C++链表类的实现(面向对象的思想)

合集下载

c链表库函数

c链表库函数

c链表库函数全文共四篇示例,供读者参考第一篇示例:C语言是一种广泛应用于系统编程的高级语言,而链表(Linked List)是C语言中常用的数据结构之一。

在C语言中,链表并不像数组一样有现成的库函数可以直接调用,需要通过自定义函数来实现链表的操作。

为了方便使用链表,不少开发者封装了链表操作的库函数,提供了一些常用的链表操作接口,以供开发者使用。

本文将介绍一些常见的C链表库函数及其用法。

一、链表的概念及基本操作链表是一种线性表的存储结构,由若干节点(Node)组成,每个节点包含数据域和指针域。

数据域用于存放数据,指针域用于指向下一个节点。

链表的最后一个节点指针域为空(NULL),表示链表的末尾。

常见的链表操作包括创建链表、插入节点、删除节点、遍历链表、查找节点等。

下面我们来看看C语言中常用的链表库函数。

二、常见的C链表库函数1. 创建链表在C语言中,创建链表的函数通常包括初始化链表头节点和链表节点的操作。

```#include <stdio.h>#include <stdlib.h>//定义链表节点typedef struct node {int data;struct node* next;} Node;2. 插入节点插入节点是链表操作中的重要操作,可以在链表的任意位置插入新节点。

常见的插入方式包括头部插入和尾部插入。

```//头部插入节点void insertNodeAtHead(Node* head, int data) {Node* newNode = (Node*)malloc(sizeof(Node));newNode->data = data;newNode->next = head->next;head->next = newNode;}以上是常见的C链表库函数,这些函数可以帮助我们更方便地操作链表。

在实际开发中,可以根据需要自定义更多的链表操作函数,以满足具体的需求。

C语言实现面向对象设计

C语言实现面向对象设计

C语言实现面向对象设计C语言是一种过程式编程语言,它并不直接支持面向对象的设计。

但是,通过一些技巧和约定可以在C语言中实现面向对象的编程模式。

面向对象的设计主要包含了封装、继承和多态三个概念,下面我们将分别介绍如何在C语言中实现这三个概念。

1.封装:封装是面向对象设计的一个重要概念,它将数据与操作数据的函数组合在一起,形成一个独立的单元即对象。

在C语言中,我们可以使用结构体来实现封装的效果。

结构体可以将不同类型的数据组合在一起,并通过函数来操作这些数据,模拟对象的概念。

```c//定义一个结构体来表示一个人的信息typedef structchar name[20];int age;} Person;//定义一个函数来创建一个人的实例Person* createPerson(char* name, int age)Person* person = (Person*)malloc(sizeof(Person));strcpy(person->name, name);person->age = age;return person;//定义一个函数来输出一个人的信息void printPerson(Person* person)printf("Name: %s, Age: %d\n", person->name, person->age);int maiPerson* person = createPerson("Alice", 25);printPerson(person);free(person);return 0;```在上面的代码中,我们通过创建一个结构体`Person`来封装一个人的信息,然后使用`createPerson`函数来创建一个`Person`对象,并使用`printPerson`函数来输出对象的信息。

2.继承:继承是面向对象设计中一个很有用的特性,它允许一个对象继承另一个对象的属性和方法。

2024年C++面向对象程序设计教案(含多款)

2024年C++面向对象程序设计教案(含多款)

C++面向对象程序设计教案(含多款)C++面向对象程序设计教案一、教学目标1.理解面向对象程序设计的基本概念,包括类、对象、继承、多态等。

2.掌握C++面向对象程序设计的基本语法和编程技巧。

3.能够运用面向对象的思想进行程序设计,解决实际问题。

二、教学内容1.面向对象程序设计的基本概念(1)类与对象类是对具有相同属性和行为的一组对象的抽象描述。

对象是类的实例,具有类定义的属性和行为。

(2)继承继承是面向对象程序设计的一个重要特性,用于表示类之间的层次关系。

子类可以继承父类的属性和行为,并在此基础上添加新的属性和行为。

(3)多态多态是指同一个操作作用于不同的对象时,可以有不同的解释和行为。

多态分为编译时多态和运行时多态。

2.C++面向对象程序设计的基本语法(1)类的定义与实现类定义包括类名、属性(成员变量)和方法(成员函数)。

类实现包括成员函数的定义。

(2)构造函数与析构函数构造函数用于创建对象时初始化成员变量,析构函数用于对象销毁时释放资源。

(3)继承与派生继承使用关键字class和public、protected、private访问限定符。

派生类可以添加新的成员变量和方法,也可以重写父类的方法。

(4)多态的实现多态可以通过虚函数、抽象类和接口实现。

虚函数使用关键字virtual声明,抽象类包含至少一个纯虚函数,接口是一种特殊的抽象类,只包含纯虚函数。

3.面向对象程序设计实例(1)设计一个简单的银行账户管理系统,包括账户类、储蓄账户类和信用卡账户类。

(2)设计一个图形类库,包括点、线、矩形和圆形等基本图形类。

三、教学方法1.讲授法:讲解面向对象程序设计的基本概念、语法和编程技巧。

2.案例分析法:通过分析实际案例,让学生理解面向对象程序设计的应用。

3.实践法:让学生动手编写代码,加深对面向对象程序设计的理解。

4.讨论法:组织学生讨论面向对象程序设计在实际项目中的应用。

四、教学评价1.课后作业:布置课后作业,检查学生对课堂知识的掌握程度。

c面向对象程序课程设计

c面向对象程序课程设计

c面向对象程序课程设计一、教学目标本节课的教学目标是让同学们掌握C面向对象程序的基本概念和语法,包括类、对象、继承、多态等核心概念。

通过学习,同学们能够熟练使用C++编写简单的面向对象程序,培养编程思维和解决问题的能力。

同时,在学习过程中,培养同学们的团队合作意识和自主学习能力。

二、教学内容本节课的教学内容主要包括以下几个部分:1.面向对象程序概述:介绍面向对象程序的基本概念,如类、对象、封装、继承、多态等。

2.类和对象:讲解如何定义一个类,如何创建和使用对象,以及构造函数和析构函数的概念。

3.继承:介绍继承的概念和实现方式,以及继承的好处和注意事项。

4.多态:讲解多态的概念、实现方式以及多态的好处。

5.面向对象程序设计实例:通过实例讲解如何运用面向对象程序设计的方法解决实际问题。

三、教学方法为了更好地实现教学目标,本节课采用以下几种教学方法:1.讲授法:讲解面向对象程序的基本概念、语法和实例。

2.讨论法:同学们进行小组讨论,分享学习心得和解决问题的方法。

3.案例分析法:分析实际编程案例,让同学们更好地理解面向对象程序设计的方法。

4.实验法:安排课后的编程实践,让同学们动手编写面向对象的程序,巩固所学知识。

四、教学资源为了支持本节课的教学内容和教学方法的实施,准备以下教学资源:1.教材:《C++面向对象程序设计》等相关教材。

2.参考书:提供一些关于C++面向对象程序设计的参考书籍,供同学们课后自主学习。

3.多媒体资料:制作精美的PPT,直观地展示面向对象程序设计的相关概念和实例。

4.实验设备:提供计算机和编程环境,让同学们能够进行实际的编程练习。

五、教学评估本节课的教学评估将采用多元化的评估方式,以全面、客观、公正地评价同学们的学习成果。

评估方式包括:1.平时表现:考察同学们在课堂上的参与程度、提问回答、小组讨论等,占总评的20%。

2.作业:布置与课程内容相关的编程作业,让同学们巩固所学知识,占总评的30%。

c语言中linklist类型

c语言中linklist类型

c语言中linklist类型LinkList类型是C语言中常用的数据结构之一,用于表示链表。

链表是一种动态数据结构,它可以根据需要动态地分配和释放内存空间,比较灵活。

在本文中,我们将深入探讨LinkList类型及其相关操作。

一、什么是链表链表是一种由节点组成的数据结构,每个节点包含数据和指向下一个节点的指针。

链表中的节点可以按照任意顺序存储,通过指针将它们连接起来。

与数组相比,链表的插入和删除操作更加高效,但是访问元素的效率较低。

链表分为单向链表和双向链表两种形式,本文主要介绍单向链表。

二、LinkList类型的定义在C语言中,我们通过结构体来定义链表节点的数据结构,具体定义如下:```ctypedef struct Node{int data;struct Node *next;}Node;typedef Node *LinkList;```其中,Node表示链表的节点类型,LinkList表示链表的类型。

三、LinkList类型的常用操作1. 初始化链表初始化链表主要是将链表的头指针置空,表示链表为空。

具体实现如下:```cvoid InitList(LinkList *L){*L = NULL;}```2. 判断链表是否为空判断链表是否为空可以通过判断链表的头指针是否为空来实现。

具体实现如下:```cint ListEmpty(LinkList L){return L == NULL;}```3. 求链表的长度求链表的长度即统计链表中节点的个数。

具体实现如下:```cint ListLength(LinkList L){int count = 0;Node *p = L;while(p != NULL){count++;p = p->next;}return count;}```4. 插入节点插入节点可以在链表的任意位置插入新的节点。

具体实现如下:```cint ListInsert(LinkList *L, int pos, int data){if(pos < 1 || pos > ListLength(*L) + 1){return 0;}Node *p = *L;Node *newNode = (Node*)malloc(sizeof(Node));newNode->data = data;newNode->next = NULL;if(pos == 1){newNode->next = *L;*L = newNode;}else{for(int i = 1; i < pos - 1; i++){p = p->next;}newNode->next = p->next;p->next = newNode;}return 1;}```5. 删除节点删除节点可以删除链表中指定位置的节点。

链表实验报告总结doc

链表实验报告总结doc

链表实验报告总结篇一:顺序表,链表总结实验报告实验报告实验目的:学生管理系统(顺序表)实验要求:1.建表2.求表长3.插入4.查找5.删除6.列表7.退出源程序:#include#include#include#define MaxSize 1000typedef struct{char xh[40];char xm[40];int cj;}DataType; //学生的结构typedef struct {DataType data[MaxSize]; //定义表的数据类型int length; //数据元素分别放置在data[0]到data[length-1]当中} SqList; //表的结构void liebiao(SqList *L)//{int k,n;char q;printf("请输入,输入学生的个数:\n");fflush(stdin);scanf("%d",&n);for(k=0;k {printf("请输入学生学号\n");scanf("%s",L->data[k].xh);printf("请输入学生名字\n");scanf("%s",L->data[k].xm);printf("请输入学生成绩\n");scanf("%d",&L->data[k].cj); 建立表格}L->length=n;}void qb(SqList *L) //全部输出{int k,w;for(k=0;klength;k++){w=k+1;printf("第%d位学生:",w);printf("%s %s%d\n",L->data[k].xh,L->data[k].xm,L->d ata[k].cj);}}int cr(SqList *L,DataType *xs,int i) //插入信息{int j;if(L->length==MaxSize){printf("没有!");return 0;}else if((iL->length)){printf("程序溢出,不符合");return 0;}else{for(j=L->length-1;j>=i;j--){strcpy(L->data[j+1].xh,L->data[j].xh); strcpy(L->data[j+1].xm,L->data[j].xm);L->data[j+1].cj=L->data[j].cj;}strcpy(L->data[i].xh,xs->xh);strcpy(L->data[i].xm,xs->xm);L->data[i].cj=xs->cj;L->length=L->length+1;}return 0;}int cz(SqList *L) //查找信息{char xh[40];char xm[40];int cj;int i=0,u;printf(" 1、按学号查询\n"); printf(" 1、按姓名查询\n"); printf(" 1、按成绩查询\n"); printf("请选择:");fflush(stdin);scanf("%d",&u);if (u==1){printf("请输入要查找学生的学号:");scanf("%s",xh);for(i=0;ilength;i++){篇二:单链表的实验报告辽宁工程技术大学上机实验报告篇三:单链表实验报告实验一线性表基本操作的编程实现--线性表在链表存储下的主要操作实现班级:T523-1 姓名:王娟学号:33完成日期:XX.04.04 地点:5502学时:2学时一、需求分析【实验目的】通过本次实验,对课堂上线性表的知识进行巩固,进一步熟悉线性表的链接存储及相应的基本操作;并熟练掌握VC++ 6.0操作平台,学会调试程序,以及编写电子实验报告【实验要求】编写线性表的基本操作,有构造线性表,线性表的遍历,插入,删除,查找,求表长等基本功能,在此基础上能够加入DOS下的图形界面以及学会文件的操作等功能,为以后的学习打下基础。

面向对象程序设计思想

面向对象程序设计思想

面向对象程序设计思想面向对象程序设计(Object-Oriented Programming,简称OOP)是一种以对象为中心的编程范式,它将现实世界中的事物抽象为对象,并通过对象之间的交互来实现程序的运行。

面向对象程序设计的核心思想包括封装、继承和多态。

封装封装是面向对象程序设计中最基本的概念之一。

它指的是将数据(属性)和操作数据的方法(行为)组合在一起,形成一个对象。

封装的目的是隐藏对象的内部细节,只暴露出一个可以被外界访问的接口。

这样,对象的使用者不需要了解对象内部的实现细节,只需要通过接口与对象进行交互。

例如,在一个银行系统中,我们可以创建一个`Account`类,该类封装了账户的基本信息(如账号、余额)和对账户的操作(如存款、取款)。

用户在使用`Account`类时,只需要调用相应的方法,而不需要关心这些方法是如何实现的。

继承继承是面向对象程序设计中另一个重要的概念。

它允许一个类(子类)继承另一个类(父类)的属性和方法。

通过继承,子类可以扩展或修改父类的行为,而不需要重新编写代码。

继承支持代码的复用,使得程序设计更加简洁和高效。

例如,假设我们有一个`Animal`类,它定义了所有动物共有的属性和方法。

我们可以创建一个`Dog`类,它继承自`Animal`类。

`Dog`类将继承`Animal`类的所有属性和方法,并且可以添加一些特有的属性和方法,如`bark`。

多态多态是面向对象程序设计中的一个重要特性,它允许不同类的对象对同一消息做出响应,但具体的行为会根据对象的实际类型而有所不同。

多态性使得程序设计更加灵活和可扩展。

多态性通常通过抽象类和接口来实现。

抽象类定义了一个或多个抽象方法,而具体的子类则提供了这些抽象方法的实现。

接口则定义了一组方法规范,不同的类可以实现同一个接口,但提供不同的实现。

例如,假设我们有一个`Shape`接口,它定义了一个`draw`方法。

我们可以创建`Circle`、`Square`等类,它们都实现了`Shape`接口。

C中类与类定义及具体使用方法

C中类与类定义及具体使用方法

C中类与类定义及具体使用方法C语言是过程式语言,它并不直接支持面向对象编程(OOP)。

然而,我们可以通过结构体和函数指针来模拟类和类的实例。

本文将介绍在C语言中如何定义类和使用具体的类来实现面向对象编程。

1.类的定义在C语言中,我们可以使用结构体来定义一个类。

结构体可以包含数据成员和函数指针成员。

```ctypedef struct Personchar name[50];int age;void (*sayHello)(struct Person*);} Person;```上述代码定义了一个名为Person的结构体,它包含了一个字符数组name、一个整数age和一个函数指针sayHello。

2.类的实例化在C语言中,我们可以使用结构体变量来实例化一个类的对象。

```cPerson p1;```上述代码创建了一个名为p1的Person对象。

3.类的方法定义在C语言中,类的方法可以通过函数指针成员来定义。

```cvoid sayHello(struct Person* self)printf("Hello, my name is %s.\n", self->name);```上述代码定义了一个名为sayHello的函数,它接受一个指向Person对象的指针作为参数,并打印出对象的名称。

4.类的方法赋值在实例化类的对象后,我们可以将方法赋值给对象的函数指针成员。

```cp1.sayHello = sayHello;```上述代码将sayHello函数赋值给p1对象的sayHello函数指针成员。

5.类的方法调用在C语言中,我们可以通过对象的函数指针成员来调用类的方法。

```c```上述代码通过调用p1对象的sayHello函数指针成员来调用sayHello方法,并将p1对象的地址作为参数传递给方法。

完整示例代码如下:```c#include <stdio.h>typedef struct Personchar name[50];int age;void (*sayHello)(struct Person*);} Person;void sayHello(struct Person* self)printf("Hello, my name is %s.\n", self->name);int maiPerson p1;strcpy(, "John");p1.age = 25;p1.sayHello = sayHello;return 0;```运行上述代码将输出:```Hello, my name is John.```通过结构体和函数指针,我们可以在C语言中模拟类和实现面向对象编程的一些特性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
cout<<"请按任意键继续..."<<endl; _getch();
//节点的指针复位 pNode = g_World.getObjectLink().m_pHead;
//遍历链表(删除节点) while(pNode != NULL)
{ if(pNode->m_pObject->IsDead()) { //删除节点 g_World.getObjectLink().DeleteNode(pNode->m_pObject); cout<<"删除节点成功"<<endl; count --; break; } pNode = pNode->pNext;
2:删除节点
//
3:插入节点
//程序说明:Class Object,World,LinkObject
//
Object:是节点的数据域的数据
//
World: 用于返回链表对象
//
LinkObject:链表类,提供了对链表操作的基本方法
//代码行数:300
//作者:CreateDBW 时间:2012 年 12 月 10 日
count ++; if(count == flag) {
//为新增的节点分配内存 Node *pInsertNode = new Node(pObj); //新增节点的后一个节点的地址(pNode->pNext) //存储在新增节点(pInsertNode)的 pNext 中. pInsertNode->pNext = pNode->pNext; //把新增节点的地址 pInsertNode 存储到 pNode->pNext //中 pNode->pNext = pInsertNode; return ; } pNode = pNode->pNext; } //如果要插入的节点是在最后就用下面的函数 AddNode(pObj); } LinkObject::~LinkObject() {
如果满足条件(找到了要删除的节点): */ if(pNode->m_pObject == obj) {
/* pNode 指针指向的节点是要删除的节点,则: pNode->pNext 保存的是要删除节点的下一个 节点的首地址,把他的地址给 pPreNode->pNext 就是说:pNode 指针指向的节点这时已经不在链 表中了.因为,pPreNode 是要删除的节点的前一 个节点
cout<<"请按任意键继续..."<<endl; _getch();
//在第三个节点的后边插入节点 g_World.getObjectLink().InsertNode(new Object(100),3); count ++; cout<<"插入节点后的节点个数:"<<count<<endl; //节点的指针复位 pNode = g_World.getObjectLink().m_pHead;
LinkObject lObj; unsigned int count = 0; int data = 0; //创建五个节点的链表用于测试 for(int i=0;i<5;i++) {
g_pObj = new Object(i); if(i == 2) {
g_pObj->Dead(); } g_World.getObjectLink().AddNode(g_pObj); count ++; } //把创建的链表的首地址赋值给 pNode //这时的 pNode 和 m_pHead 指向同一块内存区域 Node *pNode = g_World.getObjectLink().m_pHead; cout<<"显示链表数据"<<endl; //遍历链表(测试链表是否创建成功) while(pNode != NULL) { data = pNode->m_pObject->getData(); cout<<" Data:"<<data<<endl; pNode=pNode->pNext; }
}
World::~World()
{
} ////////////////////// //Main:对链表测试 ////////////////////// World g_World;//全局变量,返回链表的对象 Object *g_pObj = NULL;//全局变量,节点的数据 int main() {
Object::~Object() {
} ////////////////////// //Class:LinkObject ////////////////////// struct Node {
Object *m_pObject; struct Node *pNext; public: Node(){} //构造函数,当节点被创建时给节点的数据初始化 Node(Object *obj) {
////////////////////////////////////////////////////////////////////////
#include "iostream"
#include "conio.h"
using namespace std;
////////////////////// //Class:Object ////////////////////// class Object { public:
////////////////////////////////////////////////////////////////////////
//测试环境:Microsoft Visual C++ 6.0
//程序功能:C++单链表的实现(节点的数据是对象)
//
1:创建链表(在链表尾部填加链表)
//
} ////////////////////// //Class:World ////////////////////// class World { public:
World(); //返回链表的对象 LinkObject &getObjectLink() {
return m_Object; } virtual ~World(); private: LinkObject m_Object; }; World::World() {
//便利链表(测试节点是否插入成功) while(pNode != NULL) {
data = pNode->m_pObject->getData(); cout<<" Data:"<<data<<endl; pNode=pNode->pNext; }
return 0; }
*/ pPreNode->pNext = pNode->pNext; delete pNode; return ; } pPreNode = pNode; //得到下一个节点的地址 pNode = pNode->pNext; } } void LinkObject::InsertNode(Object *pObj,int flag) { Node *pNode = m_pHead; int count = 0;//统计节点的个数 while(pNode != NULL) {
m_pObject = obj; } //析构函数,当节点被删除时调用 ~Node() {
delete m_pObject; } }; ////////////////////////////////////// class LinkObject { public: LinkObject(); void AddNode(Object *pObj);//在链表尾添加节点 void DeleteNode(Object *pObj);//删除节点 void InsertNode(Object *pObj,int flag);//在第 flag 的位置后边插入节点 virtual ~LinkObject();
return data; } virtual ~Object(); protected:
bool m_bIsDead;//对象死亡标志,测试链表时用 private:
int data; };
Object::Object(int Data) {
data = Data; m_bIsDead = false; }
Object(){} Object(int Data); void setData(int Data) {
data = Data; } void Dead() {
m_bIsDead = true; } bool IsDead() {
return m_bIsDead; } int getData() {
/* 把链表的头指针 m_pHead(地址)赋值给 pPreNode 这时,m_pHead 和 pPreNode 的地址相同,即:m_pHead 和 pPreNode 指向内存的同一块区域
*/ Node *pPreNode =ห้องสมุดไป่ตู้m_pHead; /*
判断头指针的数据(这里的数据是类)是不是要删除 因为 pNext 中放的是下一个节点的地址,所以,要把下 一个节点的地址赋给 m_pHead 这时候,pNext 指向的节 点就与 m_pHead 链接上了.然后就删除 pPreNode 指 向的内存,来释放内存空间.当然,这个时候你可以不 用 delete 来释放内存,因为这个时候 obj 所在的节点已
相关文档
最新文档