=-=()22318193481189.109510 2.997910 1.31011 6.626210506.6mcl h kg m s m J snmλ----=⨯⨯⨯⨯⨯⨯=⨯⨯=实验值为510.0nm ,计算值与实验值的相对误差为-0.67%。

【1.20】已知封闭的圆环中粒子的能级为:22228n n h E mR π=0,1,2,3,n =±±±⋅⋅⋅式中n 为量子数,R 是圆环的半径,若将此能级公式近似地用于苯分子中66π离域π键,取R=140pm ,试求其电子从基态跃迁到第一激发态所吸收的光的波长。

解:由量子数n 可知,n=0为非简并态,|n|≥1都为二重简并态,6个π电子填入n=0,1,1-等3个轨道,如图1.20图1.20苯分子66π能级和电子排布()22122418h hcE E E mR πλ-∆=-==()()()()22223110813498389.1110 1.4010 2.998103 6.6261021210212mR c hkg m m s J s m nmπλπ-----=⨯⨯⨯⨯⨯⨯=⨯⨯=⨯= 实验表明,苯的紫外光谱中出现β,Γ和α共3个吸收带,它们的吸收位置分别为184.0nm,208.0nm 和263.0nm ,前两者为强吸收,后面一个是弱吸收。

由于最低反键轨道能级分裂为三种激发态,这3个吸收带皆源于π电子在最高成键轨道和最低反键之间的跃迁。

计算结果和实验测定值符合较好。

【1.21】函数()/)/)x x ax a ϕππ=-是否是一维势箱中粒子的一种可能状态?若是,其能量有无确定值?若有,其值为多少?若无,求其平均值。

解:该函数是长度为a 的一维势箱中粒子的一种可能状态。

因为函数()1s i n (/)x x a ψπ和()2/)x x a ψπ都是一维势箱中粒子的可能状态(本征态),根据量子力学基本假设Ⅳ(态叠加原理),它们的线性组合也是该体系的一种可能状态。

因为()()()1223H x H x x ψψψ∧∧=-⎡⎤⎣⎦()()1223H x H x ψψ∧∧=-()()22122242388h h x x ma ma ψψ=⨯-⨯≠常数()x ψ⨯所以,()x ψ不是H ∧的本征函数,即其能量无确定值,可按下述步骤计算其平均值。

将()x ψ归一化:设()x ψ=()c x ψ,即:()()()22220aaax dx c x dx c x dxψψψ==⎰⎰⎰2202ax x c dxa a ππ⎛⎫=- ⎪ ⎪⎝⎭⎰ 2131c == 2113c =()x ψ所代表的状态的能量平均值为:()()0aE x H x dxψψ∧=⎰222202238am x x h d a a dxπππ⎛⎫⎛⎫=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎰223x x dxa a ππ⎛⎫- ⎪ ⎪⎝⎭2222222233200015292sin sin sin sin 2a a a c h x c h x x c h x dx dx dx ma a ma a a ma a ππππ=-+⎰⎰⎰222225513c h h ma ma ==也可先将()1x ψ和()2x ψ归一化,求出相应的能量,再利用式2i i E c E =∑求出()x ψ所代表的状态的能量平均值:222222222224049888h h c hE c c ma ma ma =⨯+⨯=22401813h ma =⨯22513h ma =【2.9】已知氢原子的200exp zp r r a a ϕ⎫⎡⎤-⎪⎢⎥⎭⎣⎦cos θ,试回答下列问题:(a)原子轨道能E=?(b)轨道角动量|M|=?轨道磁矩|μ|=?(c)轨道角动量M 和z 轴的夹角是多少度?(d)列出计算电子离核平均距离的公式(不算出具体的数值)。

相关文档
最新文档