六年级下册数学课件-3.4《解决问题—求不规则瓶子的容积》|人教新课标(2014秋) (共14张PP

合集下载

六年级下册数学教案-《解决问题—求不规则瓶子的容积》人教新课标(2023秋)

六年级下册数学教案-《解决问题—求不规则瓶子的容积》人教新课标(2023秋)
二、核心素养目标
本节课的核心素养目标为:培养学生运用数学知识解决实际问题的能力,强化空间观念和几何直观,提升数学抽象和逻辑推理素养。通过求不规则瓶子容积的学习,使学生能够深入理解体积和容积的概念,掌握水位上升法的应用,进一步发展以下能力:1.利用数学模型分析实际问题,提高解决问题的策略选择和实施能力;2.在观察和操作中,培养空间想象力和几何直观,加深对几何图形的认识;3.通过团队合作,锻炼数学表达和交流能力,增强数学逻辑推理素养。从而使学生在探索实践中,全面提升数学学科核心素养。
(3)在解决实际问题时,学生可能遇到数据误差、计算复杂等问题。教师需指导学生如何对数据进行合理处理,提高解题的准确性,例如使用合适的计量工具、多次测量求平均值等。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《解决问题—求不规则瓶子的容积》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过求不规则物体容积的情况?”(例如:如何计算家里不规则形状的鱼缸装水多少升?)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索求不规则瓶子容积的奥秘。
(3)解决实际问题时,对数据进行分析和处理,提高解决问题的准确性。
举例解释:
(1)难点在于让学生理解水位上升法背后的数学原理,如何将不规则瓶子的容积转化为求解规则图形(如长方体、圆柱体)的容积。可通过动画演示、实际操作等方式,帮助学生理解这一过程。
(2)针对不同形状的瓶子,引导学生分析如何运用水位上升法求解容积,如如何选择合适的水பைடு நூலகம்器、如何测量水位上升的高度等。通过案例分析,让学生掌握解题方法。
六年级下册数学教案-《解决问题—求不规则瓶子的容积》人教新课标(2023秋)

数学人教版六年级下册《问题解决(求瓶子的容积)》课件

数学人教版六年级下册《问题解决(求瓶子的容积)》课件
收获?
谢谢大家!
解决问题
一个内直径是8cm的瓶子里,水 的高度是7cm,把瓶盖拧紧倒置放平, 无水部分是圆柱形,高度是18cm。这 个瓶子的容积是多少?
7cm 18cm
2 瓶子的容积:=3.14×(8÷2)× 7+3.14×(8÷2)×2 18 =3.14×16×(7+18) =3.14×16×25 =1256 (cm³) =1256(mL)
答:这个瓶子的容积是1256mL。
知识应用
(一)做一做
一瓶装满的矿泉水,小明喝了一些,把 瓶盖拧紧后倒置放平,无水部分高10cm, 内径是6cm。小明喝了多少水? 2 3.14×(6÷2)×10 =3.14×9×10 =28.26×10 =282.6(cm³ ) =282.6(mL)
10cm
答:小明喝了282.6mL的水。
人教版教育部审定(2013)义务教育教科书数学六年级 下册27页第三单元
圆柱与圆锥
问题解决(例7)
河北省磁县实验学校:申雷明
探索新知
探索新知
探索新知
也就是把瓶子的容 积转化成两个圆柱 的体积。
水的体积
+
空气部分的体积
=
瓶子的容积
回顾反思
把不规则图形转化成规则图形来计算 转化思想就是把我们没有学过的知识 转化成我们已经学过的知识。

六年级数学下册人教版第三单元第04课时解决问题求不规则物体的容积例7教学设计

六年级数学下册人教版第三单元第04课时解决问题求不规则物体的容积例7教学设计
(求解容积。
(3)培养学生面对复杂问题时,独立思考、合作探究的能力。
(二)教学设想
1.创设情境,引入新课
在课堂导入阶段,通过展示生活中不规则物体的图片,如石块、水果等,激发学生对求解不规则物体容积的兴趣。引导学生思考如何计算这些物体的容积,为新课的学习做好铺垫。
2.自主探究,合作交流
针对本节课的重点和难点,设计具有梯度的问题,引导学生自主探究求解不规则物体容积的方法。在此基础上,组织学生进行小组合作,交流讨论各自的解题策略,互相借鉴,共同提高。
3.方法指导,突破难点
在学生自主探究和合作交流的基础上,教师针对排水法、累积法等方法进行讲解和示范,帮助学生理解和掌握求解不规则物体容积的策略。通过典型例题的分析,引导学生逐步突破难点。
(二)讲授新知
1.教师介绍求解不规则物体容积的基本方法,如排水法、累积法等,并结合具体实例进行讲解。
2.针对排水法,教师通过实验演示,让学生直观地了解其原理。如用一个有刻度的量筒,先测量一定量的水的体积,然后将不规则物体放入量筒中,测量水和物体的总体积,两者相减即可得到不规则物体的体积。
3.针对累积法,教师通过图示和实例,解释如何将不规则物体分解成若干个规则物体,然后计算这些规则物体的体积之和,得到不规则物体的总体积。
6.总结反思,提升能力
在课堂尾声,组织学生对本节课的学习进行总结,分享自己的收获和感悟。教师针对学生的总结进行点评,引导学生反思学习过程中的优点和不足,提高学生自我认知和自我提升的能力。
7.课后拓展,激发兴趣
布置具有挑战性的课后作业,让学生在课后继续探索不规则物体容积的求解方法。同时,鼓励学生开展课外实践活动,如测量不规则物体的尺寸,计算其容积等,激发学生学习数学的兴趣。
四、教学内容与过程

人教版六年级数学下册解决问题——求瓶子的容积教学设计及反思

人教版六年级数学下册解决问题——求瓶子的容积教学设计及反思

人教版六年级数学下册解决问题求瓶子的容积教学设计及反思学习内容:人教版新课标六年级数学下册第三单元《瓶子的容积》教材第27页内容,及相关练习。

课标相关陈述:结合具体情境,探索并掌握圆柱体积的计算方法,并能解决简单的实际问题。

学习目标:1.能够运用圆柱的体积计算公式解决简单的实际问题。

2.通过讨论分析,找到解决问题的关键所在,经历解决生活中实际问题的过程。

评价目标:1.在学生阅读、理解题意,分析、探讨解题方法以及回顾与反思的过程中,对目标1进行评价。

2.在课堂活动的参与、具体的交流和练习过程中,对目标2进行评价。

学习重点:应用圆柱的体积计算公式解决实际问题。

学习难点:理解瓶子的容积是由装水的圆柱的体积和倒置后无水的圆柱的体积两部分组成的。

教师准备ppt课件装有部分水的瓶子学生准备小瓶子(装有部分水)学习过程一、情境导入。

师:今天老师带来了一个瓶子,简单描述瓶子的形状。

关于这个瓶子,你能提出什么数学问题(瓶子的高和底面积是多少瓶子的容积是多少……)这节课,我们就来试试能不能解决这些问题。

(板书课题:解决问题)二、合作探究,学习新知1、求瓶子的高和底面积(1)刚才有同学想知道瓶子的高和底面积,谁能解决这些问题(2)瓶子的高可以直接测量出来,那底面积呢2、探讨瓶子的容积计算方法师:还有同学想知道瓶子的容积,你有什么办法解决这个问题吗(1)通过看标签知道瓶子的容积,大家说可以吗为什么(为了避免瓶子因热胀冷缩而受到破损,一般瓶里的水是没有盛满的。

(2)还有没有其它办法,知道瓶子的容积呢(师:也就是通过水的体积,来求出瓶子的容积,大家觉得怎么样)(3)那我们可以直接计算出来吗为什么(瓶子不规则)师:那老师就按照大家的方法,把瓶子装满水,可是现在没有别的容器,你能想办法求出它的容积吗老师演示:从装满水的瓶子里倒出适当的水,这样可以吗3、小组合作活动一:要求:小组内拿出课前准备的矿泉水,先请一位同学倒出一部分,再把你的想法在小组内交流交流。

数学人教版六年级下册求不规则容器的容积

数学人教版六年级下册求不规则容器的容积
3分钟
一、导入新课,初悟转化
.听爱迪生与灯泡的故事。
这个故事渗透了一个重要的数学思想“转化”,(板书:转化)今天这节课我们也尝试运用转化的策略求不规则容器的容积。
(板书:求不规则容器的容积)
听故事,初步感受转化思想。
脑筋急转弯打破常规的思维方式,故事引入新课,渗透转化思想,激发学习兴趣。
二、合作交流、探究新知:
=底面积×(正放时水的高度+倒置时无水部分的高度)




本节课利用故事导入激发学生的学习兴趣,渗透转化思想,学生小组合作前有独学,合作后汇报展示,总结方法,效果较好,练习设计有层次性和针对性,学生学习状态较好。不足之处是展示汇报时只是学生说,没有用实物进行演示,如果加上实物效果会更好。
引导学生用多种方法解决问题,体现解决问题方法的多样性,培养学生的发散思维。
解决问题后进行回顾反思,培养学生良好的学习习惯。
三、巩固练习
应用新知解决实际问题。
10分钟
1、一瓶装满的矿泉水,小明喝了一些,把瓶盖拧紧后倒置放平,无水部分高10cm,内径是6cm。小明喝了多少水?
2、有一饮料瓶的容积是1.5升,现在它里面装有一些饮料,正放时饮料高度是15厘米,倒放时空余部分高度为5厘米,问瓶内现有饮料多少升?
小组合作交流,完成合作探究卡。
展示探究成果。
因为瓶子的(容积)是一定的,瓶子里(水的份量)是一定的,所以正放和倒置时,瓶中空余部分也是(相等的)。正立时水的体积与倒置时瓶中空余部分都是(圆柱形)的,我们可以把计算瓶子容积的问题转化成计算两个圆柱的容积问题。数量关系式如下:
瓶子的容积=(正立时水的体积)+(倒置时空余部分的容积)
教学难点及解决措施

数学人教版六年级下册问题解决(求瓶子的容积)

数学人教版六年级下册问题解决(求瓶子的容积)

人教版小学数学六年级下册第三单元圆柱圆锥27页问题解决(例7)河北省磁县实验学校:申雷明教学目标:1、知识与技能:通过观察比较,掌握不规则物体的体积的计算方法;使学生熟练运用圆柱的体积计算公式解决实际问题。

2、过程与方法:使学生通过经历发现和提出问题、分析和解决问题的完整过程,培养学生观察、概括的能力,利用所学知识灵活解决实际问题的能力,并掌握问题解决的策略,培养应用意识。

3、情感态度与价值观:使学生在解决问题的过程中体会转化、推理和变中有不变的数学思想。

重点:培养问题意识,体会转化思想。

难点:利用所学知识灵活解决实际问题的能力,体会“转化”的数学思想。

教学准备:课件,瓶体是圆柱形的矿泉水瓶子教学过程:一、复习旧知激趣引入1、复习旧知上节课我们学习了圆柱体积的计算公式?谁能来说一下?(学生回答)教师小结:在不知道圆柱底面积的情况下想求圆柱体积必须知道两个条件:圆柱底面半径和高2、出示空瓶子这是什么?(瓶子)谁能提出与瓶子有关的数学问题?(学生提问题)3、引入课题同学们真了不起!一个小小的瓶子就提出了这么多的数学问题。

今天我们就来学习----问题解决(板书课题)【设计意图】通过复习圆柱的体积计算方法,为学习新知做好知识上的准备,并通过学生熟悉的瓶子提出问题引出课题。

二、自主探究解决问题1、求瓶子的高和底面积的方法。

师:刚才有同学想知道这个瓶子的高和底面积,谁能解决这个问题。

学生回答。

(瓶子的高可以测量,底面积可以测量计算出来)2、求瓶子容积的方法(1)师:像这些问题呀,我们可以测量数据后直接计算出来,还有位同学想知道这个瓶子的容积,你有办法解决这个问题吗?(学生说自己的想法:通过水的体积借助一个长方体容器求出瓶子的容积)(2)师:我们可以直接计算出瓶子的容积吗?为什么?(学生说不能,因为瓶子不是一个完整的圆柱,我们无法直接求出它的容积)师:瓶子是一个不规则的物体,我们无法直接求出它的容积,所以我们可以借助水的体积来求出它的容积,那老师就用大家的方法把这瓶水盛满。

人教版小学数学六年级数学下册3.4《解决问题-求不规则物体的容积例7》教学设计

人教版小学数学六年级数学下册3.4《解决问题-求不规则物体的容积例7》教学设计
4. 数据处理和分析
5. 实际问题解决
6. 体积单位的理解
7. 数学言的表达
8. 团队合作和沟通
十一、课后作业
1. 阅读相关阅读材料,加深对求不规则物体体积方法的理解。
2. 观看相关视频资源,拓宽视野,增强对数学的兴趣。
3. 进行实际操作,加深对知识的理解和应用。
4. 与同学进行交流和分享,互相学习,共同提高。
5. 完成课后拓展作业,巩固所学知识。
四、教学方法与手段
教学方法:
1. 引导发现法:通过设置问题情境,引导学生自主探究求不规则物体体积的方法,激发学生的思考和探索兴趣,培养学生的独立思考能力。
2. 合作交流法:组织学生进行小组合作,让学生在讨论和交流中共同解决问题,培养学生的团队合作意识和沟通能力。
3. 实践操作法:让学生亲自动手进行实验操作,通过实际操作体验求不规则物体体积的过程,增强学生的动手能力和实践能力。
5. 数学运算:让学生能够熟练运用所学的体积计算方法,进行不规则物体体积的计算,提高学生的数学运算能力,能够准确、快速地进行数学计算。
6. 数学应用:使学生能够将所学的体积计算方法,应用到实际生活中,解决实际问题,培养学生的数学应用能力,能够将数学知识运用到生活实践中,体会数学的价值。
三、教学难点与重点
(1)自主学习:鼓励学生利用课后时间进行自主学习,通过阅读材料和观看视频资源,深入理解求不规则物体体积的方法和应用。
(2)问题解答:学生可以提出自己在学习过程中遇到的问题,教师可提供必要的指导和帮助,如解答疑问、提供参考资料等。
(3)实践操作:学生可以在家中或学校进行实际操作,如制作一个不规则物体,利用排水转化的方法求其体积,以加深对知识的理解和应用。
知识讲解:

数学人教版六年级下册解决问题(求瓶子的容积)

数学人教版六年级下册解决问题(求瓶子的容积)

3.14×42×7+3.14×42×18
=3.14×16×7+3.14×16×183.14×42×(7+18)
=50.24×7+50.24×138
=3.14×16×25
=50.24×(7+18)
=50.24×25
4
=3.14×400 =1256(cm3)
=1256(cm3)
=1256(ml)
=50.24(ml)
推到圆柱体积公式时,将圆柱转化 成近似的长方体
测量一个珊瑚石的体积时,将 它放到水中转化成水

推到圆的面积公式时,将圆转化成 近似的长方形
推到圆柱体积公式时,将圆柱 转化成近似的长方体
测量一个珊瑚石的体积时,将它 放到水中转化成水的体积
三、实践应用
瓶子的容积
水的 形状
水的体积 (列式)
空气的 形状
空气的体积 (列式)
瓶子 平置
瓶子 倒置
比较 变化
小组填表后,学生结合实物演示,用自己的语言和同桌说说转化的过程。
以二人为一小组,拿出准备好的装有一些水的瓶子, 按照小组的想法得出的相关数据,记录在学习卡上。
瓶子的容积
水的
形状
水的体积 (列式)
空气的 形状
1.判断:一个圆柱形容器的容积和体积相等。( ×)
v体积要从外部测量长、宽、高,而容积要 从内部测量长、宽、高,所以圆柱形容器的 体积大于容积。
三、实践应用
2.做一做
一瓶装满的矿泉水,小明喝了一些,把 瓶盖拧紧后倒置放平,无水部分高10cm, 内径是6cm。小明喝了多少水? V喝=V空=∏r 2h 6÷2=3(cm)
答:这个瓶子的容积是1256ml.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高 底
宽 长
平行四边形的面积 =底 ×高 长方形的面积 = 长 × 宽
圆的面积
r πr
S = π r2
பைடு நூலகம்
圆柱的体积
圆柱的体积=底面积×高 V圆柱=S底面积×h=πr2h
测量梨的体积时,把它放入水中转化为水的体积。
10cm
1.做一做。
一瓶装满的矿泉水,小明喝了一些,把瓶 盖拧紧后倒置放平,无水部分高10cm,内 直径是6cm。小明喝了多少水?
2
3.14×(6÷2)×10 =3.14×9×10 =28.26×10 =282.6(cm³) =282.6(mL)
答:小明喝了282.6mL的水。
这节课的学习,你有什么收获?
六年级 下册
第三单元
解决问题—求不规则瓶子的容积
关于这个瓶子,你能提出什么数学问题?
部空 分气

倒置 转化
部空 分气
部空 分气

体积不变 转化
部空 分气
计算小数乘法时,把小数乘法转化成整数乘法。
1.92 ×0.9 =1.728
1.9 2 × 0.9
1.7 2 8
192 ×9
1728
平行四边形的面积
相关文档
最新文档