三角函数公式变换

合集下载

三角函数变换的技巧与方法

三角函数变换的技巧与方法

三角函数变换的技巧与方法三角函数是数学中非常重要的概念,在求解各类问题时都会用到。

而三角函数之间的变换则是解决三角函数相关问题的重要技巧之一、下面将介绍一些常见的三角函数变换方法。

方法一:和差角公式三角函数的和差角公式是非常重要的三角函数变换公式。

根据和差角公式,我们可以将一个三角函数的和差表达式转化为两个三角函数的乘积表达式。

具体公式如下:1. sin(A ± B) = sinAcosB ± cosAsinB2. cos(A ± B) = cosAcosB ∓ sinAsinB3. tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)通过使用和差角公式,我们可以将复杂的三角函数表达式转化为简单的三角函数乘积表达式,从而便于求解和化简。

方法二:倍角公式倍角公式是三角函数变换中另一个重要的公式。

根据倍角公式,我们可以将一个三角函数的角度变为原来的2倍。

具体公式如下:1. sin2A = 2sinAcosA2. cos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2A3. tan2A = (2tanA) / (1 - tan^2A)方法三:半角公式半角公式是将一个角的角度变为原来的1/2的公式。

具体公式如下:1. sin(A/2) = ±√[(1 - cosA) / 2]2. cos(A/2) = ±√[(1 + cosA) / 2]3. tan(A/2) = √[(1 - cosA) / (1 + cosA)]方法四:和差化积公式和差化积公式是将一个三角函数的和差化为积的公式。

具体公式如下:1. sinA + sinB = 2sin((A + B)/2)cos((A - B)/2)2. sinA - sinB = 2cos((A + B)/2)sin((A - B)/2)3. cosA + cosB = 2cos((A + B)/2)cos((A - B)/2)4. cosA - cosB = -2sin((A + B)/2)sin((A - B)/2)方法五:积化和差公式积化和差公式是将两个三角函数的积化为和差的公式。

三角函数转换公式

三角函数转换公式

三角函数转换公式1、诱导公式:sin(-α) = -sinα;cos(-α) = cosα;sin(π/2-α) = cosα;cos(π/2-α) = sinα;sin(π/2+α) = cosα;cos(π/2+α) = -sinα;sin(π-α) = sinα;cos(π-α) = -cosα;sin(π+α) = -sinα;cos(π+α) = -cosα;tanA= sinA/cosA;tan(π/2+α)=-cotα;tan(π/2-α)=cotα;tan(π-α)=-tanα;tan(π+α)=tanα2、两角和差公式:sin(A±B) = sinAcosB±cosAsinBcos(A±B) = cosAcosB sinAsinBtan(A±B) = (tanA±tanB)/(1 tanAtanB)cot(A±B) = (cotAcotB 1)/(cotB±cotA)3、倍角公式sin2A=2s inA•cosAcos2A=cosA2-sinA2=1-2sinA2=2cosA2-1tan2A=2tanA/(1-tanA2)=2cotA/(cotA2-1)4、半角公式tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sin^2(a/2)=(1-cos(a))/2cos^2(a/2)=(1+cos(a))/2tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))声屏障板:声屏障板声波在传播过程中,遇到声屏障板时,就会发生反射、透射和绕射三种现象。

通常我们认为屏障板能够阻止直达声的传播,并使统射声有足够的衰减,而透射声的影响可以忽略不计。

因此,声屏障板的隔声效果一般可采用减噪量表示,它反映了声屏障板上述两种屏蔽透声的本领。

三角恒等变换公式大全

三角恒等变换公式大全

三角恒等变换公式大全三角函数是数学中的重要分支,它在许多科学与工程领域中具有广泛的应用。

而三角恒等变换公式是三角函数的重要性质之一。

它们可以将一个三角函数表达式转换为其他三角函数表达式,从而提供了在解决问题时的灵活性和简化计算的便利性。

在本文中,我们将介绍一些常用的三角恒等变换公式,帮助读者更好地理解和应用三角函数。

1. 正弦、余弦和正切的平方和差公式:- 正弦的平方和差公式:sin²(A ± B) = sin²A*cos²B ±2*sinA*sinB*cosA*cosB- 余弦的平方和差公式:cos²(A ± B) = cos²A*cos²B -2*sinA*sinB*cosA*cosB- 正切的平方和差公式:tan²(A ± B) = (tan²A ± tan²B) / (1 ∓tanA*tanB)2. 正弦和余弦的倍角公式:- 正弦的倍角公式:sin2A = 2*sinA*cosA- 余弦的倍角公式:cos2A = cos²A - sin²A = 2*cos²A - 1 = 1 -2*sin²A3. 正切的倍角公式:- 正切的倍角公式:tan2A = (2*tanA) / (1 - tan²A)4. 正弦、余弦和正切的半角公式:- 正弦的半角公式:sin(A / 2) = ± √[(1 - cosA) / 2]- 余弦的半角公式:cos(A / 2) = ± √[(1 + cosA) / 2]- 正切的半角公式:tan(A / 2) = ± √[(1 - cosA) / (1 + cosA)]5. 正切的和差公式:- 正切的和公式:tan(A ± B) = (tanA ± tanB) / (1 ∓ tanA*tanB)6. 余弦的和差公式:- 余弦的和公式:cos(A ± B) = cosA*cosB ∓ sinA*sinB7. 三角函数的倒数公式:- sin(-A) = -sinA,cos(-A) = cosA,tan(-A) = -tanA8. 三角函数的互余关系:- sin(π/2 - A) = cosA,cos(π/2 - A) = sinA,tan(π/2 - A) = 1/tanA9. 三角函数的余角关系:- sin(π - A) = sinA,cos(π - A) = -cosA,tan(π - A) = -tanA10. 三角函数的化简公式:- sin(2π - A) = -sinA,cos(2π - A) = cosA,tan(2π - A) = tanA这些三角恒等变换公式为解决三角函数相关的数学问题提供了便利,读者在学习和应用时可根据具体情况选择合适的公式进行推导和计算。

三角函数变换公式大全

三角函数变换公式大全

三角函数变换公式大全
以下列举了常见的三角函数变换公式:
1. 正弦函数变换公式:
- 正弦函数的平移变换:y = a*sin(b(x-c)) + d,其中a为振幅,b为周期变化的倍数,c为水平平移量,d为垂直平移量。

2. 余弦函数变换公式:
- 余弦函数的平移变换:y = a*cos(b(x-c)) + d,其中a为振幅,b为周期变化的倍数,c为水平平移量,d为垂直平移量。

3. 正切函数变换公式:
- 正切函数的平移变换:y = a*tan(b(x-c)) + d,其中a为垂直
拉伸/压缩因子,b为周期变化的倍数,c为水平平移量,d为
垂直平移量。

4. 余切函数变换公式:
- 余切函数的平移变换:y = a*cot(b(x-c)) + d,其中a为垂直
拉伸/压缩因子,b为周期变化的倍数,c为水平平移量,d为
垂直平移量。

5. 正割函数变换公式:
- 正割函数的平移变换:y = a*sec(b(x-c)) + d,其中a为水平
拉伸/压缩因子,b为周期变化的倍数,c为水平平移量,d为
垂直平移量。

6. 余割函数变换公式:
- 余割函数的平移变换:y = a*csc(b(x-c)) + d,其中a为水平拉伸/压缩因子,b为周期变化的倍数,c为水平平移量,d为垂直平移量。

以上是常见的三角函数变换公式,它们可以通过改变振幅、周期、水平平移量和垂直平移量来对原始的三角函数进行变换。

三角函数的恒等变换

三角函数的恒等变换

三角函数的恒等变换三角函数是数学中重要的一类函数,它们在几何、物理以及工程等领域都有广泛的应用。

在进行数学推导和计算时,使用三角函数的恒等变换是非常常见的技巧。

本文将介绍常见的三角函数恒等变换,以及它们的应用。

一、正弦和余弦的恒等变换1. 正弦函数的恒等变换正弦函数的恒等变换之一是正弦函数的和差化积公式:sin(A ± B) = sinAcosB ± cosAsinB该公式可以将正弦函数的和差转化为乘积形式,方便进行进一步的计算和推导。

同时,也可以通过该公式将乘积形式转化为和差形式。

2. 余弦函数的恒等变换余弦函数的恒等变换之一是余弦函数的和差化积公式:cos(A ± B) = cosAcosB ∓ sinAsinB该公式与正弦函数的和差化积公式类似,可以将余弦函数的和差转化为乘积形式,并且也可以通过该公式将乘积形式转化为和差形式。

二、正切和余切的恒等变换1. 正切函数的恒等变换正切函数的恒等变换之一是正切函数的和差化积公式:tan(A ± B) = (tanA ± tanB) / (1 ∓ tanAtanB)该公式可以将正切函数的和差转化为乘积形式,方便进行进一步的计算和推导。

2. 余切函数的恒等变换余切函数的恒等变换之一是余切函数的和差化积公式:cot(A ± B) = (cotAcotB ∓ 1) / (tanA ± tanB)该公式与正切函数的和差化积公式类似,可以将余切函数的和差转化为乘积形式。

三、正弦、余弦和正切的恒等变换1. 正弦函数的平方与余弦函数的平方的关系:sin²A + cos²A = 1这是三角函数中最为著名的恒等变换之一,称为三角恒等式。

它表明了正弦函数的平方与余弦函数的平方之和始终等于1。

2. 正切函数与余切函数的关系:tanA = 1 / cotA这个恒等变换表明了正切函数和余切函数互为倒数关系。

三角恒等变换的所有公式及其推导公式

三角恒等变换的所有公式及其推导公式

三角恒等变换的所有公式及其推导公式三角恒等变换是指对于任意角度x,存在一系列等价的三角函数表达式。

这些等价的表达式可以通过一些特定的关系来推导出来。

下面将介绍一些常见的三角恒等变换公式及其推导过程。

1. 倍角公式:sin(2x) = 2sin(x)cos(x)cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x)tan(2x) = 2tan(x) / (1 - tan^2(x))推导过程:对于sin(2x),可以利用三角函数的加法公式sin(A+B)=sinAcosB+cosAsinB,将A=B=x代入得到:sin(2x) = sin(x+x) = sin(x)cos(x) + cos(x)sin(x) = 2sin(x)cos(x)对于cos(2x),可以利用cos(2x)=cos^2(x) - sin^2(x)得到:cos(2x) = cos^2(x) - sin^2(x) = 2cos^2(x) - 1 = 1 - 2sin^2(x)对于tan(2x),可以利用tan(2x) = sin(2x) / cos(2x)得到:tan(2x) = 2sin(x)cos(x) / (1 - 2sin^2(x)) = 2tan(x) / (1 - tan^2(x))2. 和差公式:sin(A+B) = sinAcosB + cosAsinBsin(A-B) = sinAcosB - cosAsinBcos(A+B) = cosAcosB - sinAsinBcos(A-B) = cosAcosB + sinAsinB推导过程:对于sin(A+B),可以利用sin(A+B)=sinAcosB+cosAsinB得到:sin(A+B) = sinAcosB + cosAsinB对于sin(A-B),可以利用sin(A-B)=sinAcosB-cosAsinB得到:sin(A-B) = sinAcosB - cosAsinB对于cos(A+B),可以利用cos(A+B)=cosAcosB-sinAsinB得到:cos(A+B) = cosAcosB - sinAsinB对于cos(A-B),可以利用cos(A-B)=cosAcosB+sinAsinB得到:cos(A-B) = cosAcosB + sinAsinB3. 万能公式:sin^2(x) + cos^2(x) = 11 + tan^2(x) = sec^2(x)1 + cot^2(x) = csc^2(x)推导过程:对于sin^2(x) + cos^2(x),可以利用三角函数的平方和公式sin^2(x) + cos^2(x) = 1得到:sin^2(x) + cos^2(x) = 1对于1 + tan^2(x),可以利用tan^2(x) + 1 = sec^2(x)得到:1 + tan^2(x) = sec^2(x)对于1 + cot^2(x),可以利用cot^2(x) + 1 = csc^2(x)得到:1 + cot^2(x) = csc^2(x)通过以上的公式及其推导过程,我们可以在三角函数的计算中灵活运用,简化计算过程,提高计算的准确性和效率。

三角函数的积分公式与变换

三角函数的积分公式与变换

三角函数的积分公式与变换三角函数在数学中有着重要的地位,它们不仅在几何学中有广泛应用,也在物理、工程等领域中发挥着重要作用。

而积分作为微积分的一部分,也与三角函数密切相关。

在本文中,我们将探讨三角函数的积分公式以及它们的变换。

一、三角函数的基本积分公式我们先来回顾一下三角函数的基本积分公式。

对于常见的三角函数(正弦函数、余弦函数、正切函数),它们的积分公式如下:1. 正弦函数的积分公式:∫sin(x) dx = -cos(x) + C2. 余弦函数的积分公式:∫cos(x) dx = sin(x) + C3. 正切函数的积分公式:∫tan(x) dx = -ln|cos(x)| + C其中,C为积分常数。

利用这些基本积分公式,我们可以求解更复杂的三角函数积分。

二、三角函数的积分公式推导那么,这些基本积分公式是如何推导出来的呢?下面我们来简单介绍一下。

1. 正弦函数积分公式的推导:考虑函数g(x) = -cos(x),其中g'(x) = -sin(x)。

根据积分与导数的基本性质,我们知道∫-sin(x) dx = -cos(x) + C。

然而,我们又知道sin(x)的导数是-cos(x),因此∫-sin(x) dx = cos(x) + C。

将这两个等式组合起来,我们得到了正弦函数的积分公式∫sin(x) dx = -cos(x) + C。

2. 余弦函数积分公式的推导:类似地,考虑函数h(x) = sin(x),其中h'(x) = cos(x)。

根据积分与导数的基本性质,我们知道∫cos(x) dx = sin(x) + C。

然而,我们又知道cos(x)的导数是-sin(x),因此∫cos(x) dx = -sin(x) + C。

将这两个等式组合起来,我们得到了余弦函数的积分公式∫cos(x) dx = sin(x) + C。

3. 正切函数积分公式的推导:我们考虑函数k(x) = -ln|cos(x)|。

三角函数变换公式

三角函数变换公式

三角函数变换公式-CAL-FENGHAI.-(YICAI)-Company One1正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y正割函数secθ=r/x余割函数cscθ=r/y同角三角函数间的基本关系式:·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosα cosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscα cscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1三角函数恒等变形公式:·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)ta n(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:s in3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosα·半角公式:sin(α/2)=正负√((1-cosα)/2)cos(α/2)=正负√((1+cosα)/2)tan(α/2)=正负√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2cos^2(α)=(1+cos(2α))/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:s inα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+…+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+…+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数公式表
同角三角函数的基本关系式
倒数关系: 商的关系:平方关系:
tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 sinα/cosα=tanα=secα/cscα
cosα/sinα=cotα=cscα/secα
sin2α+cos2α=1
1+tan2α=sec2α
1+cot2α=csc2α
(六边形记忆法:图形结构“上弦中切下割,左正右余
中间1”;记忆方法“对角线上两个函数的积为1;阴影
三角形上两顶点的三角函数值的平方和等于下顶点的三
角函数值的平方;任意一顶点的三角函数值等于相邻两
个顶点的三角函数值的乘积。

”)
诱导公式(口诀:奇变偶不变,符号看象限。


sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα
sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα
sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(3π/2-α)=-
cosα
cos(3π/2-α)=-
sinα
tan(3π/2-α)=co tα
cot(3π/2-α)=tanα
sin(3π/2+α)=-
cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-
cotα
cot(3π/2+α)=-
tanα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈Z)
两角和与差的三角函数公式万能公式
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=——————
1-tanα ·tanβ
tanα-tanβ
2tan(α/2) sinα=——————
1+tan2(α/2)
1-tan2(α/2) cosα=——————
1+tan2(α/2)
2tan(α/2) tanα=——————
tan(α-β)=——————
1+tanα ·tanβ
1-tan2(α/2)
半角的正弦、余弦和正切公式三角函数的降幂公式
二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
2tanα
tan2α=—————
1-tan2αsin3α=3sinα-4sin3α
cos3α=4cos3α-3cosα
3tanα-tan3αtan3α=——————
1-3tan2α
三角函数的和差化积公式三角函数的积化和差公式
α+βα-β
sinα+sinβ=2sin———·cos———
2 2
α+βα-β
sinα-sinβ=2cos———·sin———
2 2
α+βα-β
cosα+cosβ=2cos———·cos———
2 2
α+βα-β
cosα-cosβ=-2sin———·sin———
2 2 1
sinα ·cosβ=-[sin(α+β)+sin(α-β)]
2
1
cosα ·sinβ=-[sin(α+β)-sin(α-β)]
2
1
cosα ·cosβ=-[cos(α+β)+cos(α-β)]
2
1
sinα ·sinβ=—-[cos(α+β)-cos(α-
β)]
2
化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)。

相关文档
最新文档